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Modified moments provide coefficients in orthogonal polynomial expansions for spectral densities.
Using these expansions as a starting point, we develop a number of methods which can be used in the
analysis of density functions. Expansions for averages over densities are described. These expansions,
when combined with nonlinear convergence acceleration methods based on the Padé approximant, give
apparently exponentially convergent results. By exploiting connections between the orthogonal
polynomial expansion, Fourier series, and power series, we show how to obtain an accurate picture of
the density itself. A rational approximation is described which gives very accurate results near the ends of
the interval. Procedures cre given for determining the number, types, and locations of singularities in a
density from its modified moments. By an analysis of the asymptotic form of the modified moments,
we show how this information about singularities can be incorporated into an expansion for the density
using the ‘“‘moment-singularity”” method. We illustrate these methods by applications to harmonic solid
models. We obtain extremely accurate results for averages and we obtain accurate representations for
spectral densities which faithfully reproduce the Van Hove singularities.

I. INTRODUCTION

Many problems in theoretical chemistry and
physics can be formulated in terms of density
functions. Examples include the harmonic solid
(normal-mode spectral density), band theory (den-
sity of states), and the Ising model (density of
zeroes of the grand-partition function). It is often
the case in such problems that the density itself is
unknown, but that several power moments of it can
be obtained. Modified moments, a generalization
of power moments, can provide a powerful tool
for the analysis of these cases.

In previous papers we have used modified mo-
ments in a number of ways in the analysis of the
spectral density of harmonic solids. We have
shown, by modification of a method of Isenberg,*
how modified moments can be computed from the
dynamical matrix.? We have used modified mo-
ments to obtain Gaussian quadrature formulas
which provide rigorous bounds to averages over
the density and have shown that they are superior
to power moments for this purpose.’* We have
also shown that appropriately chosen modified mo-
ments are coefficients in an orthogonal polynomial
expansion of the density which, in a transformed
variable, becomes a Fourier expansion.®

In this paper we describe a number of methods
for the analysis of density functions which take the
orthogonal polynomial expansion as a starting
point. These methods contain, either implicitly or
explicitly, assumptions about the properties of the
density in addition to the modified moments. When
the density conforms to these assumptions, these
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methods can provide results which are strikingly
better than those that can be obtained rigorously
from the moments alone.

Using model harmonic solids as examples, we
show how to obtain very accurate results for cer-
tain averages over density functions and how to ob-
tain an accurate picture of the density itself. Pre-
vious methods for obtaining representations of den-
sity functions from moments have suffered from
the inability to accurately reproduce singularities
in the density without recourse to very detailed in-
formation about the singularities obtained by other
means. Included in the methods we describe is a
procedure by which, using only modified moments
and the (implicit) assumption of a limited number
of singularities in the density, a density function
with singularities can be accurately represented.

In Sec. II we introduce notational conventions and
definitions which will be used and review the
Chebyshev orthogonal polynomial expansion and
its connection with the Fourier expansion. In Sec.
III we examine the Chebyshev polynomial expansion
for a model harmonic solid and compare the re-
sults with those from two other methods, the Le-
gendre polynomial expansion® and the continued-
fraction method.”

In some problems the result of interest is not
the density itself, but rather some average over
the density. In Sec. IV we show how convergent
expansions for some of these averages can be ob-
tained by a formal integration of the orthogonal
polynomial expansion. The convergence of these
expansions, when applied to the spectral density
of a model solid, is shown to be greatly acceler-
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ated by a nonlinear method based on the Padé ap-
proximant. This method is particularly useful for
the determination of “singular” averages, such as
the zero-point energy of the harmonic solid, for
which Gaussian quadrature formulas do not provide
satisfactory bounds.

In Sec. V we give a method for obtaining coeffi-
cients in a power-series expansion of the density
function near the origin. In this case formally di-
vergent expansions for the coefficients are ob-
tained by a rearrangement of the orthogonal poly-
nomial expansion. However, when the nonlinear
method introduced in Sec. IV is applied to the ex-
pansions for coefficients of density functions known
to possess a power-series expansion near the
origin, good estimates for the first few coeffi-
cients are obtained.

A nonlinear method may also be used to improve
the convergence of the expansion for the density it-
self. In Sec. VI we use the Laurent-Padé approxi-
mant®® to obtain rational approximations for the
spectral densities of two model harmonic solids.
This method gives improved convergence near
Van Hove singularities and gives a very marked
improvement in the regions near the ends of the
interval.

In Sec. VII we consider the asymptotic behavior
of the modified moments. This behavior is deter-
mined by singularities in the density and leads
very naturally to the introduction of a modification
of the “moment-singularity method.”!® We show
how this modification can provide a very accurate
representation of a density with singularities when
information about the singularities is known.

The modification of the moment-singularity
method introduced here has the additional advan-
tage that it suggests methods for obtaining infor-
mation about singularities in a density directly
from the modified moments. In Sec. VIII some
procedures are described which may be used for
this purpose. We show how a new method of series
analysis proposed by Joyce and Guttman'! can be
used to determine the number and locations of
singularities and (less precisely) their types. Lin-
ear and nonlinear least-squares methods are used
to estimate the coefficients of the singularities
and, in some cases, to obtain improved estimates
for their locations and types. We apply these pro-
cedures to the spectral densities of two model sol-
ids which contain a variety of singularities (in-
cluding a discontinuity) and obtain very good re-
sults.

II. MODIFIED MOMENTS

In this section we give definitions and review
some basic results which will be used in the rest

of the paper.

Let G(x) be a non-negative density function de-
fined on the interval [0,1]. The power moments,
Ly, of G(x) are defined by

pksfolx"G(x)de(x") . (2.1)

Consider the kth-degree monic polynomials
px(x) orthogonal with respect to some weight func-
tion H(x):

1
[ pup (H drx=0, Ny, (2.2)

where N, is a normalization constant. From the
theory of orthogonal polynomials we know that the
D, satisfy a three-term recursion relation

Pas1 (%)= (x = @) py(x) = byp,_1(x)
(po=1, p,=0), (2.3)

where g, and b, are constants. Further,
1
N,=bob,*** b, [b0=f H(x)dx] . (2.4)
o]

We define modified moments, v,, in terms of the
by by

ve=(py(x)) . (2.5)

It is also useful to define normalized modified mo-
ments,

vr=(pEx)), (2.6)

where the p} are orthonormal polynomials with
respect to H(x).

The density function can formally be represented
by an expansion in these orthonormal polynomials
with coefficients which are just the normalized
modified moments

CLO~H() Y vipi (o). @.1)
% =0

The convergence of such an expansion depends on
the properties of G(x) and the choice of H(x). It is
desirable that H(x) be nonzero on the same interval
as G(x) and be as similar to G(x) as possible, par-
ticularly at the ends of the interval. It may also be
convenient to choose H(x) to be a weight function of
the classical (Chebyshev, Legendre, etc.) orthog-
onal polynomials since the properties of these
polynomials are well known.

Many of the results in this paper will be derived
using shifted Chebyshev polynomials of the second
kind. For these polynomials

H(x)=(8/m)[x(1 - x)}/2, (2.8)

and the recursion relation is given by
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P.ﬂ(x) = (x" %)P.(x) —fgi’h_l(x)
(po=1, p_,=0) (2.9)

The normalized polynomials

pXx)=(=4)p,(x) (2.10)
can be reexpressed in the form
P:(x)=§i—né(-.lf—l;5-1—)€ (x=sin?16). (2.11)

Under this transformation the orthogonal polyno-
mial expansion (2.7) becomes
Glsin30)~2 3" ypsin(e+1)6 O<o<m),  (2.12)
R=0
placing at our disposal, in addition to the theory of
orthogonal polynomials, the methods of Fourier
analysis. The series (2.12) can be shown to con-
verge to the density for a very broad class of func-
tions'2+!? and convergence can be established for
all of the densities which we will consider. More
importantly, the asymptotic behavior as k-« of
the coefficients v¥ in this series (and therefore
its rate of convergence) can be determined,'? a
point to which we shall return in Sec. VII,

III. EXPANSIONS FOR DENSITIES

In physical problems we may know or believe
that the density function of interest is, in some
sense, “well behaved.” In such cases we may
wish to represent the density by some smooth con-
tinuous function. A natural choice for such a rep-
resentation is a partial sum to the orthogonal poly-
nomial expansion Eq. (2.7). Another moment
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FIG. 1. Partial sums to a Chebyshev polynomial ex-
pansion for the spectral density of the ccp model. Solid
line is 40th partial sum; dashed line is the 20th partial
sum.

method, recently proposed by Gordon, which has
been used for this purpose is the extrapolation of
continued fraction expansions.”!* We examine the
behavior of such representations for the spectral
density of a three-dimensional harmonic solid
below.

The spectral density of a harmonic solid, p(w),
is defined on the interval [0, w,,, ]. Since we usual-
ly know only the even moments of p(w), it is con-
venient to define a squared-frequency spectral
density, G(x), with

G(x)dx=p(w)dw. 3.1)

As an example, we consider a cubic-close-
packed (ccp) model with nearest-neighbor central
forces for which large number of modified mo-
ments have been computed.? In Fig. 1 we show the
20th and 40th partial sums to a Chebyshev polyno-
mial expansion for the squared-frequency density
of this model.'® In Fig. 2 we show the continued
fraction extrapolations for the density obtained
from 20 and 40 modified moments. A modification
of Gordon’s technique which was used to obtain
Fig. 2 is described in Appendix A.

The two methods give essentially equivalent rep-
resentations. The qualitative shape of the density
is correctly represented but, as would be expected,
the Van Hove singularities are only faintly sug-
gested, even with 40 moments. An advantage of
the Chebyshev expansion is, as we shall see, the
ease with which information about these Van Hove
singularities can be incorporated.

A more commonly used orthogonal polynomial
expansion for the squared-frequency density is the
expansion in Legendre polynomials.® This expan-
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FIG. 2. Continued fraction extrapolations for the spec-
tral density of the ccp model. Solid line is extrapolation
from 40 modified moments; dashed line is extrapolation
from 20 modified moments.




2432 WHEELER, PRAIS,

sion also gives the same qualitative representation
of the density but does not do as well near the ends
of the interval. This is because the density for a
three-dimensional harmonic solid tends to zero as
a square root at the ends of the interval, a feature
which is built into the Chebyshev expansion and the
continued fraction extrapolation employed here.
The partial sums to the Legendre expansion usually
tend to nonzero constants at the ends of the inter-
val. Moreover, these constants are often negative
for the model considered here. The Legendre ex-
pansion is more appropriate for densities which
are nonzero at the ends of the interval (e.g., the
squared-frequency density of a two-dimensional
harmonic solid).

It should be noted that the problem of obtaining
any of these representations from power moments
is very ill conditioned. For example, a 40-mo-
ment continued fraction expansion cannot be ob-
tained directly from power moments using 25 sig-
nificant-figure arithmetic since no significant fig-
ures remain after the 35th moment is used. If a
set of modified moments is known (either from an
exact transformation of exact power moments? or
by direct computation?), then the problem of de-
termining coefficients in other orthogonal polyno-
mial expansions or obtaining continued fraction ex-
pansions is usually very well conditioned. Methods
for determining other expansion coefficients from
a set of modified moments are described in Ref. 3.
Some remarks on obtaining continued fraction ex-
pansions from modified moments are contained in
Appendix A.

IV. AVERAGES

In many cases the result of interest is not the
density itself but some average over the density,

(F{{r}, 20 = f 1F({r}, x)G(x) dx, (4.1)

where {7} is some set of appropriate independent
parameters (time, temperature, etc.). For ex-
ample, thermodynamic properties of the harmonic
solid are obtained when the F({r}, x) are the Ein-
stein functions for the harmonic oscillator.
Gaussian quadratures can provide very accurate
bounds for many averages of the type shown in Eq.
(4.1). However, if the function F({r}, x) is singular
at one end of the interval, then the bounds obtained
from moments alone may converge slowly or there
may be no bound on (F({r}, x)) in one direction.
Methods, based on coefficients of a power-series
expansion for G(x) [or G(x) times some known
function] near x=0, have been given for obtaining
improved results for such averages from quadra-
tures.®!® However, unless the expansion coeffi-
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cients are already known, their computation pre-
sents an added difficulty which limits the utility
of these methods.

Another approach to the evaluation of averages
is based on series expansions. Expansions in
terms of power moments or “shifted” power mo-
ments, v,={(1 -x)*), can be given for thermody-
namic properties of harmonic solids” and for
time-autocorrelation functions.'®* However, these
expansions are often characterized by rather slow
convergence. Significantly more rapidly conver-
gent expansions for some averages can be obtained
in terms of modified moments by means of a term-
by-term integration over the orthogonal polynomial
expansion Eq. (2.7):

F{r), ) = Z; vrF ),

Rl = [Pl DproB (9 ax. ®.2)

When expansions in shifted Chebyshev polynomials
of the second kind are used, the coefficients F, ({7})
become Fourier sine components of F({r}, sin?36):

Fy({rh=@4/n) fo "F({r}, sin?10)sin(k+1)0 do

[6=sin"t(x1/2)]. (4.3)

In Table I we give expansions derived from the
Chebyshev expansion for the “singular” averages

Ko =(x71), u -1/2 =<x-1/2)’

Hy/2=(x2), x=(In(x*/2)). (4.4)

For harmonic solids, the moment u, /, is just
twice the zero-point energy in appropriate units,
while the average A contributes to the free energy
and entropy at finite temperatures. The moments
K.y and p_;,, are required for the normalization
of time-autocorrelation functions in harmonic

TABLE 1. Expansions for “singular” averages.

F(x) (F (%))

o

%! By =42)v§‘
k:

- e E+1
xR u-1/2=;;": ((k+%)(k+%)>

12 i =_Zi;y*< k+1 )
7" g g e \ (k=3 (e +3) (k+2) ( +3)

et/ A=v}(i~1n2) —;”"*(k (k1+ 1))
» _ D@s +3)%~ ( B+1
He = 9% (s +1) &t \Ts +£+3) T's —k+1)>
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FIG. 3. Accuracy of methods for computing averages
over the density. The negative of logy,(lfractional error|)
for u,, in the ccp model is plotted against the number of
moments used. Envelope bounded by solid lines encloses
results from modified moment expansion; dashed line
shows results from shifted moment expansion; dotted
line shows differences between bounds obtained from
Gaussian quadratures.

solids; u _, has also been used for the computation
of other averages.!® Also included in Table I is an
expansion for the general power moment, u ={x*),
from which the averages in (4.4) can be obtained
(u_, and x are limiting cases).

In Fig. 3 we examine results for u,,, of the
nearest-neighbor central-forces ccp solid. We
compare the relative accuracy obtained from the
expansion in Table I with the accuracy obtained
from Gaussian quadratures and from a shifted mo-
ment expansion,?°

= T(k-3)
2 r(—_gmv,, . (4.5)
The convergence of the expansion in Table I is
oscillatory and its accuracy is represented by an

Ky/2=
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envelope. The upper and lower edges of the enve-
lope indicate the best and poorest results, respec-
tively. We see from the figure that the expansion
in Table I is significantly more accurate than the
other methods for any number of moments.

The results obtained from the expansions in
Table I can be considerably improved by the use
of nonlinear convergence acceleration methods.

If we formally regard the terms in an expansion
as coefficients of a power series in z, we can
form Padé approximants® to this series and then
evaluate them at z =1. Results for the ccp model
when this nonlinear method is applied to the ex-
pansions in Table I with 10, 20, 30, and 40 modi-
fied moments are given in Table II. Also given in
Table II are results for ,,, obtained from 10 and
18 modified moments for a nearest-neighbor cen-
tral-forces hexagonal-close-packed model. In Fig.
4 we compare the relative accuracy of results for
the ccp u, /, when the nonlinear method is applied
to the modified moment expansion in Table I and
to the shifted moment expansion (4.5). As in Fig.
3, the accuracy of the results for the expansion in
Table I is indicated by an envelope.

We see from Fig. 4 and Table II that the nonlin-
ear method appears to give exponential conver-
gence when applied to the modified moment ex-
pansion and that the convergence acceleration is
much less dramatic when the method is applied to
the shitted moment expansion. A possible explana-
tion for this difference may be found in the behav-
ior of the two expansions, when considered as
power series in z, at the point z=1. An analysis
of the asymptotic behavior of the shifted moments
shows that k°/2y, tends to a positive constant as
k-, It follows that the expansion (4.5) must have
a branch-point singularity at z=1. The asymptotic
behavior of the modified moments (to be consid-
ered in Sec. VII) shows that the modified moment
expansion is analytic at z =1. [This is a conse-
quence of our choice of a weight function H(x)
which has the same behavior as G(x) near the
origin.] Experience with Padé approximants sug-
gests that convergence will be good in regions

TABLE II. Results of nonlinear extrapolation of expansions for “singular” averages.

(F (x)) By ® By ® Al Hip® B2
k
10 3.361 1.6388 -0.42898 0.68188 0.68179
20 3.358 73 1.635911 -0.428870 0.681774 39 0.68184050°
30 3.358 826 55 1.63590791 —-0.428 8695673 0.681 7744405808
40 3.3588261540 1.63590789061 —0.428 869 566 193 3 0.681 774440583 65

3 Averages for nearest-neighbor ccp model. Underlined digits do not agree with correct answer,
b Averages for nearest-neighbor hep model. Underlined digits do not agree with results for #—1 and #—2 moments.

¢ From 18 modified moments.
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FIG. 4. Accuracy of nonlinear extrapolation of ex-
pansions for averages over the density. The negative of
logyo(Ifractional error|) for i, in the ccp model is
plotted against the number of moments used. Envelope
bounded by solid lines encloses results from modified
moment expansion; dashed line shows results from
shifted moment expansion.

where an expansion is analytic and will be poorer
in regions where there is a branch-point singu-
larity.??

Another difference between the two expansions
which is of practical interest is a difference in
their apparent rates of convergence. If we attempt
to estimate the degree of convergence of partial
sums by examining the last three partial sums in a
sequence, then such a procedure will always lead
to a conservative estimate for the convergence of
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the modified moment expansion but will cause an
overestimation by 1 to 2 orders of magnitude for
the shifted moment expansion. That is, the last
partial sum to the shifted moment expansion will
appear to be more accurate than it is. This dif-
ference is also observed in the apparent rate of

convergence of successive Padé approximants.

Other averages for which the integration (4.3)
can be performed to provide rapidly convergent
series are time-autocorrelation functions (TAFs).
In harmonic solids, quadrature methods provide
good bounds for TAFs when the reduced time, 7,
is less than twice n, the number of moments
available.*?®* However, series expansions can ex-
tend the time out to which these TAFs can be de-
termined to 7 ~3x and provide results which are
significantly more accurate than the quadratures.®
An expansion for the classical momentum TAF for
a harmonic solid, C§(¢), has been given else-
where.® In Table III we reproduce the result for
C3\¢) and give two additional expansions for har-
monic-solid TAFs: the quantum-mechanical mo-
mentum TAF, C¢™(¢), and the classical-displace-
ment TAF, C¢(¢f). The TAFs which are double
sums appear formidable, but the inner sums over
Bessel functions can be performed quickly and
accurately because of the rapid decay of J,(7) with
increasing n. The second expression for C§" (#) is
of interest because it leads to exponentially con-
vergent results at short times if the inner sums
over moments are extrapolated by the nonlinear
method above. The bounds from quadratures con-
verge more slowly.

The classical-momentum TAF is of special in-
terest since this integral is found in a number of
other problems. The method of obtaining this
function by integration of orthogonal polynomial
expansions of densities is not restricted to Cheby-
shev polynomial expansions and can give rapidly

TABLE II. Expansions for time-autocorrelation functions in terms of Bessel functions.

F(r,x)?

(F (71,%))

cos(x!/?

xM2cos(x27)
K72

Ci™(t) = Jo(7) -

T) C;l (t)=;V:{J2,¢(T) —dgpq(N]

2
THis2 2 Vi(; (ak +1 70 -1)J21(T)>

2 0 o0
=dJ s J * + _
o7 Thin x§= 21(T)<k§= VE (g tay 1)>

where @, = (m+1)/[(m —%)(m +5) (m +§) (m +3)]

xtecos(x27)
!

4
Ccdt)y=1-—
e (t) i

2’ Y [; t+1) (JZ(Hk +1y(7 -Jg(Hk”)M(T))]

k=

3 T=wmna ¢ Where t is time.
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convergent results even for very irregular den-
sities. A very general convergence proof for this
method is given in Appendix B.

Partial averages over the density can also be

obtained by integration of the Chebyshev expansion.

Two examples which have recently been used in
the theory of metals®® are the cumulative density
function

AP I sinké sin(k+2)6
fOG(x )dx _né’—;u:( PR >,

(4.6)
and the integral

fx(x"é)G(x')dx’
0

1 & /sin(k+3)6 sin(k—-1)9
_317,,2:0 ,,:( - ) @7

(k+3) (k=1)

where x=sin?.6 and where (sinj#)/;j is defined to
be equal to 6 for j =0. These expansions are also
rapidly convergent. For example, a comparison
of the partial sums obtained with 40 and 60 mo-
ments suggests that the cumulative density from
40 moments is in error by less than 102 over the
entire interval.

V. POWER-SERIES EXPANSIONS

We remarked in Sec. IV that good results for
singular averages over G(x) can be obtained from
Gaussian quadratures by using coefficients of a
power-series expansion for a known function times
G(x) near x=0. The fact that good results for
singular averages are obtained from modified
moments without the use of such coefficients sug-
gests that it may be possible to obtain the series
coefficients directly from the modified moments.

If H (x) can be chosen sc that the ratio G(x)/H (x)
possesses a convergent power-series expansion
near the origin

o0

GEIH ()~ 37 dx, (5.1)

k=0

then a rearrangement of the orthogonal polynomial
expansion (2.7) will lead to a formal expansion for
the coefficients d, in terms of modified moments.
In the case of shifted Chebyshev polynomials of
the second kind [cf. Egs. (2.8)-(2.12)], this ex-
pansion has the form

d, ~(=4) i < l;i;k>u,* . (5.2)
1=k

When G(x)/H (x) contains singularities inside the
interval (0, 1) the formal series (5.2) for the co-

efficients will generally be divergent even though
the series in (5.1) has a nonzero radius of con-
vergence. (Depending upon the nature of the sin-
gularities, the first few d,’s may be convergent.
See Sec. VIL.) Nonetheless, good estimates for
the first few of these coefficients may be obtained
by formally treating the expansions as power
series in z, forming Padé approximants, and
evaluating at z=1 (i.e., the nonlinear method of
Sec. IV).

For harmonic solids in three dimensions the
squared-frequency density is usually expanded
near the origin as

G(x)~ éx”zz cpX* . (5.4)
k=0

The ¢, are easily obtained as linear combinations
of the d, whenH (x) = (8/m)[x(1 = x)]*/2.

In Table IV we examine the accuracy of results
obtained for the first three coefficients c¢, in the
nearest-neighbor ccp model using the nonlinear
method. The most accurate values for these co-
efficients have been obtained by Isenberg.?> We
see from the table that, although increasingly
large numbers of moments are required to obtain
accurate results for the higher coefficients, the
nonlinear method appears to give exponential con-
vergence to Isenberg’s results.

An expansion of the form (5.1) in powers of
(1 - x) which is convergent near x=1 can also
be given. The expansion for the d, in this case
is obtained by replacing v;* by (-1)' v in Eq. (5.2).

Methods for extracting power-series coeffi-
cients from power moments and shifted moments
have been given,'” but the convergence of such
methods is extremely slow. Direct application
of nonlinear extrapolation to these methods does
not dramatically improve their convergence. It is
possible, by a combination of linear and nonlinear
extrapolation techniques, to obtain good estimates
for the first few coefficients from shifted mo-
ments,?® but this rather complicated procedure
does not improve upon the results in Table IV.

TABLE IV, Accuracy of nonlinear extrapolation meth-
od for power-series expansion coefficients to G(x). The
negative of logy,(|fractional error|) in the coefficients of
expansion (5.4) for the ccp model is tabulated.

Cr € Cq C2
k

10 1.5 e

20 3.4 1.0 o
30 6.4 4.4 1.5
40 9.3 6.5 3.8




2436 WHEELER, PRAIS,

VI. RATIONAL APPROXIMATIONS FOR DENSITIES

The success of nonlinear methods based on
rational approximations in computing averages
and power-series coefficients leads us to seek a
rational approximation to the density itself. For
this purpose it is useful to define

F(z) =% i: viz® . (6.1)

When the v are the modified moments obtained
from shifted Chebyshev polynomials of the second
kind, f(z) is analytic inside the unit circle. It
follows from the Fourier expansion (2.12) that

G(sin?10) = lim Im([re'®f(re'?)]. (6.2)
r—=>1-

Using N modified moments we form the [n/m]

Padé approximant to f(z)

R
1@V f e)e? sy

(ro=1; m +n+1=N; n=m). (6.3)

In principle we could now obtain an estimate for
G(sin®’6) following Eq. (6,2). In practice, an
alternate (entirely equivalent) procedure® ® is
more convenient. We observe that
ei Bf(eie) - e-ief(e_(e)

2; :

G(sin®36) = (6.4)
Then, using the approximant in Eq. (6.3) for f,
bringing the sums over a common denominator
and substituting x =sin?}9, we obtain

81 hp Desosypi(x)
R Y

. (6.5)
Sk =Z (@71 = G r7142),

1=k

G(x)~G,, u(x)=

Z e ry=7,,,) (r;=0for j>m),

1=k

ty =

where the p: are again the shifted Chebyshev poly-
nomials of the second kind. This orthogonal poly-
nomial analog of the Padé approximant has the
property that its first N modified moments are
identical to those for G(x).%”

In Fig. 5 we show the results from this method
for the nearest-neighbor ccp harmonic solid ob-
tained with 20 and 40 modified moments. We
again, as with the methods of Sec. III, obtain a
good picture of the qualitative shape of the density.
With 40 moments the approximant also exhibits
behavior which is suggestive of the Van Hove sin-
gularities. The most striking feature of the meth-
od is the accuracy with which it represents the
density near the origin. A comparison of these
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results with those obtained from the expansion
(5.4) using the 30 coefficients of Ref. 25 indicates
that this method approximates the density on the
interval [0, 0.1] with a maximum absolute error of
a few parts in 10* with 20 moments, and only a
few parts in 10° with 40 moments. The relative
error on this interval is also small; it has a maxi-
mum value of about 3 x107* with 20 moments and
6 x 10~° with 40 moments. Comparison of succes-
sive approximants suggests that the convergence is
exponentially rapid near x=1 as well.

A possible application for this method is in the
evaluation of averages which depend most heavily
on the behavior of the density near the origin. (An
example of such an average is the low-temperature
heat capacity for harmonic solids. There appears
to be no convenient expansion of the type given in
Sec. IV for this average.) The average can be
broken in two parts,

Pirt, 0 = [ P}, x)6(x) dx

1
+ [ F(r}, et ax, (6.6)
%o

where x, is some point, say 0.1, near the origin.
The rational approximation can be used in place
of G(x) in the first integral and the second integral
can be evaluated using Gaussian quadratures. Ex-
perience with a similar method® '® suggests that
the result should be significantly better than that
obtained by using Gaussian quadratures alone.

Following a procedure similar to the one we
have described, one can also obtain an analog to

L e e N N
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FIG. 5. Rational approximations for the spectral den-
sity of the ccp model. Results are from the orthogonal
polynomial analog of the Padé approximant using
shifted Chebyshev polynomials of the second kind. Solid
line is approximation using 40 modified moments;
dashed line is approximation using 20 modified moments.
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the Padé approximant for shifted Chebyshev poly-
nomials of the first kind. These polynomials are
orthogonal with respect to the weight function

H(x)=(1/m[x(1 =], (6.7)

and, under the transformation x =sin*;6, they
satisfy the identity

p¥(x)=coskd. (6.8)

The shifted Chebyshev polynomials of the first
kind are particularly appropriate for approxi-
mating densities with square-root divergences
at the ends of the interval such as the squared-
frequency density of a one-dimensional harmonic
chain.

We have applied this approximation technique
to the spectrum of a diatomic chain (ABAB) with
my/mg=2. The density G(x) for this model is
symmetric about x=3. It has square-root diver-
gences at x=4% and x=% as well as at the ends of
the interval, and has a gap where the density is
zero between 5 and (. In Fig. 6 we show the exact
spectral density for this model together with the
14-moment orthogonal polynomial expansion in
Chebyshev polynomials of the first kind. To facili-
tate comparison with previous treatments'? of this
model, we have displayed wm;p(w) rather than
G(x). In this form, the density does not diverge
at the origin. The Chebyshev expansion provides
results which compare favorably with the usual
Legendre expansion.

In Fig. 7 we show the result for this model ob-
tained using the rational approximation with 14

017117 T T T T 11T
360 |- !

320
280 -

Wox plW)

040 F \,\
v A Y N S RO SN U O AT

000 00 020 030 040 050 060 \ / 080 090 100
W/Wmax

FIG. 6. Spectral density of the diatomic chain. Solid
line is exact result; dotted line is result from expansion
in shifted Chebyshev polynomials of the first kind using
14 modified moments. Dashed line indicates the edges
of the gap in the exact result. Exact result diverges at
the edges of the gap; both results diverge at 1.0.

——

moments. This approximation mimics the be-
havior of the exact result near the edges of the
gap much more accurately than the polynomial
expansion. It gives a good quantitative representa-
tion of the density over most of the region outside
the gap: for w/wm., less than 0.55 or greater than
0.84 (x<~0.3 or >~0.7) it is correct to better than
1%. Moreover, it is quite accurate at the ends of
the interval: for w/w . less than 0.3 or greater
than 0.95 (x<~0.1 or >~0.9) it is correct to one
part in 10, When more moments are used, the
accuracy at the ends of the interval increases
(apparently exponentially), the representation
remains accurate cluser to the edges of the gap,
and the approximant oscillates more closely about
zero inside the gap. {B. G. Nickel [J. Phys. C 7,
1719 (1974)] has obtained a rational approximation
to spectral densities essentially identical to

Eq. (6.3) from a quite different point of view in
connection with the randomly dilute ferromagnet.}

VII. ASYMPTOTIC FORM OF THE MODIFIED MOMENTS
AND THE MOMENT-SINGULARITY METHOD

If the density function G(sin?36) is not an analyt-
ic function of 6 everywhere on [0, 7], then the
asymptotic behavior as ¥~ < of the modified mo-
ments in the Fourier expansion Eq. (2.12) will
be determined by the singularities in the density.
When the nature of these singularities is known,
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FIG. 7. Rational approximation for the spectral den-
sity of the diatomic chain. Result shown by solid line is
from the orthogonal polynomial analog of the Padé
approximant using shifted Chebyshev polynomials of the
first kind and 14 modified moments. Dashed line indicates
the edges of the gap in the exact result. Approximate
result has minima off scale at ~0.596 and ~ 0.802 where
it attains values of ~ —1.79 and ~ —2.40, respectively.
Result diverges at 1.0 and has a maximum off scale at
~0.810 where it attains a value of ~ 5.25.
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an expression for the asymptotic form of the v}
can be obtained.’? If the density has m singular
points, 6,,..., 6,, then each singularity will make
a contribution, (v)$, to the asymptotic behavior
of v}

vi~2 Wi (7.1)

In Table V we give expressions for the contribu-
tion of common Van Hove singularities to the
asymptotic form of the modified moments.

The analysis of the asymptotic behavior of modi-
fied moments leads very naturally to an extension
of the “moment-~-singularity method” first proposed
by Lax and Lebowitz for harmonic solids.® We
write, for a density with m singularities,

m
G(sin®30) =G"(sin’36) + Y Gi(sin®30),  (7.2)
i=1

where

G; (sin®*36) =% i (v sin[ ( +1)6] (7.3)
&=0

is the “dominant part” of the ith singularity and

0

m
G (sin%40) =% g [ v - ; (O f] sin( (& +1)6]
(7.4)
is the more “regular” remainder.

When N modified moments and the singularities
are known, G(sin?46) can be approximated using
the sums (7.3) and the Nth partial sum to Eq.
(7.4). The sums (7.3) are generally rather slowly
convergent at the singularities. In Appendix C
we show how to evaluate these sums for each of
the singularities in Table V, either in closed
form or as extremely rapidly convergent series.

The moment-singularity method should not be
understood to require the separation of G(sin?36)
into an analytic part and a singular part. In gen-
eral, G"(sin?;6) is nof analytic. Rather, it con-
tains singularities which are “weaker” than those
in G(sin’36). That is, the modified moments of
G” (sin?16) tend to zero faster than those for
G(sin®30) (e.g., as n~%? instead of n~*'2) and hence
the sum in Eq. (7.4) converges faster than the
sum in Eq. (2.12).

The method may be applied with minor modifica-
tion when the nature of the singularities is known
as a function of x =sin®; 6 instead of as a function
of #. Expanding about a singular point ., we have

x=x,=(} sin6, )(6 =9, ) +(; cosb, )6—=6, ) =---.
(7.5)

Thus, except when 6§, is near 0 or 7, the domi-
nant part of the singularity as a function of x is
the same as the dominant part as a function of 6
and results of the kind shown in Table V can be
used directly. When the singularity is near an
end of the interval, it may be necessary to make
corrections for the higher-order terms in Eq.
(7.5) but this is usually straightforward.

As an example of the application of the moment-
singularity method, we consider the simple-cubic
(se) harmonic solid with nearest-neighbor central
and noncentral forces which has been extensively
analyzed by Montroll.?® The singularities in the
squared-frequency density for this model can be
discovered by an analysis of its dynamical ma-
trix.!” They are given in Table VI together with
their contributions to the asymptotic form of the
modified moments. In Fig. 8 we show the approxi-
mate density for this model obtained from 15 mo-
ments. This approximation has a maximum error

TABLE V. Dominant contribution to the modified moments from singularities in the density.

Type G(sin® 16)

)

one dimensional
minimum,
maximum

two dimensional
saddle Inl6~6, |
minimum,
maximum
(discontinuity)

three dimensional
51,5, (saddle)
minimum,
maximum

generalized

1xsgn(6-6,)

[6—6,]

|6—6,|In]6 -6, |[1+sgn(6—6,)]

[6—6,["Y?[1+sgn(8—6,)]

—16-16,|"2[1xsgn(6—-6,)]
[0—6,]"?[1xsgn(6~86,)]

™2 (k+1)"1 2 sin[(k+1)6, + 4]

—ir(k+1)"'sin[(k+1)6,]

—(k+1)"'sin[(k +1)0, = i7]

L7V (k +1)73 2 sinf(k +1)0, ¥ 47
1712 (k +1)73 2 sin[(k +1)6, = §7)
—(k+1)"?sin[(k+1)6,]

(k+1)"%{(2/m) In(k +1) sin[(k +1)6,]
Fcos[(k+1)6, ]}




of 6x107% which occurs at the singularities located
at 0.2 and 0.8. On the scale shown, it is almost
indistinguishable from the exact density. We
emphasize that the approximate density in Fig. 8
has mathematically sharp singularities of pre-
cisely the type given in Table V. The slope of
G(x) in Fig. 8 has the correct square-root diver-
gence at the singularities.

VIII. MODIFIED-MOMENT ANALYSIS OF SINGULARITIES

While the behavior of the modified moments is
rigorously determined by singularities in the den-
sity only in the limit % - «, the dominance of the
singularities is in evidence for fairly small k.
For example, with the sc solid considered in
Sec. VII, the relative error, [v*¥- ", (v 1/v),
made by approximating the moments with their
asymptotic form is less than 10% for 10 <k <20
and less than 3% for 40<k<50. Thus, it is not
unreasonable to attempt to determine information
about the singularities from the modified mo-
ments.

Singularities in the density G(sin?39) will appear
in the function f(z) [cf. Eqs. (6.1) and (6.2)] as
singularities on the unit circle in the complex z
plane. Because G(sin?16) is the imaginary part
of e®f(e'®), simple algebraic branch points in
f(2) may result in Van Hove-like singularities in
G(sin®30) of the type given in Table V. For ex-
ample, a singularity of the form

f(2)=h(2) +g(z)z =2, ), (8.1)

with &, g analytic at z=2,=¢'% and p=1, could
reproduce at least the dominant part vf the maxi-
mum, minimum, S,, and S, singularities en-
countered in the squared-frequency density of a
three-dimensional solid.

A. Series-analysis methods

A number of methods are available for esti-
mating the location and nature of algebraic sin-

TABLE VI, Singularities in the density for the sc
model and their dominant contributions to the modified
moments,

(v¥)§=A; (B+1)"%? sin[(k +1)6; +n;]
R/1 i i i

i? type x;=sin’10 A; n
1S, 0.100 10v3 (2m) 32 =1,099 74+ - im
2 S 0.200 102m)3/2=0.63493- - - —in
3 S, 0.800 10(2m) 372 ir
4 S 0.900 10v3 (2m) 7372 —ir

2 sc model also has a minimum at x=0 and a maximum
at x=1. However, these make no contribution to the
asymptotic behavior of the modified moments.
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gularities in a function from a limited number of
coefficients in a power-series expansion of the
function about zero such as Eq. (6.1). Two of
the most widely used methods are the ratio meth-
0d?® and Padé approximants.?® They have been
applied with considerable success in the study

of critical phenomena and phase transitions.??
Recently these techniques have also been applied,
using a power moment expansion, to analyze
singularities at the band edges of spectra in the
Hubbard model.®' However, these methods are
not well suited for the analysis of singular func-
tions like Eq. (8.1).

A new method of series analysis recently pro-
posed by Joyce and Guttman!! is well suited to the
analysis of singularities like that in Eq. (8.1).
This method approximates the function f(z) by the
solution of a second- (or higher-) order linear
differential equation with polynomial coefficients
which are determined by the known expansion co-
efficients for f(z). The solution of such a dif-
ferential equation can have the same form as Eq.
(8.1) at a singular point with p an arbitrary non-
integer constant. [When the exponent p is a non-
negative integer, an additional factor of In(z - z.)
is present in the singular term.] The imaginary
part of the solution can have the same form as
any of the singularities in Table V. The one-
two-, and three-dimensional singularities are
obtained when p=-%, 0, +3, respectively; the
first generalized singularity, when p=1.

We have used the method of Joyce and Guttman
to analyze the singularities in the squared-fre-
quency densities of two model solids, the sc model
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FIG. 8. Moment-singularity method for the spectral
density of the sc model. Result is obtained using the func-
tional forms for the asymptotic contributions of the sin-
gularities given in Table VI and 15 modified moments.
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TABLE VII, Estimates for locations of singularities
in the density for the sc model obtained using the method
of Joyce and Guttman,

(Mg, My, My) % %y %3 Xy
[9, 8, 8] 0.100680 0.199506 0.800493 0.899 319
[11,10,10] 0.099775 0.200017 0.799982 0.900224
[13,12,12] 0.099952 0.199901 0.800098 0.900047
[15, 14, 14] 0.099969 0.200011 0.799988 0.900030
[17,16,16] 0.099989 0.199981 0.800018 0.900010
exact 0.100 000 0.200000 0.800000 0.900000

of Sec. VII, and the nearest-neighbor central-
forces ccp model. Results were obtained from the
second-order equation which we write (following
Ref. 11) as

Qu(2)A%,(2) + Q(2)Ay,(2) + Qo(2)¥2(2) =0

P
T2z )

where the @,(z) are polynomials and y,(z) is an
approximant for f(z). Singularities are located
at the roots of @,(z) and their exponents can be
determined from ratios of the polynomials. We
use the notation [M,, M ,, M,] to refer to the ap-
proximant obtained when the degrees of Q,, @,,
and @, are My, M, and M,. Such an approximant
is determined by M, +M , +M, +2 expansion coeffi-
cients for f(z).

The Joyce-Guttman method is very successful
when applied to the analysis of singularities in the
sc model. In Table VII we give results obtained
for their locations from a sequence of [2x +1, 2, 2n]
approximants with n=4, ..., 8. The results are
given in terms of the variable x =sin?;6 and
exact results are given for comparison. The
higher approximants also contain nonphysical sin-
gularities. However, these nonphysical singulari-
ties lie well off the unit circle. Thus, an important
advantage of the Joyce-Guttman method is that it
provides a method for estimating the number of

(8.2)
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singularities in the density. Results for the ex-
ponents are not as dramatic as those for the loca-
tions. Values as good as 0.505 are obtained from
the [ 17, 16, 16] approximant while the poorest
value, 0.604, is obtained from the [9, 8, 8] ap-
proximant. Nonetheless, all of the values give

a good indication of the correct square-root be-
havior.

Results are also good when the Joyce-Guttman
method is applied to the ccp model. However,
some difficulty is encountered with two of the
singularities. In Table VIII we give results for
the locations of the singularities obtained from a
sequence of [ 2n, 2n, 2n] approximants with »
=5,...,10. From an examination of symmetry
points in the Brillouin zone, it can be determined
that the density for the ccp model has singularities
at 0.25, 0.5, 0.75, and 0.78125.3% A fifth sin-
gularity can be inferred to lie near 0.9.32 The
locations of the singularities at 0.25 and 0.5 are
accurately determined (Table VIII) by the approxi-
mants and the one near 0.9 is consistently de-
termined to be 0.877- - - . The exponents for these
singularities are knowntobe 0.5, 0, and 0.5, respec-
tively.*?*3 The [ 20, 20, 20] approximant estimates
them as 0.50001, 0.0047, and 0.4992, while the
[ 10, 10, 10] approximant gives 0.4990, -0.072,
and 0.390. Reasonable estimates for the remaining
two locations, 0.75 and 0.78125, are obtained from
the [ 14, 14, 14] and [ 16, 16, 16] approximants but
estimates for their exponents are inconsistent.
The [ 18, 18, 18] and [ 20, 20, 20] approximants
place an additional singularity on the unit circle
in the region of these two singularities.

Experience with the Joyce-Guttman method is
still rather limited and some remarks on the
practical aspects of its application seem war-
ranted. In our experience, the locations of sin-
gularities are determined more reliably than the
exponents. The best results are obtained at sin-
gularities which are well isolated such as those
in the ccp model at 0.25 and 0.5. None of the sin-

TABLE VIII. Estimates for locations of singularities in the density for the ccp model ob-

tained using the method of Joyce and Guttman,

(M, M1, M;] *y E2) *3 %4 %5
[10,10,10] 0.250 001 54 0.501601 0.656 195 0.761414 0.876 828
[12,12,12] 0.249 996 77 0.500282 0.720972 0.775276 0.878 908
[14,14,14] 0.250 00063 0.500123 0.753 871 0.794273 0.877 792
[16,16,16] 0.250 00018 0.500101 0.747118 0.786456 0.877 723
[18,18,18] 0.250 00001 0.500 043 0.754 858 0.779 750 0.877 680
0.771 343
[20,20,20] 0.249 999 99 0.500 024 0.751 612 0.777254 0.877 650
0.764 846
exact 0.250 000 00 0.500 000 0.750 000 0.781250 ?
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gularities in the approximants lies precisely on
the unit circle and one indication of the reliability
of a result is how close it is to the unit circle.
Any result which lies more than 0.01 off the
circle should be regarded with suspicion and very

good results usually lie within 0.0001 of the circle.

Within this range, the locations are usually quite
reliable and the exponents are reasonable but may
still contain errors on the order of 20%.

The difficulties with the singularities at 0.75 and

0.78125 in the ccp model require special comment.

In addition to the fact that these singularities lie
close to one another, the situation is complicated
by the fact that the singularity at 0.75 has a rather
unusual character. A preliminary analysis®® in-
dicates that this singularity is a confluent sin-
gularity of a kind which cannot appear in the solu-
tion of a homogeneous second-order differential
equation with polynomial coefficients. Thus, in-
consistent results from the Joyce-Guttman method
may serve to warn the user of (perhaps unsus-
pected) complications in his problem.

B. Least-squares methods

Before the locations and exponents of the sin-
gularities can be used in the moment-singularity
method of Sec. VII, the coefficients of the sin-
gularities must be obtained. That is, for each
singularity, a constant which is equivalent to the
leading term in a power-series expansion for
g(z) in Eq. (8.1) must be determined. This con-
stant appears in the asymptotic form of the modi-
fied moments as a magnitude and a phase shift
(e.g., the constants A; and the phase shifts 7;
in Table VI).

In some problems, physical considerations may
limit the choice of the phase shifts, n;, to a few
discrete values. (This happens, for example, in
the harmonic-solid models considered here.) In
this case the appropriate n; can usually be de-
termined by inspection of the orthogonal poly-
nomial expansion or rational approximation. The
problem is then reduced to estimating the magni-
tudes, A;. One way to do this is to choose them
to give the best least-squares fit to the known
modified moments. That is, given z+1 modified
moments, we determine m constants A; which
minimize

3 (- 3 A (k))zww), (8.3)

k=0 i=1

where the f; (k) are the functional forms of the
asymptotic contributions of the m singularities
as determined by their locations, exponents, and
phase shifts and where w(k) is some weight func-
tion which anticipates the decreasing residual as

k increases.

Using this procedure with 40 modified moments,
the exact f;, and w(k)=k®, the magnitudes A; for
the sc model are determined to within a few tenths
of a percent. The density which is computed using
these estimates is somewhat more accurate than
that shown in Fig. 8 which was computed with
exact magnitudes and 15 moments.

When no a priori information on the phase shifts
is known, they too must be estimated from the
modified moments. Linear least squares can be
used to estimate both A; and n; by writing

A; sin[(k +1)6; +n;] = B; sin[(k +1)6;]
+Cycos[(k+1)6;] , (8.4)

with B; and C; to be determined. While we have
not tested this procedure in detail, limited ex-
perience suggests that the n; can be determined
to within a few percent in this manner.

The combination of the Joyce-Guttman method,
linear least-squares estimates for the coefficients,
and the moment-singularity method of Sec. VII
constitutes a prescription for determining the
density from the modified moments. However, if
the Joyce-Guttman method does not unambiguously
determine the locations and exponents of all of the
singularities, either because an insufficient num-
ber of moments is known or as a result of more
fundamental difficulties, then other techniques are
required.

In some cases, it may be possible to determine
the locations of the singularities by other means.
For example, although the Joyce-Guttman method
is not successful in the analysis of the singulari-
ties in the ccp model at 0.75 and 0.78125, their
locations are easily found by an examination of
symmetry points in the Brillouin zone. In these
cases we can attempt to determine the exponents
by trying linear least squares with different
functional forms for the asymptotic behavior of
the modified moments, using the “goodness of fit”
as a criterion for which form is best. The success
of this procedure is dependent upon limiting the
possible functional forms by physical considera-
tions to a reasonable number of choices.

The locations of the singularities can also be
treated as variables in the least-squares fitting
procedure. In this case the problem becomes
nonlinear. A very fast nonlinear least-squares
algorithm has been given by Golub and Pereyra®*
which makes explicit use of the fact that some of
the unknowns enter linearly. With this algorithm
and reasonable initial estimates for the locations
of the singularities (e.g., from an inspection of
the rational approximation or from the Joyce-
Guttman method), quite good estimates for the
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locations can be obtained.

Finally, the results from the least-squares fit-
ting procedure can sometimes be improved by us-
ing a linear combination of functional forms for
the asymptotic contribution of a singularity. This
technique is important for some complicated sin-
gularities (see the discussion below of the singu-
larity at 0.75 in the ccp model). It can also be
used to include the second-order contribution from
a singularity to the asymptotic-form of the modi-
fied moments. [This is equivalent to finding the
second coefficient in a power-series expansion
for g(z) in Eq. (8.1).]

We have investigated least-squares-analysis
methods for singularities in some detail for the
ccp model. A combination of the techniques de-
scribed above was used to determine the correct
functional forms for the singularities at 0.5 and
0.75 and to test the nonlinear least-squares method
for determining locations.

The singularities at 0.25, 0,781 25, and 0.877---
were taken to be S,, S,, and S,, respectively. A
least-squares weighting of w(k)=k° was used. The
best result for the singularity at 0.5 was obtained
when a discontinuity plus a second-order contribu-
tion from a discontinuity in slope (the first gener-
alized singularity in Table V) was used. The best
result for the remaining singularity, at 0.75, was
obtained when a linear combination of the two gen-
eralized singularities in Table V was used.

It has been reported that the singularity at 0.5
contains a logarithmic divergence.’* To investigate
this possibility, we tried a linear combination of
the two two-dimensional singularities in Table V.
[This is equivalent to determining the phase, 7,,
at the singularity following Eq. (8.4).] The re-
sulting magnitude of the coefficient for the loga-
rithm was less than 1% of that for the discontinu-
ity —zero to within the accuracy with which magni-
tudes are typically determined. This is in agree-
ment with a detailed analysis of this singularity
using the dynamical matrix which indicates a dis-
continuity with no logarithmic contribution.?*

A variety of functional forms were tried for the
singularity at 0.75, including a three-dimensional

maximum and minimum, and the two generalized
singularities in Table V. A much better fit was
obtained with either of the generalized singularities
than with a maximum or minimum. In agreement
with a preliminary dynamical matrix calculation
indicating the presence of both singularities,? the
best fit was obtained using a linear combination of
the two.

As an example of the nonlinear least-squares
method, in Table IX we give the results obtained
using this technique for the ccp model. Forty mod-
ified moments were fitted with all of the locations
of the singularities treated as variables to be de-
termined. In Fig. 9 the corresponding density ob-
tained using the moment-singularity method is
shown. While the exact solution for this model is
not known, Fig. 9 is in excellent agreement with
results from root sampling methods.*

The nonlinear least-squares technique deter-
mines the locations of the singularities in the ccp
model with an error of less than 1.0x10-% Most
of the constants A; and B; in Table IX are not
known exactly. However, A, has been determined
to be 0.3417- ¢ +3® g0 that the least-squares result
for this constant is correct to about one part per
thousand. A comparison of the results in Table IX
with those obtained using different numbers of mo-
ments and those from linear least squares suggests
that A, is accurate to within a few parts per thou-
sand, and that A, and A, are accurate to a few
percent, while 4, and B, are probably only re-
liable to about 10%. The variations in A; and B,
seem to be correlated so that the representation
of the singularity at 0.75 is probably more faithful
than the reliability of these constants might sug-
gest.

The least-squares methods we have described
have the advantage of providing considerable flex-
ibility. Some or all of the locations may be fixed
in advance, more than one type of singularity may
be assigned to a given (variable) location, and the
phase may be treated as a discrete or continuous
variable. On the other hand, the convergence of
the least-squares results is not exceedingly rapid.
While a quite good representation of G(x) is ob-

TABLE IX. Singularities in the density for the ccp model and their dominant contributions
to the modified moments as determined by nonlinear least squares.

()5 =A; (ke +1)™#*D sin[(k +1)6; + m;) +B v, (k +1)

i x;=sin’6; p A; n B; v;(k+1)

1 0.25022 +% 1.0046 +im e

2 0.50004 0 0.3414 +3m 0.0890 (k+1)"2 sin[(k+1)6,]

3 0,749 05 +1 2.1639 T —0.8330 {k+1)"¥{(2/m) ln(k+1)sin[(k+1)GC]+Cos[(k+1)9c]}
4 0.78222 +4 0.6522 +4w oo oo

5  0.87787 +1 1.2844 -3




tained from 30 moments, the results from 60 mo-
ments are not dramatically better than those using
40 moments. It would, of course, be highly desir-
able to have a method for determining the coeffi-
cients which combined the flexibility of the least-
squares methods with the rapid convergence of the
series-analysis methods of Joyce and Guttman.

IX. CONCLUSION

We have given a number of methods which can be
used to extract information about a density function
from its modified moments. By exploiting the con-
nections between Chebyshev expansions, Fourier
series, and power series, we have, we believe,
made a significant advance in the practical problem
of estimating a spectral density from a limited
number of moments. It seems certain, however,
that the possibilities offered by these connections
have not been exhausted. We anticipate that both
more sophisticated numerical methods and more
rigorous analytical results will be discovered.
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APPENDIX A

For three-dimensional harmonic solids, the con-
tinued fraction extrapolation as proposed by Gor-
don” has the disadvantage that it does not have the
correct frequency dependence at the low-frequency
end of the interval. We give below a slightly modi-
fied version of Gordon’s procedure which does not
have this difficulty.

Let g(z) be a function of the complex variable z
defined by

_ (' Glx)
9(z)=f° o dx. (A1)
Then,
Im{lim(1/m)8(x, +i€)} = Gx,) . (A2)
€0

8(z) can be represented by the power moment ex-
pansion

§(2)~ ) ppz=tY, (A3)
k=0
or by the associated continued fraction
9(2) ~ Bo B (A4)
Z -y ——>
z2-aq, B .
Z -y -

The coefficients «,, B, in the continued fraction
are the recursion coefficients for the monic or-
thogonal polynomials defined by G(x). That is,
they define a set of polynomials, m,(x) [as in Eq.
(2.3) with a,= @, and b,=8,] which satisfy

flnk(x)n,(x)G(x) dx=0,,N,. (A5)
0

These recursion coefficients are determined by
the moments of G(x); the first » o’s and » 8’s can
be obtained from the first 2#» moments. However,
the transformation from power moments to recur-
sion coefficients is exponentially ill conditioned.®®
(This is the ill-conditioned problem we noted in
Sec. III.) On the other hand, the transformation
from modified moments to recursion coefficients
is usually well conditioned.* A stable procedure
by which the latter transformation can be accom-
plished is given in Ref. 3.

If the continued fraction (A4) is truncated at any
finite order and the limit (A2) is taken to obtain an
approximate density, then the result is a sum of
weighted delta functions. (This approximate den-
sity is equivalent to a Gaussian quadrature for-
mula.?®) Thus, unless the continued fraction can
be summed to all orders, it does not provide a
continuous approximation to the density. However,
if the coefficients «,, B, approach well-defined
limits as 22—, then a continued fraction for which
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a limited number of coefficients are known can be
extrapolated by assuming that all the unknown co-
efficients have attained their limiting values.

For the squared-frequency density of three-di-
mensional harmonic solids it is typically the case
that

Qy~3, By~ as k—oo, (A6)

In order to evaluate an extrapolated continued
fraction with these limiting values for the coeffi-
cients, we define

Gc(z)sfol g—(:%dx, (A7)
where
H(x)=(8/m)[x(1 - x)]*/2 (A8)

is the weight function for the shifted Chebyshev
polynomials of the second kind. The associated
continued fraction for 3¢ (z) is

e (z)~

L _is (A9)

That is, all the o, are ; and all the 8, are & [cf,
Eq. (2.9)]. By standard methods of analysis,

lm, f536(xo +i€) = {3, - ) - ilx(1 - )]/}
(A10)

If @, and B, are the last-known recursion coeffi-
cients for G(x) and we define

By

zZ-ay-

8a(e) = B (A11)

z-a

o Bn
z-a,-%5()’

then the corresponding density, G, (x), defined by
Eq. (A2) is given by

G,(x)

= Im( 30/7’

X =0y~

x=-a,

: Ba
Tix—a,ti+a[x(l - x)]l/z)
(A12)
The approximate density G,(x) is non-negative and
has the same first 2n+2 moments as G(x).” Also,
it is proportional to [x(1 — x)]*/2 and therefore has

the correct limiting behavior for a three-dimen-
sional harmonic solid at both x=0 and x=1.

APPENDIX B

We give here a very general proof of the conver-
gence of expansion (4.2) for a time-autocorrelation

By .

function in terms of the modified moments of its
spectral density whenever that density and the
weight function H(x) are restricted to finite inter-
vals. The proof is independent of the choice of the
non-negative normalized weight function H(x) and
makes no assumptions about G(x) save that it is
non-negative and zero outside of some finite inter-
val. In particular, the intervals of definition of
G(x) and H(x) need not be the same. Some remarks
on the convergence for infinite intervals are given
at the end of the appendix.

When the spectral densities G(x) and H(x) are re-
stricted to finite intervals, the problem may al-
ways be rescaled so that H(x) is defined on the unit
interval. Let the resulting interval of definition of
G(x) be [0, a?]. With this scaling, we wish to ap-
proximate the integral

ﬂ2 a
Cc()= f G(x)cos(x!/27) dx= f Iw)coswT)dw,
o -a

(B1)
Iw)=I(-w)=wGw?) (0<w <a),
by the sum
N
C(t)= Y vEF,(7), (B2)
k=0
where
1
F,.(T)=f H(x)p¥(x)cos(x*/?1) dx,
0
u;«=f“ G(Op}(x) dx, (B3)
o
1
[ H@pipF @ dx=s,,.
(o]
It will be convenient to define the function
Kw)=K(-w)=wHw?) (0<w s1), (B4)
which has the property
1
[ Kwpzwpiw?)dw=s,,. (B5)
-1

Thus, the orthonormal polynomials p] (w), belong-
ing to K(w), have the properties

pl.w)=p¥@w?) (containing only even powers),
p;’,ﬁ ,(w)=a polynomial containing only odd powers.

Therefore, we may write
1

Fulr)= f Kw)pl, w)coswt dw . (B6)
-1

Now cos(wT) is an entire function of w. Conse-
quently, by a theorem due to Bernstein,3” for each
fixed time 7 there exists a polynomial Q,,_, () of
best approximation to cos(wt) which is of degree



2k -1 and which satisfies the identity

2k
cos(wT)=Qzu-1(w)+-c_(2)':‘[§‘((+L])Tl ’

rw)e(o,r], wel[-1,1]. (BT

By the orthogonality of the p]} @) over K(w) it fol-
lows that

r= [ kel (S Yau. @e)

Taking absolute values and making use of the in-
equality (2|p | <1+p?), we obtain the inequality

21.2k T 2k
P | < gmmT (%) ) (B9)
This bound is somewhat stronger than is really
necessary for the proof here. A weaker but suf-
ficient bound can be obtained from Taylor’s theo-
rem. The inequality (B9) is valuable, however, in
establishing the useful range of the partial sum
(B2) when estimates of the magnitudes of the mod-
ified moments are available.

It remains to be shown that regardless of the
choice of H(x) and the behavior of G(x), the modi-
fied moments v} cannot grow rapidly enough to
destroy the convergence of (B2). This is most
easily accomplished by the following indirect argu-
ment. Consider the expansion of cos@T) at any
fixed 7 in the orthogonal polynomials p} )

coswT)= i fH™)plw), )
®=0 (B10

falT)= f 1K(w)p;[(w) coswt).
From (B3)-(B6) we have
Far(T)=Fy(7), Farsr(7)=0. (B11)

By a theorem due to Szego® this expansion con-
verges uniformly inside any ellipse in the complex
w plane with foci at +1 and with the sum of its
semiaxes less than

Rs}lminfxf,,l-‘/". (B12)

By Eq. (B9), Ris infinite. Thus, for any fixed 7,
the series (B10) converges uniformly in any
bounded region of the complex w plane, in particu-
lar on the interval [-q, a]. Consequently, integra-
tion of (B10) over Iw) may be performed term by
term, which, with (B11), establishes the conver-
gence of the partial sums (B2) immediately.

When a scaling of the interval is required to
transform H(x) to the interval [0, 1], the bound

-
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(B9) will be altered by a multiplicative factor, b*.
This does not alter the limit (B12), however, so
that convergence is unaffected.

Much less is known about the convergence of ex-
pansions in general orthogonal polynomials on an
infinite interval than for the finite case. However,
if H(x) is taken to be one of the classical weight
functions [for example, those defining the Hermite
or (generalized) Laguerre polynomials], and if
G(x)/H(x) is bounded by some constant for suffi-
ciently large x, then convergence of the expansion
for C(t) is easily established.

APPENDIX C

The sums (7.3) to the “most singular” part of the
density are rather slowly convergent series. We
show here how they can be evaluated, for each of
the singularities in Table V, either in closed form
or as rapidly convergent series.

Each of the required sums can be expressed in
terms of the function

®(z, s, v)=i (m+v)~s2", (C1)
n=0

the properties of which are discussed in standard
works on special functions.?® The required sums
are of the form

i (k+1)~¢ sin[(k+1)8,+7n]sin(k+1)0

k=0

=_;_ i (k+ 1)-5{008[(k+ 1)(96 - 9) +17J

R=0

~cos[(k+1)(6,+6)+7]}.
(C2)

The sums of cosines may be expressed in terms of
® through the relation

z=¢i® "’

(C3)

i (+1)"scos[(k+1)p+n]=Re[e'"2®(z, s, 1)] |
=0

For noninteger s the function ® satisfies the
identity

98 (e4%, 5, 1)=T(1 - s)( = i3 £(s - L,
=0

| |<2m s21,2,8,..., (C4)

where ¢(z) is the Riemann zeta function. For s=m,
an integer,

08(e'®, m, 1) =SBV n(io)] S etm - E8Y (g <2n; m=2,3,4,...), (C5)
~ = n!

(m = 1)!
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where the prime indicates that the term with
(m -n)=1 is omitted, or, when m=1,

e ®d(e!'? 1,1)=-In(1-¢'%) (|¢ |<27). (C6)
Equations (C4)-(C6) may be put in more con-

venient form by making use of the identities

—

i (k+1)™ cos[(k+1)¢ +n]=—(cosn) In[2(1 - cos¢)] + (sinn)[7 sgn(p) - 3¢]
k=0

i (B+1)2cos(k+1)p =bn® - in| ¢ |+1¢?

k=0

where ¢ =(6,+6).

(l¢ |<2m),

AND BLUMSTEIN 1_0
¢(s)=2(2m)r(1 - s)sin(3ms)z(1 - s), cn
I'(1 - s)I'(s)=n/sin(7ws). (c8)

Combining these with (C5) and (C6) we obtain the
sums required for the two-dimensional singular-
ities and the first generalized singularity in
Table V

(lg|<2m), (c9)

(C10)

Applying (C'7) and (C8) to (C4), the sum (C3) for noninteger s becomes

i (B+1)%cos[(k+1)¢p +n]=

+Fg(~¢)cos[n -

where
rio)=@ay S T c-p) ()’
(l¢|<2m). (C12)

Since the sum of cosines in (C11) is periodic, ¢
may always be chosen to lie in [~7, 7]. Because
¢(n -p) rapidly approaches unity for large n, the
series always converges exponentially for |¢ | <.
Even more rapid convergence of (C12) can be ob-
tained by noting that [T'(n-p)/T'(-p)n!] is just the
coefficient of x" in the binomial expansion of

(1 - x so that

F,(d)) 27 -0)+ 2y Z r‘(n-.p)

r(=-pn!
x[¢ln _,,)_1]<j>_>"

2, (C13)

This procedure may be repeated ! times to give

F,(9)= 2 2k - 6) + (27 z fospl

x[i(ﬂ -p)- kz; k""] <%) )

(C14)

S— |

(1-sH|¢|**cos[n -

3(s =)mwsgn(e)]+F,_(¢)cos[n +3(s = 1)r]

3(s =]}, (C11)

-
An extremely rapidly convergent series can be ob-
tained in this way. As an example, for the three-
dimensional singularities in Table V (p =3), when
1="1, eight terms in the series give F,(¢) to one
part in 10'° on [0, 7].

The required Riemann zeta functions of noninte-
ger argument are easily and rapidly computable by
standard methods or can be found in tables.*® For
the singularities in Table V only the Riemann zeta
functions of integer and half-integer arguments
are required.

The second generalized singularity in Table V,

(WF) =(k+1)"(2/7)In(k +1) sin(k+1)8,

+cos(k+1)6,.], (C15)
requires somewhat more attention. The contribu-
tion from the second term is obtained from (C5)
with m =2, That from the first is obtained by dif-
ferentiating (C3) and (C4) with respect to s and
letting s approach 2. In the same way that (C5) is
obtained as a limit of (C4), a finite limit to the
derivative is obtained. The combined result may
be written in the form

i (k+1)-2{% ln(k+1)cos(k+1)¢isi.n(k+1)¢] =<;21- i k-zlnk) +|¢|In| ¢ |[1xsgn(d)] - p[1+sgn(¢) -]

k=1

(C16)

—27 1og(2ﬂ)<-2(%> +47 "2 [B(R+1)]2z(R) (tg);)kﬂ ,

where ¥ =0.5772156- - is Euler’s constantand the sum },%.~?Ink is easily evaluated by the Euler-Mac-
lauren formula to be 0.937548 25.-- ,
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FIG. 3. Accuracy of methods for computing averages
over the density. The negative of logy,(|fractional error])
for py in the cep model is plotted against the number of
moments used. Envelope bounded by solid lines encloses
results from modified moment expansion; dashed line
shows results from shifted moment expansion; dotted
line shows differences between bounds obtained from
Gaussian quadratures.
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FIG. 4. Accuracy of nonlinear extrapolation of ex-
pansions for averages over the density. The negative of
logyo(|fractional error|) for u  in the ccp model is
plotted against the number of moments used. Envelope
bounded by solid lines encloses results from modified
moment expansion; dashed line shows results from
shifted moment expansion.



