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The inelastic-scattering probability of low-energy electrons due to the bulk- and surface-plasmon

excitations is calculated using the infinite-square-barrier model. %'hen the dispersion of the plasmons is

neglected, the probability becomes the one derived by using the high-frequency step-density model. In

order to consider the scattering by the lattices and the absorption efFects for an incident electron, the

distorted-wave method is used, which upon some manipulation gives essentially the same inelastic

intensities as the ones given by Duke and Laramore. Some numerical calculations are performed for the

Al(111) surface, and it is found that the absorption plays an important role in determining the intensity

for the bulk plasmon relative to the one for the surface plasmon, and the cutoff wave numer at k = 0
has some influence on the angular profile. The intensities obtained in this paper are qualitatively in

agreement with the experimental results.

I. INTRODUCTION

With the recent development of the low-energy-
electron-diffraction (LEED) apparatus, many ex-
perimental studies' which investigate inelastically
scattered waves from the crystal surface with the
characteristic energy losses have been performed
in order to determine the properties of the elec-
trons inside the crystal. Many theoretical stud-
ies "on the elementary excitations —especially
the surface plasmon, created in the electron gas
bounded by surface potential —have appeared, and
recently the detailed dispersion relations for the
surface plasmon have been obtained using micro-
scopic theory. ' ' The theoretical studies are
mainly concerned with the dispersion relations for
the surface plasmon, but in order to compare the
theoretical results with the experimental ones by
LEED, it is important and necessary to consider
the effects of diffraction and absorption which are
caused by strong interactions with the crystal.
The qualitative treatment considering the above ef-
fects was discussed by several authors, ' but
the quantative and detailed treatment was first dis-
cussed by Duke and Laramore. " They proposed a
quantum-field-theoretical method using a model
Hamiltonian for surface and bulk plasmons, where
the effects of diffraction and absorption were taken
into consideration. Recently they have made de-
tailed comparisons with the experimental results
to obtain the dispersion relation for the surface
plasmon. ' In the comparison with experimen-
tal results, they used dispersion-dependent cutoff
values at k =0 in order to avoid the unphysical di-
vergence. However, it is found in later discus-
sions that the cutoff value is rather independent of
the dispersion, and the variations of the cutoff val-
ue have some influence on the angular profile and
magnitudes of the inelastic intensities. In our
opinion, it is therefore necessary to consider in-

elastic scattering from a different point of view.
We use the infinite-square-barrier model ' to

investigate the interaction of the incident electron
with the electrons inside the crystal. In the case
of small wave number 0 «k, , the scattering prt b-
ability obtained by this model can be represented
by the dielectric function, which is useful for con-
sidering the problem of the cutoff value, and if we
take into account only the collective excitations and
neglect the dispersion relations, we obtain the same
scattering probability as the one given by the high-
frequency step-density model. 6' Then the model
used here makes possible general considerations
of the scattering probability.

On the other hand, we use the distorted-wave
method to consider the effects of diffraction and
absorption on the inelastic intensities, where only
the waves coherent with the nonscattered waves
are taken. %'hen. we use any relations, the results
become essentially the same as the ones of Duke
and co-workers, ' and we can easily consider
the dynamical effect due to the strong interaction
with the atoms by using the dynamical wave func-
tions for the incident electrons. Thus it is con-
sidered seful to investigate inelastic scattering
by the above treatment.

In Sec, II the general treatment of the inelastic
scattering probability is presented. In Sec. III we
calculate the intensities from the Al(ill) surface
using the formula derived in Sec. II and compare
the theoretical results with the experimenta1. ones.

II. THEORY OF INELASTIC SCATTERING PROBABILITY

A. General treatment of inelastic scattering probability

We consider a system where an incident electron
is inelastically scattered due to the electrons inside
the crystal and elastically scattered by the crystal
lattices. Here the system for the electron& in the
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crystal is supposed to be homogeneous parallel to
the crystal surface, since only the collective ex-
citations are concerned and the corrections due to
the imhomogeneity are considered to be small. If
we take the first Born approximation with respect
to the interaction of the incident electron with the
electron gas in the crystal, the total scattering
probability of the incident electron is given by
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+iz r=(X z)
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In the above, |) K /2m and I E'z/2)n are the initial
and the final energies for the incident electron, re-
spectively. v(k, z —z ) is the Fourier component
of the Coulomb potential parallel to the crystal
surface, and v is the velocity of the incident elec-
tron. {{){')(r) and (8{,) (r) are the initial and final
wave functions for the incident electron, respec-
tively, and are discussed later in detail.
P(k, {d,z, z ) is the Fourier component of the den-
sity correlation function parallel to the surface,
and in the random-phase approximation it satisfies
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where y, (z) e""is the single-particle wave func-
tion for the electron in the crystal, h&d„- „=-h k /2m
+E„, and E„ is the energy associated with wave
function {()„(z). |I{dz is the Fermi energy and 8(f)
the step function.

In order to solve the integral Eq. (2. 3), we use
a model where the electrons in the crystal are
bounded by infinite-square-potential walls at z = 0
and z =1.9'0'3 As the electrons cannot penetrate
the potentials, we take {(()„(z)= 1/Wlsinnw/I, where
n is a positive integer and the density correlation
function does not vanish only in 0 —z —1. So the
functions in Eqs. (2. 3) and (2.4) can be represented

by the Fourier series as

f(k, z, z') = Z Z f(k, p„,p„,}cos(p„z)cos(p„,z'),

(2. 5)(2n+I))) (2n + I)z
Ptt
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In Eq. (2. 5) we confine ourselves to odd momen-
tum (2n+1)z/I, since the choice of the momentum
becomes less important when 1-~. Introducing
the Fourier representation by using Eq. (2. 5) and
after some calcula. tions (in the following discus-
sions we take kl- ~) we get from Eq. (2. 3)
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where the function (1 —D) '(k, &u, p„,p„) is defined by
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where p =mr/I, m is an integer. In Eg. (2.6) we
multiplied the result by a factor of 2, because we
must consider the density correlation function in
the case of even momentum 2nv/I.

The second term in Eq. (2.6) shows the surface
effects and its pole gives the surface-plasmon dis-
persion relation, which is the same result given
by several authors. "O' '" Combining Eq. (2.6)
with Eqs. (2. I) and (2.2) we may obtain the exact

scattering probability, but owing to the complicated
structure of Eq. (2.7b) it is practically impossible
to use the result in E(I. (2. 6) to calculate the scat-
tering probability. -Fortunately, however, we may
neglect off-diagonal terms in Eq. (2.7b) in the case
of small wave number' '"; k «k, (k, is the plasmon
cutoff wave number), in which we are interested in
the following discussion. Then E(I. (2. 6) is re-
written as

p(k, (u, z, z )= 2, ' ' ' cos(p„z)cos(p„z )—,, Z
~

' ' "'
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where z(k, &o, p„} is the dielectric function of Lind-
hard. The result of E(I. (2. 8) is familiar and is
useful for calculating the inelastic intensities due
to the electronic excitation, especially due to the
plasmon excitations, which are important in inves-
tigating the surface properties of the crystal by
I.EED. In Sec. II 8 and C we consider only the
plasmon excitations.

B. Bulk-plasmon excitation

Here we calculate the scattering probability due

t

to the bulk-plasmon excitation. Substituting Eq.
(2. 8) into Eq. (2.2) and using the relation when
kl-~ we have

l r ~-rt lg-gr I erf4r

cos(p„z, ) dz, =,
p k k +p„
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(z & 0) .
(2.8)

The spectral functions S(k, (d, z, z ) is obtained as
follows:

(i) z & 0 and z & 0
I I —z(k, (2), p) k " 1 —z(k, (d, p)S(k (d, z, z )= —Ime~e~ 2e dP z z; ' ', 1+— dP

p k +P c(k QP P) 7T p 6(ky yP)
where we use the relation

(2. 10a)

(ii) z & 0 and z & 0

1 —e(k, , p) koos(&e) —e" 2 1 —e(k, , &))S k, (2), z, z ) = —lm2e e dP
(g, , p) kz pz I+, dP

(k, ~, p)
(2. 10b)

(iii) z & 0 and z & 0
The result is obtained by interchanging z and z in E(I. (2. 10b).

(iv) z&0andz&0

1 —e(k, (u, p} [2cos(pz) —e ~] [2cos(pz') —e '"]
S(k, (d, z, z ) = —Im 2e dP

k +p'

2e' " I - e(k, (d, p) [2cos(pz) —e ~]
w 0 z(k& (d p) &k +p
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which may be a good approximation in the case
k «k„because the main contribution to the above
value is due to the pole of I/(kz+ pz), and the rela-
tion in Eq. (2. 12) is exactly correct when the dis-
persion of e(k, &u, p) is neglected. Since we con-
sider the bulk-plasmon excitation, which means
&(k, ~, p) =0, the factor 1 in the denominator may
be neglected compared with the second term,

k
" 1 1 —e(k, (d, p)

w o k +p E(k&()p)

Then the terms

J 1 1 —c(k, (d, p)
k +p E(k, &u, p)

in both the numerator and denominator cancel each
other, and finally we obtain the spectral function

for the bulk plasmon in the case z ~0 and z'~0:

1 —e(k, (u, p) 1

x [2 cos(pz) cos(pz') —cos(pz) e "
—e "'cos(pz')] (2.13)

If we neglect the dispersion of e(k, p, (d), which is
valid when small wave number k=0 is concerned
and the density of the electrons is high, E(I. (2.13)
may be rewritten as

At first we investigate cases (i)-(iii). Here we
consider only the case of small wave number k «k, .
The main term of the spectral function originates
from the pole of I/(kz+ pz), because it gives a term
proportional to 1/k. Then the spectral function in
this region is given approximately by

S(k
2jle ))( ( ()( (

1 f(()()Sk, v, z, z)= —Im e ' e

(2.11)
where c(v) =1 —v~ /&o'. From E(I. (2.11) it is
clear that in the case k «k, the spectral function
for the bulk plasmon is zero outside the crystal
and only the one for the surface-plasmon excitation
is nonzero. Next we will investigate the case of
z & 0 and z ~ 0. In order to get a more useful re-
sult, we must make further approximations of the
second term in Eq. (2.10c). At first we take

7f (d
S(k ')=- ' I ' (
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(2. 14)

which is exactly the same result given by the high-
frequency step-density model where the conserva-
tion law between the modes for the bulk plasmon
and those for the surface plasmon is precisely con-
sidered (see Appendix B).

In order to consider the damping of the bulk plas-
mon in the region k «k„we may replace the di-
electric function in E(I. (2.13) by the generalized
dielectric function which examines the interband
transition, since the local field correction to the
plasmon field may be considered to be small. Then
from E(ls. (2. 13) and (2.1) we obtain the scattering
probability due to the bulk-plasmon excitation,

2 C
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where I"~(k,p) and k&u, (k, p) are the momentum-de-
pendent damping frequency and the excitation en-
ergy, respectively, for the bulk plasmon and p, is
the plasmon cutoff value. When we fix the parallel
momentum k in E(I. (2. 15), the result in E(I. (2.15)
seems to have a divergence like 1/k near k=0,
which originates from the poles of I/(lP+ pz) in the
integration with respect to the perpendicular mo-
mentum p. This is not the case however, since
from the form of E(I. (2.14) one can see that the
spectral function is finite at k= 0. So we think the
formula in Eq. (2. 15) gives a good approximation
for the bulk-plasmon excitation in the region k «k, .

C. Surface-plasmon excitation

The spectral function for the surface plasmon is
obtained from the second term in E(I. (2.6),
whose denominator gives the surface-plasmon ex-
citation energy. The term g+ g [(1 —D) '(k, (d,

p„,p„) —5+ + ] cos(p„,z) at (d = &u~/~ in the
numerator is proportional to the induced charge-
density fluctuation, which vanishes at the surface
z = 0, and the potential field for the surface plas-
mon is obtained from this charge fluctuation. In
the case k «k, we may neglect the off-diagonal
parts in E(I. (2.7b). ' That means the charge fluc-
tuation is nonzero at the surface, but the potential
field obtained in this approximation may be a good
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one because we notice only the long-range part of
the interaction in k «k, , which is insensitive to
the details of the charge fluctuation near the surface.
Then we can obtain the spectral function for the sur-

I

face plasmon from the second term in Eq. (2. 8),
since the first term may be negligible near
~ =(~,/W,

22 al
S(k, 1d, z, z')=Im k d dp

' ' 'p]cos( )
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k
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Now we investigate the potentia. i part in Eq. (2. 16).
When we take the dielectric function e[k, (sr~/~, p]

e[k, (~,H2), P] = 1 —(d,'/((u, /R2)' [1+—,
' (k'+ P')/k', ]

(2. i7)
and use Eq. (2.9), the potential field in z & 0 is
given by integration over p:
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The first term, —(z/k) e ", diverges at k= 0 and
the second term is negligible compared with the
first term in the case 0 «k, . The first term is
the potential due to the 5-function-like charge fluc-
tuation, which is easily shown when we neglect the
dispersion of e(k, &u~/W, p) in Eq. (2. 16). The
second term results from broadening of the charge
fluctuation along z direction.

Using the generalized dielectric function28 for
e(k, p, &o) in Eq. (2. 16), we can consider not only
the momentum-dependent damping frequency for
the surface plasmon but also the momentum-inde-
pendent one. Even in this case, however, we can-
not remove the divergence like I/k which appears
in the potential field within the linear-response the-
ory, because this divergence essentially results
from the pure Coulomb potential, (2we /k) e
from the induced charge fluctuation. As in the
high-frequency case, the generalized dielectric
constant is nearly equal to the one given in Eq.
(2. 17) at k +pa=0, 55 the first term in Eq. (2. 18)
is considered to be sufficient for the potential field
in the case k«k, . Then, using Eqs. (2. 16) and
(2. 1), we obtain the scattering probability due to
the surface-plasmon excitation,

kr. (k)
4&27/'v I [md —mu, (k)]'+ [k r, (k)]' k

(2. 19)

where r, (k) and k&d, (k) are the momentum-depen-
dent damping frequency and surface-plasmon exci-
tation energy, respectively.

III. INELASTIC SCATTERING PROBABILITY FOR LOW-

ENERGY ELECTRONS

A. Initial and final waves for incident electrons

In LEED we cannot neglect the scatterings by
the crystal lattice potential and the absorptions
due to the electronic excitation, phonon excita-
tion, etc. So we must consider these effects
in the case of calculating the inelastic intensi-
ties by using Eqs. (2. 15) and (2.19). In order
to consider the scattering by the lattice poten-
tial, we must use as p-„"(r) and //1-„'.'(r) the wave
functions which are solutions of the Schrodinger
equation for the system of the incident electron and

the crystal potential with the suitable boundary con-
ditions, known as outgoing and incoming conditions,
respectively. ' When the Schrodinger equation con-
tains also a non-Hermitian potential which is due
to absorption, it is easily shown that we must use
for y-„"(r) a solution of the Schrodinger equation
containing the non-Hermitian potential with the out-
going boundary condition and for y-„','(r) a solution
of the equation containing its Hermitian-conjugate
potential with the incoming boundary condition (see
Appendix A). Further, the relation q„.' (r) = y x, (r)
is shown for the absorptive medium, which is
known as the reciprocity law. So we should use
the wave function with the outgoing boundary con-
dition like p&'(r). As the wave function q-„"(r) is
the one which is used for calculating the elastic in-
tensities in LEFD, we can utilize the results de-
rived by several authors. " Here we use the
wave function derived by McRae, "which is useful
for the isotropic-scatterer version of the electron-
core interaction. When we consider that the ab-
sorption occurs only inside the crystal (that as-
sumption is used for calculating the elastic intensi-
ties) the initial wave function for the incident elec-
tron is given by
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z«0
(,),(z „-,."„) f2' ~ ~ exp(iE„!z —z„ I

—i 2mtpv ~ 1()+i(q+ 2((v). X) p" (&10,zv (3. la)

z&0
(Y(.,- i2wf ~ (z, ~ exp[iK~„—i 2((vv. lo+i (q+ 27(v). X]

K,
(3. lb)

ei250-1
f= . , 5o=-, v, E„=(K'-

i
q+27(v i')'i', 2 1/2

E„=(E„+Vo) +i—1 E +U~
2X K„+U0
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A. is the mean free path which is half of X, used by Duke and co-workers, ' ' ' f is the angle-independent
scattering amplitude for an atom and Uo= (2m/k ) Vo, Vo being the mean inner potential. v is the reciprocal
lattice vector parallel to the surface, A is the area of the unit mesh on the subplane parallel to the surface,
and To is the displacement parallel to the surface of a lattice point between a subplane and the next subplane.
z =—vd, with (r a, positive integer and d the distance between the subplanes. (p" ((pro, z„) is the effective field
on lattice point which exists at (vTo, z„). The effective field shows the effect of multiple scattering due to
the crystal lattices.

We obtain the final wave function using the reciprocity relation C)(,) (r) = y 'x', (r):
z «0

z&0

,z., ;-, .y i2vf' ~ ~ exp[iE„' Iz- z„ I
—i2z(rv. lo —(q —2@v) ~ X]

v@
(3. 2a)

i2wf' ~ «., ~ exp[iE„'z„—i2((vv lo- i(.q' —2ov). X]
-g P 8'l0 f zv)

v+

where the prime means that we take K' instead of K in Eq. (3. lc).
B. Scattering probability due to the bulk-plasmon excitation

(3.2b)

Using Eqs. (2. 15), (3.1a), and (3.2a), we obtain the scattering probability due to the bulk-plasmon ex-
citation. Following Duke and Laramore, ' we keep only two terms in the product of q&-„"(r) and (]p(,)(r).
One term is the product of the second term in Eq. {3.la.) and the first term in Eq. (3. 2a), known a.s the am-
plitude for the diffraction-before-loss process, written D-L process for simplicity. Another term isproduct
of the first term in Eq. (3. la) and the second term in Eq. (3.2a), known as the amplitude for the loss-be-
fore-diffraction process (L-D process). The other terms should be negligible compared with these two

terms. ' Then we obtain

dX'Q dp z o o z [/A({X', K)+Ao(K', K)/' —
/
B((X', K)+Bo(K', K)l']

k'+p' [n(o n(d, (k, p) '-+ «,(k, p) '
(3.3)

A((K', K)=, - [C{g(),g(), k)- C(K„,Ko)] —-, g C(K() «E() r'P) Er g C(Ko rEo ' P)

2' K' E )', ', c(z„,Z,), ,
'

. t ('„c, ;r), z, pc(rr, , z, ;p), c'(z,', z, ;-r)),

z, (z', z)= . - . , (c'(fr, , z,';p) —c'tz„', rr')] —- -, c'tz, , z', ;p))
(3.4)

z z

, c tz, ,z', ; p), ', c'tz„z', ;p). '.
,

' „c„t-z)z, p)

B,(K', K)= .-, . [C(K„,K())- C(g('), go, k)]+ .-, .g C(E(),E(),k)
0 v

(3. 6)

B,{K',K) = . - .~ [C'{E„',E()) —C (go)Ko p k)1+k;g;gr C (Kop K(), k),
0 v
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where
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C(K~ K . ~P) ~ P &HFO+P)a„& iaruv fo +v(
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where k=q+2m —q'. A, and I3, represent the am-
plitudes for the D- L process. A~ and B~ represent
the amplitudes for the L-D process. Equations
(3. 8) and (3.11) represent the reflection amplitudes
for the elastic scattering, from which we obtain the
two characteristic peaks in the inelastic intensity
versus the incident energy, known as the D-L and
L-D peaks. The other amplitudes are peculiar to
the inelastic scattering due to the bulk-plasmon ex-
citation.

If we take the kinematical approximation, which
means cp"(via, z„)= e' o'" in Eq. (3.10), we obtain the
sideband diffraction conditions, Re(K, + Eo +P)d
-2mv lo = 2nn, which were first derived by Duke and
Laramore. ' On the other hand, we obtain reso-
nance conditions Re(KO —K„)+p=0 and Re(KO —K„')
+P =0 from the terms in Eqs. (3.4) and {3.5).
These conditions are considered to represent the
perpendicular momentum conservation at the in-
elastic vertex, since these conditions (when v= 0)
are obtained in the case of the single-step forward
scattering which results from the product of the
first terms in Eqs. (3. 1a) and (3.2a). The facts
which were discussed above are also valid when we
take the sin(Pz) sin(p&)-like spectral function used
by Duke and co-workers, ' ' ' ' instead of the spec-
tral function in Eq. (2. 13). It is found from nu-
merical calculations given later that the sideband
diffraction conditions contribute to separating clear-
ly the D-L and L-D peaks.

C. Scattering probability due to surface-plasmon excitation

Dg(K, K)= —-- . f . —+ .-, .- C K„Kok+ iKo —iK„k—iKo+i K„

1 1
C(KO, Ko, k),k —&o+ sZ„k —a~ o

—&~.
(3.15)

D, (K' K)=,+—,C'(Z' Zo')k+zZo- s&„' k —s&o+

1 1
g

— - g~ &'@o,&o'k)

(3, 16)

where k=q+2vv- q'. C(K„,Ko), C(K,', K, ;k), etc. ,
are given in Eqs. (3. 8)-{3.13). D, and D2 repre-
sent the D-L and L-D amplitudes, respectively.

Near the Bragg condition, Re(EO+E„)d
2&lo ' v = 2nm, the main contribution to the proba-

bility is from the first term, [I/(k+iKO-iK„)
+ /(k iKO+iK, )]-C(K„,KO), in Eq. (3. 15). The
term 1/(0+iKO —iK„) is obtained from the field out-
side the crystal, and plays an important role in the
angular profile, because the terms in square brac-
kets are shown nearly proportional to k when we
use Eo —E„=Ão —E„and we obtain a scattering prob-
ability nearly proportional to k from Eq. (3. 14).
Thus, the divergence at k=0 appearing in Eq. (3. 14}
is approximately (not completely) removed near the
Bragg condition. This fact is confirmed by the
numerical calculations given later.

If we neglect the mean inner potential and the ab-
sorption inside the crystal, the scattering proba-
bility near the Bragg condition is given by

Using Eq. (2. 19), (3. Ia), (3.1b), (3.2a), and
(3. 2b), and considering only the D- L and L-D
terms, we obtain

e'(g~ -, kl, (k) 1
4v 2w v; [k(o —R),(k)]'+ [kl', (k)] k

x ID, (K', K)+D,{K',K)I' (3. 14}

v 2'; [kcu —h(u, {k)]~+[hi', (k)]2

x[„. . .]-, i C(K„,f,}i (3. 1V)

This result has the familiar form consisting of the
product of the usual surface-plasmon amplitude"
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and the elastic scattering amplitude.
The terms C(R 'o, Eo;k. ) and C'(Eo Eo;k) contrib-

ute to separating clearly the D-L and L-D peaks.
This is confirmed later.

D. Comparision with theory presented by Duke and Laramore

At first we consider the spectral function ob-
tained in this model. In the infinite-square-bar-
rier model it is found from Eq. (2. 10c) that the
spectral function is not divided completely into
parts for the bulk and surface plasmons, in con-
trast to the hydrodynamic treatment. In the hy-
drodynamic theory the complete separation of the
bulk and surface plasmons essentially results from
using a Hermitian operator, which gives only real
excitation energy. In the model used here, however
we cannot treat the problem by using a Hermitian
operator, since we obtain complex energies of the
bulk and surface plasmons. Because of this, we
cannot utilize the orthogonality and completeness
relations, and thus the spectral function is not
completely divided into parts for the bulk and sur-
face plasmons. But as the spectral function ob-
tained in this model reduces to the one for the step-
density model, where the orthogonality and com-
pleteness relations are exactly considered, neglect-
ing dispersion, it is considered to be an approxi-
mate result as good as the one used by Duke and
co-workers. ""'

Next we consider the probability due to the sur-
face-plasmon excitation given in Eq. (2. 19). Bag-
chi and Duke o used (k + g )'~o, where v is a cutoff
wave number and its magnitude is about 1 A ', in-
stead of 1/k, in order to avoid divergence at k =0.
But the cutoff wave number used by them is con-
sidered too large from a physical point of view,
since it is found from the discussion in Sec. IIC
that the term 1/k results from the pure Coulomb
interaction from the induced charge fluctuation.
The cutoff value to avoid unphysical divergence is
considered to be of the order of 10 A ', the in-
verse of which is about the effective range for the
surface-plas mon field. "

Finally we consider the relation between the dis-
torted-wave method and the quantum-field-theoret-
ical method. Using the transition matrix T(K', K)
for the elastic scattering of the incident electron,
we can rewrite Eq. (3. la) as

z&0

e)-„"(r)= e'"'+ f e'*&'Gs(K, , E) T(K, , K)dK, ,
(3.18)

where Gs(K, , E) is the retarded-electron Green's
function. Further, we can rewrite Eq. (3.2a) as

z&0

4)-', ) (r)=e '" '+ J T(K', R, )Gs(K, , E')e '"~ 'dK, ,
(3.19)

where we use the reciprocity law and the property
that T(K', K, ) = T(- Ki, —K' ).

Before calculating the scattering probability due
to the surface plasmon using Eqs. (2. 19), (3. 18),
and (3. 19), we assume in Eq. (2. 19) that the in-
tegration f dr can be replaced by

V, Z &(r —R„) dr (3.20)

where V, is the unit-cell volume. Using this as-
sumption, when we keep only the term for the D-L
process, we obtain

@~0

-sjf X

(y„, i
rp-„)=V,}dK, ttK , K, ,

k)'

XGs(Ki, E) T(K, , K), (3.21)

where

The amplitude given in Eq. (3.21) is the same as
the one derived by Duke and Laramore, ' and we
obtain the same amplitudes for the L-D and D-L-D
processes.

It is clear from the above discussion that the re-
sults from the distorted-wave method can be iden-
tified with the ones from the quantum-field-theo-
retical method when we use Eqs. (3. 18)-(3.20).

ko), (k ) = 10.1+4. Ok + 3. Ok

kI', (k) = 1.4+0. 74k,
(3.23)

and the inner potential Vo= 14. 7 eV.
We take 1/k- (k + z )

' in Eq. (3.14) in order
to avoid the unphysical divergence, and also
(k +P ) '- (k +P + v }

' in Eq. (3.3}to compare
the bulk-plasmon excitation with the surface-plas-
mon excitation. We consider two kinds of cutoff
wave number, K=0. 6 A ' and K=O. 05 A ', to see
the effects of the cutoff wave number on the inelas-
tic intensity. The former is of the order used by

E. Model calculations

Here using Eqs. (3.3) and (3.14) we calculate
the differential inelastic intensities d'e/(deed@'),
where ~ is the solid angle and 8' the loss energy,
from the Al (ill} surface. In order to invest@ate
the properties peculiar to inelastic scattering, we
take the kinematical approximation for the scatter-
ing by the lattice, which means 4)"(vro, e„)= e' o'" and

y "(vlo, e„)=e' o'~, and only consider the specular spot
v=0. Following Bagchi and Duke, ~ we take the
dispersions of the bulk and surface plasmons as

h (ko), Po)=15. 0+3.048(k +P ) (3.22
AT'o(k, P)=0. 53+0. 103(k +P )+1.052(k +P )
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80

I IG. 1. Kinematical in-
elastic energy profiles with
different mean free paths,
for the {00) beam from Al
{111). The energy loss 8'
is 16.0 eV. The primary
and final polar angles are 15o

and the cutoff wave number
ft is 0. 05 A ~. {a)Solid curve
shows the profile by Eq.
{3.3) and dashed curve shows
the profile by the spectral
function used by Duke and
co-workers {Refs. 18, 23,
24), which is multiplied by
a factor of 10 . The mean
free path is 6. 0 A. {b)
Profile in the ease A. =4. 0 A.

Duke and co-workers, ' and the latter is of the
order of the inverse of the effective range for the
surface plasmon. We consider two kinds of mean
free path, &=4.0 and 6.0 A, to see the effects of
the absorption on the inelastic intensities. Let
(E, 8, g) be the energy, polar angle, and azimuthal
angle of the incident electron and let (E —8', O', P')
be the same quantities for the scattered electron.
We take 8=15 and tt) =P'=0.

At first we investigate the energy profile, where
the scattering angle and loss energy are fixed and
only the incident energy is changed. Figure 1{a)
shows the energy profiles with the different absorp-
tions for the bulk-plasmon excitation. We obtain
the two well-known peaks {D-Land L-D peaks) at
E = 50 and 60 eV, respectively, but we have no peak
concerned with the sideband diffraction conditions.
Characteristic of the energy profile is the fact that
a dip between the two peaks is obtained, which
clearly appears in the case of a weak absorption
& = 6 A. This dip is considered to result from the
sideband diffraction condition, because in the kine-
matical approximation and the specular reflection
case, the energy range for the sideband diffraction
condition, Beg, +E,') +P =2nv/d, exists mainly be-
tween the energies of the D-L and L-D peaks.

In order to confirm that this phenomenon is not
peculiar to the spectral function given in Eq. (2. 13),
we show the intensities using the sin(Pz) sin{Pz')-
like spectral function in Fig. 1{a). We see the
same phenomenon in this case. Thus, the sideband
diffraction condition contributes to separating
clearly the D- L and L-D peaks, and these phenom-
ena are considered to be found in the experimental

data given by Burkstrand and Propst. But we
must perform dynamical calculations to compare
the theoretical results with the experimental re-
sults in detail, which are performed when we use,
the dynamical effective field instead of the kinemat-
ical one.

Figures 2(a) and 2(b) show the energy profiles in
the case of the surface-plasmon excitation. The
D-L and L-D peaks are also obtained and the reso-
nance conditions given by Eqs. (3.9) and (3. 12)
contribute to separating clearly the two peaks.

Next we investigate the angular profiles where
the incident energy and the loss energy are fixed
and only the scatteri, ng angle is changed. In Figs.
3{a)and 3(b) the angular profiles with the different
cutoff wave numbers at the Bragg condition 8=50
eV are shown to see the effects of the cutoff wave
numbers on the profiles. It is clear from these
figures that the profile for the surface plasmon is
sensitive to the cutoff value in comparison with the
one for the bulk plasmon. The minimum value
near 6)' =17' is especially sensitive to the cutoff
value. It is also found that the relative intensity
for the surface plasmon to the one for the bulk
plasmon depends on the value of the cutoff wave
numbers.

The profile for the bulk plasmon is not so
changed except that the position of the maximum
moves toward the higher-a~le side. The intensi-
ties calculated using the sin(Pz) sin(pz')-like spec-
tral function are also shown to compare with our
results.

Figures 4(a) and 4(b) show the angular profiles
for the bulk- and surface-plasmon excitations in the
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for the (00) beam from Al
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X=6.0 A. (b) Profile of
&=4. 0 A..
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case of ~ =4.0 A, which is considered to be suitable
for the elastic scattering of LEED. Comparing the
profiles in Fig. 4(a) with the ones in Fig. 3(a), it
is found that the profiles are barely changed but
the intensity for the bulk plasmon relative to the
one for the surface plasmon is considerably
changed. The decrease of the intensity for the
bu1.k plasmon compared with the one for the sur-
face plasmon in the case of strong absorption

shows that the probability of surface-plasmon ex-
citation becomes prominent near the surface.

The angular profiles at the Bragg condition,
8= 50 eV, are qualitatively in agreement with the
experimental results by Porteus and Faith, ' and

the relative intensity is also in agreement with the
experimental results.

Figure 4(b) shows the angular profiles at the en-

ergy where the loss-befo're-diffraction peak is ex-

Vl

C

Ct

10

E= 5QeV
K=0.6 k'

10 15 20 10

e (deg)

E=50eV
K= Q. Q5A

I i & i i I

15 20

e (deg)

(b)

FIG. 3. Angular profiles
with different cutoff wave
numbers for the (00) beam
from Al (111). The primary
energy and angle are 50. 0
eV and 15' respectively.
The mean free path is 6 A.
(a) Cutoff value is 0.6 A. ~.

Solid curve shows the pro-
file of 8'=10.0 eV, and
dot-dashed curve and dashed
curve show the profile by
Kq. (3.3) and the one by
the spectral function used
by Duke and co-workers,
respectively, in the case
of 8'=16.0 eV. (b) Cutoff
value is 0. 05 A ~. The
intensities are normalized
to make the maximum of
the profile of 8'=10.0
coincide with the maximum
of 8'=10.0 in (a). Every-
thing else remains the
same as in (a).



2426 MASAKAZU ICHIKAWA 10

IN 10 0
E 0--—-- x=160

'4=10.0 E=60 eV
- —-- 0/=16.0 E=66 eV

10

0 . . . l, , l i l

10 15 20

e (deg)

(&)

10 15

8(deg)

(b)

20

FIG. 4. Angular profiles
with di fferent pri mary ener-
gies for the (00} beam from
Al (111). The primary angle
is 15'. The cutoff value and
the mean free path are 0. 05
A ~ and 4, 0 A, respectively.
The intensities are normal-
ized to make the maximum
of the profile of W=10. 0
and E =50. 0 eV coincide
with the one in Fig. 3 ',b).
{a) Solid curve shows the
profile of W =10.0 and
E =50. 0 eV, and dot-dashed
curve shows that of W=-16. 0
and E =50. 0 eV. (b) Solid
curve shows the profile of
W = 10.0 and E = 60. 0 eU,
and dot-dashed curve shows
that of W = 16.0 and E = 66. 0
eV.

cited. The fact that the intensities at this energy
become larger than the intensities at the energy
for the Bragg condition is in agreement with the
experimental results, but the theoretical curve
near 8'=16' does not represent mell the experi-
mental result in which the dip at 8' =16' does not

appear. "
IV. RESULTS AND DISCUSSIONS

The scattering probability of the low-energy
electron due to the bulk and surface-plasmon ex-
citations has been obtained using the infinite-
square-barrier model. This model makes it pos-
sible to consider the inelastic scattering of the in-

cident electron by the dissipative medium and has
given some insights into the cutoff wave number

at 4=0.
It is also found that the distorted-wave method

can be identified with the quantum-field-theoretical
method. The distorted-wave method is useful not

only for low-energy electrons but also for high-en-

ergy electrons. This method is found to be espe-
cially useful for investigating the Kikuchi patterns
in the Bragg ease. '

From the energy profiles, it is found that the
sideband diffraction conditions obtained here con-
tribute to separating the D- L and L-D peaks clear-
ly and do not make any additional peaks.

From the angular profiles, it is found that the
intensity for the bulk plasmon relative to the one

for the surface plasmon depends considerably both

on the mean free path and on the cutoff wave num-

ber. So we must consider the absorption and cut-
off value more carefully in detailed comparison with

the experimental results.
It is also found that the angular profile for the

surface plasmon depends on the cutoff value. On

the other hand, it was shown from the discussion
in Sec. IIIC that the scattering amplitude due to
the surface-plasmon field outside the crystal plays
an important role in the angular profile. This
means that we must consider the wave function for
the incident electron more carefully, but in our
treatment we neglected the effects of the image po-

tential outside the crystal and the nonlocality of the

optical potential on the incident wave function,
which are not considered to be negligible in LEED.
So we must consider more carefully the effects of

the cutoff wave number and the incident wave func-

tion used on the angular profiles for the surface
plasmon, to compare with the experimental results
in detail, especially on the profiles at the energy
of the L-D peak, because the dip near 8'=17 does
not appear in the experimental results.

We did not present the loss profile because the

scattering probability obtained using this model

is not completely divided into the bulk-plasmon and

surface-plasmon parts, and the results obtained

here are considered to be poor approximations in

the energy-loss range between the excitation energy
of the surface plasmon and that of the bulk plasmon.
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APPENDIX A

%e consider a system which is represented by
the Hamiltonian

H = Ho + 8'+ H',
8'=—V+i U,

(A I)

where Ho is the Hamiltonian for a noninteracting
part, V represents the incident-electron-core in-
teraction, iU represents the absorption, and H'

represents the electron-plasmon interaction.
The total wavefunction for the system with the

outgoing boundary condition is given (in the follow-
ing discussions we use the operator form) by

Ig,"& = l(f, &+ . {R'+H') I4,"&, (A2)

where l(j), & represents the initial state for the sys-
tem. Using Eq. (A2} the transition amplitude is
given by

7„=&y, l
(Iv+a')I4."&, (A3}

where l (I)(, & represents the final state for the sys-
tem.

The wave function for the Hamiltonian, Ho+ W,
with the outgoing boundary condition is given by

sented by the direct product of the plasmon and
free-electron states, so that we may consider Ho
as the kinetic energy for the incident electron and
}(t),& as the plane-wave state which is represented
by e'" ' . If we use the r representation, Eq. (A5)
becomes

x„'( )=8 ''"fd fd '("z z .— i'&

x&r'I Iv'
I
r"& xi'(r") .

Taking the complex conjugate of Eq. (AQ) and using
the property &r' } Wl r"& =(r" I }Ver'&, which is gen-
erally valid for the optical potential, ' we obtain

,!-& () '. "= -'f"~ ,f~ -. ( .-—.', )E- Ho+sq,

x &.'I Ivl. "& x-'„-,
' (.") . (ASO}

This equation is the same as the one satisfield by
x'x. (r), so we obtain the reciprocity relation

x~ ' (r)=x'-'„'(r) .

APPENDIX B

Here we briefly discuss the spectral function in
the high-frequency step-density model. Using the
effective potential V,«(k, ~, z, z'}, the spectral
function can be represented by

S(k, (d, z, z') = —Im f dz, f dz2v(k, z —z, )

x Po(k, (e, z, , z2) V,«(k, (v, z~, z'), (Bl)

I x."& =
I 4.&+,, Iv

I x. &, (A4) S(k, (d, z, z') = —Im[V, ,i(k, (d, z, z') —v(k, z —z')],
(»)

and the wave function for the Hamiltonian, H, + 5'~,

with the incoming boundary condition is given by

(A5)

where S" represents the Hermitian conjugate op-
erator of IV. Substituting 1(t)~&, which is obtained
from Eq. (A5), into Eq. (A3) and using Eq. (A2},
the transition amplitude is rewritten as

T,.=&x~-'IH'I4."&+&x,' 'I)vl e.& (A6

As the initial state and the final state mean the non-

excited state and the excited state for the plasmon,
respectively, the second term in Eq. (A6) vanishes.

l%((')& also satisfies the equation

(Av)

When we keep only the first term in Eq. (A'I), the
transition amplitude is

T',.=&x,' 'lff'I x!'& .

Next we investigate the reciprocity law for the
absorptive medium. In Eq. (A5) lx)', ') is repre-

where V„,(k, (!),z, z' } satisfies the equation

V.«{k,~, z, )=zv(f, z-z') f+«, f dz, v(l, z-z, )

xI 0(k, (d, z, , z2) V„,(k, (d, z2, z') .

(BS)
» Eq. {B3),when we take high-frequency limit and
suppose that the free-electron density is repre-
sented by the step function at the surface, Eq. (BS)
can be rewritten as

O~z~l

&d
Z

V, ,(k, (d, z, z')+ e ""V„(k, (d, f, z')+ e
2&d 2'

x V„~(k, (d, O, z') ——
2 V,~~(k, ur, z, z')

8 ~ la~' le
A

In the other regions of z, we obtain results similar
to Eq. (84}. From Eq. {B4)and similar equations,
we obtain the effective potential for z & 0 and
O~z~l,
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2 I 2 ekk e& lk'I ek(k-I) e-klk'wl 2 k&k 2&)

O~z E

(0p Cd@
(86)

2 ~k/ ~ W al 'I k(V«(k&dzz)- e
' 1-.2 —.2 ~ .zi 2 (e e '+e e

' 2me'2 e~i 2 eA I (e ke.kk I-z'-I
I P (2 I) e-W( kl)

Using Eq. (82) and the symmetric property of V„,(k, «), z, z ') with respect to z and z', we can show from
Eqs. (85) and (86) that the bulk-plasmon field vanishes outside the crystal. If we notice ~ = &dk in Eq.
(86), the spectral function for the bulk plasmon is given by

7Te COC (S„~ z z i) Vm 2 I e-kin 2' I /eM(k+Z') + ek&k+S'-2& ) e-k(S-2'+2l ) e(k-2k&i ) ) // I e-2ki )]vie
co —(d&

when kl- ~,

xe( ) e(z') e(f —z)e(I-z'),

27Te co
&)(k, &d, z, z')= — Im 2 2(e~" ' ' —e "e '

) 8(z)8(z') .

The above results are exactly the same as the spectral function derived by Feibelman et aE.
On the other hand, the scattering probability given in our previous paper seems to be quite different

from the probability derived from Eq. (88), but when we perform the integration for z in Eq. (2) in the
previous paper, we obtain the same result as in Eq. (88). The difference between the expressions in Eqs.
(2) and (88) results from our having used Eq. (81) instead of Eq. (82) to obtain the spectral function.
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