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Calculations have been made of the nuclear magnetic and nuclear quadrupolar relaxation rate in liquid
Ga® at three temperatures 20, 50, and 150 °C. The pseudopotential perturbation theory was used for
the former, and the model of neutral ion core interacting with the screened long-range potential was
chosen for the latter. While the magnetic relaxation time decreased from 2.350 to 1.650 msec, the
corresponding quadrupolar relaxation time increased from 1.045 to 3.045 msec in the above temperature
interval. These results compare well with some of the recent experimental measurements and have been
interpreted in terms of the possible effects such as, the electron-electron correlation, thermal and
diffusive motions of the ions. The origin of the quadrupolar relaxation rate may be attributed to the
translational, diffusive motion rather than the vibrational motion of the ions.

I. INTRODUCTION

The experimental nuclear-spin relaxation rate
(77!) in solid and liquid Ga has been investigated by
a number of workers.'=* From these studies it has
been concluded that for both solid and liquid Ga®®
that the nuclear-spin relaxation rate depends mark-
edly on two parts: one is the magnetic relaxation
part (71%) that arises from the magnetic hyperfine
interaction between the nuclear spin and the con-
duction electrons, including the contribution due
to the spin-polarized core electrons and the con-
duction electrons; the second one is the electrical
relaxation part which is the quadrupolar relaxation
(T1)) arising from the coupling between the nuclear
electric quadrupole moment and the electric field
gradient.

The early work summarized by Faber® for liquid
Ga®® reveals that the quadrupolar relaxation time
T\, increases with temperature, and T, is larger
than 7,,. As for example, T,,=1.9 msec com-
pared to T,,=0.7 msec for Ga% at 19 °C. Later
on, Cornell® studied the temperature dependence
of the two relaxation processes in liquid Ga by iso-
topic separation method (i.e., utilizing Ga%® and
Ga'! isotopes whose quadrupole moments differ by
a factor of 1.5893) supporting some of the earlier
conclusions of Faber.! Briefly, for Ga®®, Cornell®
found a linear relationship with temperature for
both T3l and 71} between 19 and 200 °C. These
results were re-examined by a subsequent work of
Rossini and Knight* which produced further evidence
of the relative importance of one relaxation process
over the other, and indicated that the rate of in-
crease of T3, with temperature was much faster
than that of 7. However, the recent experimental
investigation by Cartledge et al.® shows that the
magnitude of Til is about 2.5 times as that of T1i..
Furthermore, they noted that both 75 and T3,
increase with temperature in the range 27-227 °C.
This work, therefore, contradicts all of the pre-
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vious works including the usually acceptable view
about the origin of the quadrupolar relaxation mech-
anism, which is the translational, diffusive motion
of the ions in the liquid state. Instead, they con-
jecture that in liquid Ga the origin of T{: should be
the vibrational motion of the ions. Then there is
another experimental report on liquid Ga by Riegel
et al.® based entirely on a different experimental
arrangement, i.e., angular correlation measure-
ment, which supports the earlier results of Cor-
nell® and Rossini and Knight.* The temperature
range studied in this work was much more exten-
sive, 40-1050 °C, and great care was taken in the
process of experimental measurement,

On theoretical side, we have demonstrated in
our earlier works’™ ! that the pseudopotential per-
turbation technique is adequate for the magnetic
relaxation process. We worked out theories per-
tinent to local” and nonlocal® character of the
pseudopotential; three main types of hyperfine
properties such as, the Knight shift, nuclear-spin
relaxation rate and core-polarization effect were
explained. A large number of liquid metals were
studied, but the application of the theory to liquid
Ga is still open.

The general theory for quadrupolar interactions
in solids has been reviewed by Das and Hahn!! and
Abragam® and, more recently, by Lucken.'® How-
ever, for liquids or more specifically for liquid
metals, the progress has been relatively limited.
Borsa and Rigamonti'* made an attempt to calcu-
late T;; in a number of liquid metals utilizing the
Coulomb potential with appropriate screening and
ionic antishielding factor, *® but neglecting the con-
tribution of the conduction electron to the electric
field gradient. The neglect of the latter effect
may be questioned in the light of the experimental
results obtained by Rossini et al.'® and Rossini
and Knight.* However, Sholl'” has developed a
theory applicable to both solid and liquid metal in-
corporating the above effect and choosing a more
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appropriate form of the potential, screened inter-
atomic type. Although Sholl'” has discussed the
calculation for two cases, liquid In at 175 °C and
Ga at 19 °C, his results showed some disagree-
ment with respective experiments. A complete
exploitation of the theory for the study of the tem-
perature dependence of quadrupolar relaxation rate
in liquid metals has not yet been done.

As is clear from the above, there are some con-
flicting reports on liquid Ga®® especially with re-
gard to its nuclear-quadrupole-resonance (NQR)
properties, its investigation should be worthwhile
and interesting. The purpose of this paper is two-
fold. One is to investigate the temperature de-
pendence of the total relaxation rate itself, and
second is to test the various theories for liquid
metals developed recently from a quantitative point
of view. Metal Ga® is chosen because it is be-
lieved for this metal the magnetic relaxation is as
strong as the quadrupolar relaxation and, on the
other hand, its experimental measurements are
confusing and uncertain. One of the prime aims
of the present work is to clarify the experimental
results, establishing unambiguously its correct
temperature dependence. We shall first calculate
the magnetic-relaxation part using the pseudopo-
tential perturbation technique,® and then explore
the Sholl theory to extract information about the
quadrupolar-relaxation part. Finally, we will
combine the two effects to compare the result so
obtained with the available experimental data.
Thus, this maneuvering will enable us to under-
stand the importance of one process over the other,
and point out which of the mechanisms is more
susceptible to change of temperature. The outline
of this paper will be as follows. In Secs. II and
III we will briefly describe the relevant theories
for the magnetic and quadrupolar part, respectively
In Sec. IV we will discuss the results. In Sec. V
we will present our discussions and conclusions.

II. NUCLEAR-MAGNETIC RELAXATION RATES

For consideration of the magnetic relaxation
rates, we go back to the interaction between the
nuclear spin and the conduction electron. There
are several possibilities by which the magnetic
relaxation will occur. The most important one is
the usual Fermi contact interaction. For inter-
acting Bloch s electrons, the Fermi contact relaxa-
tion rate can be written'®

Wim,s = Tfrln,s =%‘"3ﬁ8Y§Yﬁg2(EF)kBT

X (NQy 0% Pp)?, (2.1)

where 7, and v, are respectively, the electron and
nuclear gyromagnetic ratios; g(Ey) is the elec-
tronic density of states at the Fermi level; N is
the mimber of ions in the given volume; £, is the
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ionic volume; OiF is the core enhancement factor;
and P; is the pseudospin density, The above equa-
tion, however, can be expressed in terms of the
contact Knight shift K,

(2.2)

4rkpT .
Wins = 2kl (gn) K2K(a).
e

The term K(a) represents a correction factor due
to the effects of electron-electron correlation and
exchange interaction. In most metals, solid and
liquid (for example, nontransition metals), K(a)
=0.75, but it should be K(a)=1 for noninteracting
electrons as in the Korringa relation.

The second term of our present interest is the
exchange interaction between the spin polarized
core electrons and the conduction electrons. This
is usually called the exchange core polarization
(ECP). The ECP has been investigated for solid
metals!® by using exchange perturbation and mo-
ment perturbation techniques. From these studies
it has been concluded that such a contribution to
the Knight shift is particularly important for alkali
metals. We have previously developed® a theory
for ECP contribution for liquid metals and shown
that in liquid Mg and perhaps in liquid Be, this
contribution should be rather important. Utilizing
the moment perturbed method as in the solid state,
we found that the ECP relaxation rate contains the
s, p, and d terms

Wep= Wep(s) + Wi (p) + W (d) (2.3)

If only the s term of the ECP contribution is re-
tained, and the contact term is included in it since
it also arises from the s electrons, it follows
easily that

Wes,s =¥ %y 2y 5k s TS (ER)QES, (2.4)
where
§=(S,+S,,)°. (2.5)

S; in the above equation are the respective spin
densities.

The third contribution to the magnetic relaxation
process eomes from the orbital and dipolar fields
of the conduction electrons through their non-s
states. Two theories are available for this effect—
one is by Obata®® for the electrons in the tight bind-
ing approximation and the other by Mitchell?! for
the Bloch electrons. From the Obata® theory one
dbtains for both p and d electrons

wg= (ﬂr—;ﬁ) (I;T(EF)<-YL3>>2 (Ve Y M2 Alp, d),

(2.6)
where the function A(p, d) is a dimensionless quan-
tity and it is equal to 1 for p electrons, but 5 for
d electrons. The average reciprocal cube of the
distance between the electron and the nucleus is
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1 -
<7,> =fr sff(r)rzdr/f i) riar, 2.7
where f,(r) is the radial wave function of the atomic
p and d wavefunctions. On the other hand, the
Mitchell?! theory gives

2 %2 p2
W%=(%§)(EZ—%*—’5—)riwikaT, (2.8)
where
B=f< (:) 2 ar (2.9)

and Z is the number of p or d electrons per atom.
While Rossini and Knight* used the Obata equation,
Warren and Clark® preferred the Mitchell® equa-
tion. The argument provided by the latter was that
for free or nearly free electrons, as might be ex-
pected in liquid metals, the Mitchell?! theory
should be more pertinent.

Besides the above three sources, there are
several other, but much smaller, contributions
which we shall not discuss here, since they are
unimportant to the case of liquid Ga. Even the
second and the third type of contributions just men-
tioned above, as we shall see later, might be
easily dropped.

III. NUCLEAR-QUADRUPOLAR RELAXATION RATE

The quadrupolar effect is important in metals
with spin I > } and it originates, as stated before,
from the interaction between the nuclear quadru-
pole moment and the electric field gradient. Metal
Ga has =%, and there is sufficient experimental
evidence for this metal to warrant a calculation for
the relaxation rate. It should, however, be noted
that the nuclear-quadrupolar resonance shift is
associated with solids only, as it averages out to
zero for liquids due to rapid fluctuations and ther-
mal motions of the ions.

There are two different mechanisms by which
the electric field gradient at the nucleus (or the
distortion of the nuclear charge distribution) will
occur, leading to two types of quadrupolar relaxa-
tion rates. The first one is a thermal process
which originates from the ionic motions due to
translation, rotation, vibration, and diffusion. The
secondone is a scatteringprocess directly resulting
from the interaction between the nuclear charge and
the conduction electrons. The latter is analogous
to the magnetic relaxation process as mentioned
in Sec. II.

We will first elaborate on the scattering-type field
gradient, While there is some theoretical work
for solids, there is no report of such work for
liquids. For solids, the early theory by Mitchell?!
and the latter work by Obata® should be mentioned.
For Bloch electrons, according to the Mitchell?!
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theory, the quadrupolar relaxation rate is
1 (ne*Z2%m*®
Wi = g(—) (—ﬁg—) BzQaf(])kBT, (3.1)

where B is the same as defined in Sec. II, Q is the
quadrupole moment, and the function £(I) is given
by

F=@r1+3)/[1321-1)]. (3.2)

This equation was arrived at by assuming the scat-
tering of the conduction electrons at the Fermi
surface and it is believed to be of any value when
the thermal and diffusion processes are negligible
as in the low-temperature limit. We then immedi-
ately see that this effect in liquid metals should be
unimportant due to large kinetic energy associated
with the conduction electrons.

To study the major term of the quadrupolar re-
laxation rate one has to consider two different
quantities. The first one is to study the structural
change, which can be quantitatively represented by
the actual radial distribution function, and the
second one is to include the temperature depen-
dence of the self-diffusion constant. The initial
theory of Borsa and Rigamonti!* using the screened
Coulomb potential is an attempt along this direc-
tion. The subsequent theory by ShollY is an im-
provement over the previous theory because it
incorporated the long-range effect of the conduc-
tion electrons. In this theory the interacting po-
tential is a screened oscillatory potential of the
form

v(r)~cos(2kz7)/(2ker)? (3.3)

and the positions of the ions are described by a
three-body correlation function

pa('ro, ¥3) = p? g(ro)g('rz)g('roz) ) (3.4)

where pis the average density of the solid or liquid
and g’s are the pair probability functions which we
will elaborate in the next section. We will briefly
outline the Sholl' theory, here, because it forms
the basis of our calculation for the quadrupolar re-
laxation rate.

The quadrupolar relaxation-rate expression is
shown to be

2
Wm0 (AA522Q) P s 2m08), 3.5)

where (1 - y.) is the Sternheimer antishielding fac-
tor, and A is the potential parameter defined by

A=2Zme®/n i?ke (2k,). (3.6)
Furthermore,
F(D)=np/15D, (3.7)

where ¢ is the dielectric constant and D is coef-
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ficient of diffusion., The symbols I, and I, repre- L= f " flry) glrg)rE dr, f " Gry) dr,
sent two integrals of the type 0 0
°0 1 72
L= [[" flry) Glorg) dry (3.8) x [, [8lroe) = 1] Py(2)dz, (3.9)
and where

(2kp7g)sin(2k g7,) +[15 — (2kp7y)?]cos(2kp7y)

7
flrg) = (2R ) @hrrl , (3.10)

and

1/2 7, o .
G(ro)=g—;§ﬁ’-) (fo of(n)g‘”z(rl)rf. dry+7} J;o [%Qg”z(rl)drl> . (3.11)

As can be seen from Eqgs. (3.10) and (3.11) there are several symbols which need some further explana-
tions. Here g’s are the pair probability functions as before, P,(z) is the second-order Legendre polynomial
and

ra=ritvi-2rm,2 (3.12)

in which z is the cosine of the angle between the position vectors T, and T,. In the literature g’s were used
under the name of radial distribution function. Unfortunately, the three pair probability functions involved
here are not known. We shall overcome this difficulty by making some approximation and defer any dis-
cussion on this until Sec. IV.

Now one may argue that the form of the function f(r) depends on the form of the atomic potential as in Eq.
(3.3), because by definition

__d(1 davlr)
fir)=r (L 42) (3.13)

A more exact selection of the potential, such as
V(x) =sinx/x — cosx/x 3, (3.14)

where x = (2kz7), leads to a rather complicated form

f(r)=[(24 - x®)cosx + 8x sinx]/x°® — 24 sinx/x ©, (3.15)

We have utilized both the Egs. (3.10) and (3.15) for computation, but found very little difference in the final
results. Because of the asymptotic nature of the potential and because the pair probability function g(») is
zero in the region of small », which we shall see later in Sec. IV C, the small difference that is observed
does not noticeably change the values of integrals I, and I,. Unfortunately, however, in Sholl’s original
paper!” Eq. (3.10) is in error [see, for example, Ref. 17, Eqgs. (3.6) and (4.27)], which is quite serious.
This error can produce some unrealistic and misleading conclusions.

We clearly see that the above integrals are not simple, but nonetheless their numerical evaluation is pos-
sible. It is one of the major points in this investigation to evaluate these integrals for the first time as ex-
actly as feasible within the limits of high-speed computers. For the sake of convenience and to bring f(7)
in line with the actual potential derivatives, we rewrite our Eq. (3.5) as

Wi =f (D[ =v.) e Q/nf F(D)I, +2npl,), (3.16)

where

Flrg) = Ak, 7(2kFrD)sin(2kFro)(-2+ k[; 30;5 (2kpry)?]cos (2kpr,) 6.1

Introduction of A, as in Eq. (3.17), will change the value of G(») in Eq. (3.11) and, therefore, the quantity
(I, +27 PL,). In this respect, our results will differ from those of Sholl as will be seen later in Sec. IV C.

=
IV. RESULTS AND DISCUSSIONS the pseudospin density P, as a function of tempera-
A. Knight-shift calculation ture. We used the local pseudopotential of the Ani-

In order to study the temperature dependence of malu and Heine type?* and the experimental inter-

the magnetic relaxation rate, we have first evaluated ference functions of Narten® for Ga at 20 °C, and
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TABLE I. Input NMR data for Ga®,

Xs
Temp. kp Q (cgs vol
cC) @@.u.)  (a.u.)? units) Ok, Nyp Pp
20 0.8863 127.59 1.2x10% 331.54 0.9163 0.7795
50 0.8844 128.42 1.19 331.98 0.9169 0.7782
150 0.8807 130,03 1.19 332,81 0.9189 0.7708

of Ascarelli®® for Ga at 50 and 150 °C. These data
are believed to be reliable and have been found to
yield?” good results in the study of other electronic
properties of liquid Ga.

We have directly used the interference functions
I(g) to obtain our results. The appropriate theo-
retical steps and procedure are described in our
previous publications,”® Two more quantities are
needed before we can get to 7,. One is the Pauli-
spin paramagnetic susceptibility y, and the other
the core enhancement factor O%;. In absence of the
exact value for y,, we have introduced the free-
electron value, which is related to the corrected
value by the relation

free

Xs = Xs (4.1)

where the factor m*/m comes from the crystal
potential and the factor 7, comes from the electron-
electron interaction. For the calculation of 0%,

we needed to carry out the algebra

02 =— (1-:51_:b"5(EF)e,,,(0)>2

2 =
F Ny,

(m*/m) g,

(4.2)

where N, is the normalization constant, ©,,(0)
represents the core function ns at the origin, and
the function b, is the orthogonalization parameter
defined by

b, (&) = (O, (F) | e®F) . 4.3)

Under some simple approximation that b, is a
slowly varying function of % over the atomic core,
we evaluated the above summation utilizing the
Mann core wave functions. As pointed out pre-
viously, 1 if one were to use the wave functions of
the Herman-Skillman type, the core enhancement
factors would be a little different.

Tables I and II show our results for liquid Ga%®

for contact shifts. The Knight shifts decrease from
K,=0.259% at 20 °C to K,=0.256% at 150 °C. The
change is very small, but in agreement with the
experimental trend of the plot published by Cor-
nell.® However, quantitatively there is substantial
disagreement in that the experimental results
range from 0.449 to 0.445% in the above tempera-
ture interval. As has been noted in the investiga-
tion of other liquid metals there could be several
reasons for such a disagreement. The contribu-
tions to Knight shift from other sources such as,
core polarization, orbital, and dipolar fields are
not included here. These calculations are rather
complicated and are of secondary importance to
the present investigation. Consequently, we should
fall back to the primary causes; we may then at-
tribute the disagreement to the neglect of electron-
electron interaction, the uncertainty in the calcu-
lated local pseudopotential and perhaps to some
extent, the errors in the measurement of the in-
terference functions. We will elaborate on these
points in the following discussion.

B. Magnetic-relaxation part

We see from Table II that the calculated T, de-
creases from 2.35 msec at 20 °C to 1.65 msec at
150 °C, but the corresponding experimental values
fall from 1.034 to 0.716 msec. Experimentally,
for the magnetic relaxation, Cornell® suggested a
linear relationship with temperature

T:,=3.37T. (4.4)
In the present study it turns out that
Tin=1.443T. (4.5)

As is clear, numerically there is a difference be-
tween the experimental and the calculated T ,,,

TABLE II. NMR results for Ga®. Units are K in %, Tj, in msec, and

Wi, in (msec)-',

Temp. Cale., Expt.
cC) Ks Tlm Wim Ks T!m Wlm
20 .259 2.35 0.426 0.449 1.034 0.967
50 . 257 2.14 0.467 0.448 0.938 1.066
150 .256 1.65 0.606 0.445 0,716 1.397
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TABLE II. Input NQR data for Ga®,

Q

E <

@ (kecal/ D, A
z I (b) mole) (cm? sec™) Yeo (dyn!/?)
3 3/2 0.180 1.12 1.1x10% —-10.5 0.1205

but the temperature dependence is in agreement
for the temperature range under consideration,

Let us now attempt to analyze the present re-
sults in the light of the existing theoretical argu-
ments. We shall now consider the various ex-
change enhancement factors. The uniform ex-
change enhancement factors 7, can be obtained
empirically as well as theoretically. In the pres-
ent investigation we obtained the empirical value
by a curve fitting procedure, or more conveniently
from the ratio of the two Knight shifts near the
melting temperature, i.e.,

n:msz;IM/K;h”:]_.73. (4.6)

The appropriate values of K; are shown in Table II,
in which the experimental K, are taken from Cor-
nell.> We then compare this ratio with the corre-
sponding theoretical value which can be calculated
from the two values of the Pauli-spin paramagnetic
susceptibility. One is the usual free electron sus-
ceptibility x!™*® and the other is the uniform sus-
ceptibility x,(g =0, w =0) =224 obtained from com-
putation as in Silverstein.?® Therefore,

T = x§T/ e =1. 26. .7

These 7, are not expected to change with tempera-
ture. However, some difference may occur be-
tween these two values, since the number in Eq.
(4.6) was derived from the K data, whereas that
in Eq. (4.7) was obtained from the susceptibility
data. In a similar manner we may also find the
values of the nonuniform exchange enhancement
factors 7, from the relaxation rates. The empiri-
cal value, in this case, is the ratio between the
two relaxation rates near the melting temperature

e = (795t 7)1 /(Tiheo ) = 2 30, (4.8)

The pertinent relaxation rates are also given in
Table II. To find the theoretical value of 7,, we
use the corrected Moriya® theory as suggested by
Narath and Weaver.?® However, our method of
calculation is the same as in our previous publica-
tions.”® This value is then

niheo =2 45, (4.9)

Despite the fact that there are various complexities
in the problem and the approximations involved in
their consideration, the agreement between the two
7, and that between the two 7, are quite good.

C. Structural and thermodynamic functions

The input data for the evaluation of the quadru-
polar relaxation are shown in Table III. In this
case we took the interference functions and Fourier
transformed them to obtain the pair probability
function

g(r)=1+-2—nlg[;’- ’[mq[l(q)—l]sinqrdq (4.10)

We have no way of ascertaining®! the individual pair
probability functions g(r,), g(#,), and g(r,,). Since
we intend to deal with the time average quantity
g(r) of these functions, the average value to be ob-
tained from any good x-ray experiment wovld be
adequate approximation. The behavior of such func-
tions is described in Figs. 1(a) and 1(b). The ef-
fect of temperature on g(r) is distinctly visible in
Fig. 1(b). The first peak height falls with tempera-
ture accompanied by some slight increase in the
value of the first nearing neighbor distance. In the
long-wavelength limit, of course, the oscillations
in g(r) gradually diminish and the curve approaches
unity within a few atomic diameters.

The potential function f(r) is plotted in Fig. 2.
It should be noted that the function f(r) has been
multiplied by the constant A as in Eq. (3.6) for the
sake of convenience. The function f() is infinitely
sharp in the region of small 7, but it has a strong
peak at »=2.5 A. Above =10 A this function
practically merges with zero. However, the criti-
cal region which contributes most to the quadrupo-
lar relaxation for Ga is found to be 2.5<7<5 A.
The function g(r) becomes zero below »=2.5 A and
so the meaning of the function f() in this region be-
comes irrelevant. The function G(r) can now be
obtained from Eq. (3.11). A typical plot of G(»)
for Ga at 20 °C is shown in Fig. 3. This is a slow-
ly varying function whose behavior is determined by
the nature of the function f(r). The limits of the
integrals in Eq. (3.11) were critically defined by
the modulations and the extent of the functions f(r)
and g(»). Inour study the upper limit of the sec-
ond integral was found to be satisfactory at 7,
>50 A. These integrals were evaluated with suf-
ficient accuracy by the usual Simpson rule with an
error control.

The value of the integral I; in Eq. (3.8) then fol-
lowed from the above two functions f(») and G(7).
In this case we tried several upper limits for the
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FIG. 1. (a) Plots of pair-probability function g(r) for liquid Ga at three different temperatures. (b) Plots of the first
peak maximum of g(») showing marked changes with temperature.

integration and finally stopped when no change was

fl [g(r) = 1] Py(2)dz

observed in the integral after adding some further 1

increment to the previous value of the limit. How-

ever, I, in Eq. (3.9) was more time consuming :___15__5 [(3¢% = b)F, - 6aF, + 3F;], 4.11)
and it needed additional precautions. The third 4ry7r;

integral in Eq. (3.9) was analytically carried out.
Essentially, we expressed this integral as

where
a=ri+rs b=2ry7,,
and

3.0 T T T T T T T F,=fl:°"2|[g(r)—1]r'dr. (4.12)
0-72

Table IV lists the results of these calculations. It
should be noted that both the values of I, and I, de-
crease with temperature. As these results sug-
gest, (2mpI,) is not negligible compared to 7,. It
is about the same order of magnitude as I;, and

I, has the same sign as I;. The self-diffusion co-
efficient D in liquid metals is a strong function of
temperature.3 It has been measured®® for liquid
Ga. Although there are some questions as to the

) exact nature of the temperature dependence, the

6.0 4

»
=)

w
o

l[)af\r) (dyn “22 2) ——
P
T
0.
wzﬂr) (dyn mA 2)—>
=)
1

0

! relation
0 N\
\/ ~—
03(200(;) ? 5.0 T T T T T T T T T T T
1.0 |+ B &
zr Gat20¢) 7
e
2.0
1.0
-2.0 1 1 L 1 A 1 ) Il
L T L L A E S S S S R R
T (A) —= A —
FIG. 2. Plot of the potential function f(») for Ga at FIG. 3. Plot of the function G(r) for Ga at 20 °C. The

20 °C as defined in Eq. (3.17). function f(») in Fig. 2 was used to compute this function.
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D=D,e QE/RT (4.13)

is fairly satisfactory to the majority of liquid
metals. In the above equation D; is a constant of
the diffusion equation not affected by temperature,
@y is the activation energy, and R is the universal
gas constant., All these quantities are displayed in
Tables III and IV,

The evaluation of the integrals both in the mag-
netic part and quadrupolar part was accomplished
with sufficient accuracy within less than 1% error.
While it is not quite clear from the paper by Sholl,!
and also from the subsequent paper by Titman and
Jolly,** how these calculations were made, our re-
sults for I, and I, are sufficiently detailed. Sholl'
used the data of radial distribution function (RDF)
measured by Orton, 3 but we selected the latest
data of Narten® and Ascarelli.® From the present
study we are convinced that the position 7, of the
first peak maximum in g(») in Fig. 1(b), which is
equivalent to the average interatomic spacing, is
very critical. A slight shift in », would change the
value of I, and I, quite drastically. As for example,
we have estimated that a 2% error in 7, would give
about 15% error in I; and about 41% error in I, at
20 °C. Obviously, I, is more sensitive to the posi-
tion 7, than ;. Again, we know that 7, changes
slightly with temperature. One must, therefore,
exercise great caution in selecting these RDF,
determining their first peak position, and comput-
ing the above integrals. The asymptotic form of
the potential function f(») in the small » limit does
not pose any problem, because all other functions,
such as, g(r) and G(r) are zero in this region. On
the other hand, the oscillatory nature of f(») is in
agreement with the predicted short-range interatom-
ic interaction.

D. Quadrupolar-relaxation part

The calculated temperature relaxation time T,
are shown in Table IV along with the experimentally
estimated values. From these results two impor-
tant conclusions can be drawn: first is that the
magnitude of the calculated T, is of right order,
and second is that it increases with temperature.
The latter is very significant because it is opposite
to what is observed in the case of the magnetic
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relaxation time T,,. The total relaxation time

1/T=1/Ty,+1/Ty, (4.14)

therefore, depends on the competition between
these two terms, provided all other contributions
are trivial as in the case of Ga. At any rate this
effect may create a situation in some liquid metals
where the increase in 7, may be neutralized by
the equivalent decrease in T, resulting in nonob-
servable change in the total relaxation time 7.
The temperature dependence of T, is not solely
governed by the temperature dependence of the
self-diffusion coefficient D as has been previously
thought to be the case. The tendency of D is to in-
crease Ty, but that of g(») is to decrease T,, with
temperature. D being a relatively stronger func-
tion than g(r), the over-all picture emerges out in
favor of D. If we were to neglect the temperature
dependence of g(r) as noticed in Fig. 1(b), the
presently calculated results would become out of
proportion and large error would be introduced
into the relaxation time. Titman and Jolly,3* and
Jolly and Titman®® have recently criticized the
ShollY theory on the ground that this theory over-
estimates the quadrupolar relaxation rate due to
ionic motion. However, they emphaized the im-
portance of the three-particle or two-particle (pair)
probability functions. Furthermore, they argued
that the first Sholl integral I, is rather large and
it represents the sum of the effects of all the ions.
Since the liquid metal, to a good approximation, is
spherically symmetric, there should be some can-
cellation of the various electric field gradients of
the ions. They suggested that this sort of cancella-
tion would make the translational, diffusive contri-
bution to W, totally unimportant. Therefore, the
vibrational mode of the ions would be important
and it would take over the translational mode to
guide the effective temperature dependence of W,,.
To the knowledge of this author, this conclusion is
based on the preliminary work reported by Sholl."
There are no extensive data either on I, or I, on
any metal prior to the present study. Our careful
investigation, however, shows that I, is not neg-
ligible and it is positive rather than negative.
Therefore, the question of cancellation of the elec-

TABLE IV. NQR results for Ga®. The integrals I, and I, contain the factor A% through the function f(») as in Eq.

3.17).
Calc. Expt.
Temp. D I (27pl,y) Ty Wi Ty, Wi,
¢C) (cm? sec™!) (A dyn) (A dyn) (msec) (msec) ™! (msec) (msec) ™!
20 1.60 %1075 0.3931 x10~ 0.5904 x104 1.045 0.9566 1.656 0.604
50 1.92 0.3260 0.4128 1.678 0.5957 1.712 0.584
150 2.90 0.2880 0.3358 3. 045 0.3284 1.934 0.517
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tric field gradient due to the angular correlation
part of the ions does not seem to arise. We might
then like to suggest some explanations for the ob-
served negative I, in Ref. 17. While it is difficult
to find the correct answer to the above question,
our experience indicates that the inadvertent error,
as pointed out earlier, in Eq. (3.6) of Ref. 17
coupled with probably an inadequate determination
of the difficult integrations, might give such an
erroneous sign. It is found that the magnitude and
sign of I, are very sensitive to the function f(») and
G(r) which are essentially derived from the poten-
tial V(r) and the pair probability function g(r).

The relaxation rates calculated here seem to
agree reasonably well with experimental results of
Cornell® and Riegel et al.,® but disagree with those
reported by Cartledge ¢f al.® The relation between
the atomic structure and the two relaxation proces-
ses are reasonably well described by the x-ray in-
terference functions or the pair probability func-
tions. Three-body probability functions are not
known and, perhaps, it is impossible to measure
them experimentally. The pair probability func-
tions are sufficient as evidenced from the present
calculation. Exact temperature dependence of the
pair-probability function is hard to predict analyti-
cally, nonetheless that of the self diffusion is some-
what stronger and it goes as in Eq. (4.3). Claridge
et al.®" have recently extended the Sholl'’ theory to
the case of liquid alloys. Again, for lack of struc-
tural data, no firm conclusion could be reached as
to the nature of the origin of the quadrupolar re-
laxation in liquid alloys. Most likely, as in the
pure liquid metal case, the chief source of the
quadrupolar relaxation in liquid alloys could be the
self-diffusion mechanism. Certainly, these sort
of studies are very complicated and must, there-
fore, be done with great cautionunder the present limi-

2341

tations of the theory and experiment.

It appears from the above that the present theory
of neutral ion core situated in a screened oscilla-
tory potential works for the case of Ga® and it
should be enthusiastically pursued further. In
view of this, one might be tempted to extract rele-
vant informations about the origin of the quadru-
polar relaxation, such as, whether it is due to
translational, or vibrational, or quadrupolar hyper-
fine coupling to conduction electrons, or some
combination of these.

V. CONCLUSIONS

The temperature dependence of the nuclear-
magnetic relaxation and the nuclear-quadrupolar
relaxation rate for liquid-metal Ga%® have been in-
vestigated. To calculate the magnetic part, we
have used the pseudopotential perturbation tech-
nique to first order to obtain the spin density at
the nucleus. However, for the quadrupolar part
we used the recent theory proposed by Sholl,
These calculations are meant to be more exact
and quantitative than the results hitherto published.

The results of our investigation at three tem-
peratures are found to be in good agreement with
the experimental measurements of Cornell.® The
significance and importance of these results fol-
low: (i) T,, arises mostly from the hyperfine con-
tact interaction between the nuclear spin and the
conduction electron, and the potentially significant
T,, arises from the coupling between the nuclear
quadrupolar moment and the electric field gradient
brought about by the structural change and diffusive
motion of the ions. (ii) The magnitude of T, is
about the same order of magnitude as T7,, near the
melting temperature. (iii) While 7,,, decreases
with temperature, T,, increases with temperature.
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