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Elastic waves in a glasslike disordered chain

Ming-Shih Lu, Mark Nelkin, and Masayuki Arita
School of Apphed and Engineering Physics and Materials Science Center, Cornell University, Ithaca, ¹wYork 14850

(Received 17 April 1974)

The attenuation of long-wavelength elastic waves is studied in a glasslike harmonic chain. The
structural disorder gives rise to a phase incoherence of an initial plane-wave disturbance. In addition

the dynamic disorder introduces a phase incoherence- and an exponential localization of the normal

modes. The phase-incoherence contribution can interfere with the structural disorder since the spring

constant is strongly correlated with equilibrium separation. To calculate the attenuation the
long-wavelength normal modes must be explicitly constructed. This is done by a slight modification of
the state-ratio method of Matsuda and Ishii, and a straightforward extension of this method from the

random mass chain to the random spring-constant chain. In the absence of structural disorder, the
attenuation of the average displacement is shown to have equal contributions from the phase incoherence
and from the localization of the modes. %'ith structural disorder, when the spring constant is a
decreasing function of equilibrium separation, the attenuation is decreased by the interference between

dynamical and structural phase incoherence. The low-frequency limit of the density of states is also
calculated. It is related to the sound speed exactly as in the ordered case.

I. INTRODUCTION

Recent experiments at low temperatures' have
focused attention on the low-lying vibrational modes
of glasses. Although anharmonic mechanisms may
have to be invoked to explain some of the results,
our extremely limited understanding of the disor-
dered harmonic solid strongly inhibits serious
theoretical work on the problem. Long-wavelength
elastic waves are observed, but we know very little
about how fluctuations modify the plane-wave nature
of the associated normal-mode amplitudes. Per-
haps there are also a class of fluctuation-dominated
low-lying modes which are not wavelike. In two

or more dimensions there is little to guide such
speculations. In one dimension, however, there
is a vast literature on the disordered chain, most
of it concerned with a random distribution of
masses on a lattice with fixed spring constant. A

small part of this literature deals with wave propa-
gation, and the theoretical methods are well enough

developed that a detailed understanding of fluctua-
tion effects on the low-lying modes is possible.

Consider first the random mass chain with the
mass m& at the jth site a random variable with

mean M and variance M~ p,a. At low frequencies
a perturbation expansion in (m, —M)uP is natural,
and has been carried out by several authors. In

particular, Maradudin, %eiss, and Jeysena used
many-body perturbation theory, and Chow and

Keller3 used the language of wave propagation in
random media. They both calculate the effective
propagation constant for the average displacement
(u). For a chain with spring constant F and lattice
syacing a, the result to lowest order in ~ is

a = uo+2zya-',

where

k =(M&uz/I'a )'+

1M', &3

8 I'

A more rigorous study of the propagation of low-
frequency elastic waves in the random mass chain
was carried out by Rubin, and extended by Matsuda
and Ishii. Matsuda and Ishii considered the as-
ymptotic behavior of the state ratio z& =u~/u, ,
They found that

lz&1-e" for large j.
The apparent factor-of-2 discrepancy between Eqs.
(1.1}and (1.2) was noticed by Chow and Keller, '
and a correct qualitative description of its origin
is given in the introduction to a recent paper by
Chow. e That there will in general be a difference
between the localization distance defined by Eq.
(1.2} and the attenuation length for the average
Green's function given by Eq. (1.1}ha, s been ex-
plained recently by Thouless. ' The attenuation of
the average displacement arises partly from local-
ization and partly from a phase incoherence due to
fluctuations. For our extension to the glasslike
chain we need to carefully separate these two con-
tributions. %e return to this point in detail in Sec. III.

In one dimension, structural disorder of the
equilibrium positions does not affect the normal
modes. In the absence of dynamic disorder these
have a constant phase change from one site to the
next. A typical wave-number-dependent experi-
mental quantity such as the displacement-displace-
ment correlation function (uu(k, ~)) will, however,
reflect the structural disorder. An initial plane-
wave disturbance is a superposition of normal
modes of slightly different frequencies, and will
thus decay due to phase mixing. In an earlier
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paper, an example of this phenomenon has been
worked out in detail. In Sec. II we extend the
long-wavelength limit of Ref. 8 to the case of ar-
bitrary probability distribution for the equilibrium
separations. The Lorentzian line shape follows
natura1. Iy from the application of the central-limit
theorem to the probability distribution of the dis-
tances between widely separated sites.

In Sec. III we construct the long-wavelength nor-
mal-mode amplitudes of the random mass chain.
We use a slightly modified version of the state-
ratio method of Matsuda and Ishii. The resulting
amplitude contains a phase incoherence and an ex-
ponential localization. We then consider the cal-
culation of the correlation function (««(k, ur)). The
central-limit theorem can be applied to the phase-
incoherence contribution just as in the structural-
disorder case of Sec. II. The phase incoherence
and localization each contribute half of the line
width of (««(k, ~)). The two contributions together
agree with the perturbation calculation of Refs. 2

and 3.
In Sec. IV we consider the chain with fixed mass

and random spring constant I'f. A straightforward
transformation shows that the force in each link
obeys the same equation of motion as does the dis-
placement in the random mass case. The only
change is that the relevant random variable is now
I'/I', instead of m, /M. In the low-frequency limit
the displacement is simply related to the result of
Sec. IQ for the random mass chain. Again half
of the damping for the average displacement comes
from phase incoherence and half from the localiza-
tion of the modes.

In Secs. III and IV we also consider the low-fre-
quency limit of the density of states. Using a re-
sult of Schmidt, this is easily calculated in terms
of the low-frequency limit of the stationary prob-
ability distribution «)(z) for the state ratio e. The
latter is explicitly given by Matsuda and Ishii. The
final result, which is not surprising, is that the
sound-wave modes are responsible for all of the
zero-f requency contribution. The low-tempera-
ture heat capacity in one dimension is thus linear
in T, and is given exactly by the Debye value.

In Sec V we consider the glasslike chain in which

the equilibrium separation is random, but the

spring constant is a given function of equilibrium
position. The phase incoherence due to structural
and dynamic disorder then interferes. When the

spring constant decreases with increasing equilib-
rium separation, as is physically reasonable, this
interference is destructive. A simple illustrative
example is worked out.

II. STRUCTURAL DISORDER

Following Ref. 8 we consider the correlation
function

CvCv *=6,l l vv'u eve"*=~
l f lf

V+

(2.2)

In the dynamically ordered chain, the normal-mode
solutions for periodic boundary conditions are

C v ~-1/3 e2rjvl/N

4I' . nv
(d =—Sln— (2.3)

v=1 ~ ~ ~ E
Expanding in terms of these normal modes we
write

k&k, k) N'QF&, k)=os )„
where

(2.4)

F( v, k) = ~~ C "C "*e ' '"
&

l f (2. 5)

The Fourier transform Q(k, &d) is then given by

&t) (k, &d) = p(&d) F(v, k), (2. 5)

where p(~) is the density of states, and v„ is the
inverse function to ~„and gives the mode number
as a function of its frequency. We note that v is
restricted to be positive, and we will explicitly
consider only positive &u. Since &t)(k, t) in Eq. (2.4)
is an even function of time, P (k, &d) is an even func-
tion of ~. Since

&t (k, ur) =&d'(««(k, &d)),

the displacement-displacement correlation function
is determined by studying the function F(v, k) de-
fined by Eq. (2.5).

The above discussion can be applied directly to
the low-lying modes of the dynamically disordered
chain. Only Eq. (2.3) is restricted to the dynami-
cally ordered case. We return to this in Sec. GI.

To calculate F(v, k) for the dynamically ordered
chain we substitute Eq. (2. 3) into Eq. (2. 5) and do
the sums over l and j. Changing the summation
variables from I and j to n = l —jand j, taking the limit
that N- ~, we obtain

F(V k) Q e2r&)snl)& (e &lk))))-
tf oem &)0

(2. 7)

where p„=Rf,„—Rf is the equilibrium separation of
nth nearest neighbors, and the averaging is over
the probability distribution of p„.

It is essential to distinguish the averaging which

y(k, t)= P(V, (t)V, (O}&e "-&'& '&-&, (2. l)
NA~T g f

where Rf is the equilibrium position of the jth atom,
and V&(t} is its velocity at time t. We introduce an
orthonormal set of exact normal modes Cf satisfy-
ing
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0
E(v, k)=f(z, k)=( ), (,~,p,

where e =2@v/¹ The small-k limit thus depends
on the dominance of large n, the applicability of
the central-limit theorem for large n, and the geo-
metric nature of the resulting series. All of this
will remain true in the dynamically disordered
case.

III. RANDOM MASS CHAIN

Consider a harmonic chain with nearest-neighbor
forces, spring constant I', with mass m& at the jth
site, Let m& be a random variable with mean M
and variance M p, . The masses at each site are
assumed independently distributed. We want to
calculate the displacement Q„of the nth atom in a
normal mode of angular frequency +. Following
Matsuda and Ishii, 5 we introduce the state ratio

Z) =Qg Q)

and calculate the displacement Q„ from

Q~ —Q0 Zg,
gm],

(3.1)

(3.2)

The equation of motion for the displacements can
be written as a recursion relation for the state
ratios:

appears in Eq. (2. 1) from that which appears in
Eq. (2.V). In Eq. (2. 1) we consider a particular
realization of the structural disorder in a very long
chain, and average only over the equilibrium dy-
namical states of the harmonic oscillators to get
the desired equilibrium correlation function. In
Eq. (2.7) the sum over j averages over the struc-
tural disorder. In the absence of long-range order,
a sum over j in the limit that N- ~ is equivalent
to an ensemble average.

In Ref. 8 we calculated E(v, k} analytically for the
case thai p„had a Gaussian distribution for all n.
In the long-wavelength limit, P(k, &u) had a Lo-
rentzian line shape, and the linewidth behaved in
a conventional "hydrodynamic" manner. To see
the physical origin of this limiting result, consider
the case that p„ is the sum of n independent and
identically distributed random variables, each with
mean a, variance 0. , and probability distribution
p(p). For small n we can't make any simplifica-
tions unless p(p) is Gaussian, but in the limit of
large n, the central-limit theorem of probability
theory tells us that

(&-$aaa) &
lana

& la-la a /2 (2. 8)

In the limit of small k the sum in Eq. (2. 7) will be
dominated by large n, so that Eq. (2. 8) can be used
to calculate the asymptotic long-wavelength be-
havior. The sum over n then becomes a geometric
series, and E(v, k) takes on the Lorentzian form

z,„=2—&~ a, -z, ,
-1 (3.3)

zz =2(1 —cosA.), (3.6)

and Q is defined in the interval —~~& Q & —', m. In
the ordered case z„=cosnA/eos(n —l)A. . The corre-
sponding stationary probability distribution E(P) is
uniform in fII}. In the disordered case Matsuda and
Ishii express E(P) as a power series in z:

F(y) = F,(y}+zF, (y) + z'F, (y}+ ~ ~ .
and find that

(3.6)

' = —(2v) ' pz{cos4& + eos2&). (3.7)

Of principal interest is

s'l2

F(y) In~z(y)
~
dy, (3.8)

which is given to lowest order in e by

(3.8)

From the Matsuda-Ishii result we can easily cal-
culate the low-frequency limit of the density of
states. Counting the number of nodes, Schmidt
showed that

0
M((u') = u (z, (u') dz, (3. 1O)

where M(~z} is the total number of states with fre-
quency less than ~, and w(z) is the stationary prob.
ability distribution of the state ratio z. (Schmidt's
z is our z ', but this does not affect the counting
argument. ) We note that

sv{z) = E(y)
dft)

dZ

and use Eqs. (3.6) and (3.7) for F(P). The final
result is

dM
=(2/v)((u' —(u') '"(I-Ap, 'z'+" ~ ), (3.11)

where &gaza
=4I'/M .

Thus the only change from the ordered chain at
low frequencies is that the mass m is replaced by
the average mass M. This is also the correct pre-
scription for calculating the sound speed and the
macroscopic compressibility. The Debye theory
relating the low-temperature heat capacity io the
elastic properties is thus unmodified by mass dis-

where a, = I, /M, and ez = M&uz/I'

First we review the principal results of Matsuda
and Ishii. ~ They look for a stationary probability
distribution for the state ratio z. It is more con-
venient to transform variables from z to Q, where

z = cos(Q + A)/cosQ = eosA. —sinA. tang, (3.4)
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order in one dimension.
In this paper our principal objective is a more

detailed study of the amplitudes of the low-lying
normal modes. We find it convenient to introduce
a complex state ratio Z& and to define a new vari-
able f~ by

84x (1+/A) (3.12)

In the ordered case &,
= 0. Substituting Eq. (3.12)

into Eq. (3.3) and expanding to order e we have

(r~ ) f~) +i&(t'~„+ g)) =i&(o~ —1)—wg&(g~, )+ g)}
(s.ls)

Summing Eq. (3.13) from j =1 to j =n, neglecting
end effects for large n, and using Eq. (3.2}we

have

+„=+oexp inc+ ~2& u —1 ——'iq ' F2+0 ~3

(3.14)
In the limit of large n the random variable
—,'kg&"., (o& —1) is normally distributed with mean
zero and variance ~4&2p2. It remains to calculate
the contribution from

replacement of Q„by its average value (Qu)) cal-
culated from the linearized equations which de-
serves more careful study. In Ref. 5 the question
is avoided by considering only (In lz I). Even though
the various z& are strongly correlated, we can still
write

For other statistical properties of the u„ the fact
that the z& are identically but not independently dis-
tributed will be of importance.

The solution (3.17} that we have constructed
grows with increasing n. Matsuda and Ishii have
shown that an appropriate choice of boundary con-
ditions allows one to construct a localized solution
from the growing solution. Thus a solution local-
ized around n = 0 will have the form

R —Mo exp in& + M2c Pg
—8 n 6 p. . (3.18

The quantity of interest for our correlation function
calculation, Eq. (2. 5), is C)" C)n. When appro-
priately normalized this then becomes

from an appropriate approximate solution to Eq.
(3.13). The leading term in Q„ is of order nz and

can be calculated by dropping the quadratic terms
in Eq. (3.13). The linearized equation has the
solution

)+n

C~",„C&*=N 'exp inc+~~'& P„—8 n e p, . 3.19

The transformation from Eq. (3. 17) to Eq. (3.19)
is not as rigorous as we would like, but it is the
only physically sensible one. The correlation func-
tion of interest then becomes

1'ya) =
I (P) +yPy )+y ~)-k+-' ' ')&(1) i 2 (3.15)

p(& I } ~ C v Can e-)nka
)+n

n

(3.20)

a 2
(q4) )) — n )4k ykj ~ z ~2

1+if (3.16)

Fluctuations in Q„will be important only to higher
order in &. Substituting Eq. (3.16) into Eq. (3.2)
we finally obtain

Qn=Qoexp in&+MgE Pg + Sn& p +0
gag

The exponential growth in Eq. (3.9) is in agree-
ment with that calculated by Matsuda and Ishii. s

In addition we have the phase incoherence from
the term in g., iI, which is essential in reconciling
the Matsuda-Ishii result with perturbation-theory
calculations. We should note that neither in Ref.
5 nor here has the possible buildup of fluctuations
in u„been carefully studied. In our paper it is the

where y=(1 —i )/k(I is+) and p) =a, —1.
The average value of Q„"' is obtained by squaring

Eq. (3.15), summing over j, and noting that

(ISjPk)

The result is

when structural disorder is neglected. We then
carry out the average over the arbitrarily chosen
localization center j. This is equivalent to an en-
semble average, and depends only on the probabil-
ity distribution of the random variable gpk. Since
the P„are independently and identically distributed
with mean zero and variance p. this average can be
calculated for large n using the central-limit theo-
rem. The final results, in the limit of infinite N,
is given by

f (Z I } e )n&a ka) e- In la n y4
2 2

(3.21)

Equation (3.21) is only applicable for small z where
the series is dominated by large n. Only in this
limit can we replace the mode index v by the dimen-
sionless frequency E. At arbitrary frequency there
will not be a well-defined normal-mode amplitude
for each frequency. We note that the attenuation
in the nth term has equal contributions from two
sources. The first is the localization of the normal
modes, and the second is a phase incoherence as-
sociated with the P, . The two contributions togeth-
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er agree with the attenuation of the average Green's
function as calculated from perturbation theory. ~'
In the presence of structural disorder the contribu-
tion from phase incoherence can interfere with the
structural disorder, but the localization contribu-
tion is unchanged. This will be considered explic-
itly in Sec. V. That both contributions should be
present was pointed out in a more general context
by Thouless. ' The backward scattering of the un-

perturbed waves by the randomness determines the
localization, while the forward scattering gives a
phase incoherence which also contributes to the at-
tenuation of the average Green's function. Thou-
less's discussion remains relevant for strong dis-
order in the limit of low frequency where the scat-
tering by the disorder is weak.

Finally we carry out the sum in Eq. (3.21) to
obtain

2 2

(f —hajj) +(gf p }f(~, a) = (3.22)

Consider a harmonic chain with fixed mass M
and random spring constant I", coupling site l to
site l —1. For a uniform compression, the force
in each link is the same, and the compression of
each spring is inversely proportional to its spring
constant. The longitudinal sound speed is thus
given by

c'=r '/M,

with the effective spring constant I' defined by

p 1 g 1 p-1
Jw

The equation of motion for the state ratios is

—M+=I „,(zj z 1) I j(l zi ).

(4. 1)

(4. 2)

The expansion corresponding to Eq. (3.13) is some-
what more complicated, and is obtained by defining
a new variable 5, through

where

~ $)L (0'g+6 ) ) (4. 3)

&j = I'/I'j ~ (4.4}

Substituting Eq. (4.3}into Eq. (4. 2) and expanding
to order &, we have

Recalling that zm =MuP/I', Eq. (3.22) gives a sound
wave peak at &u' = c k~, with c = I'jj'/M. This
agrees with the sound speed ca1culated from the
macroscopic compressibility, and with the low-
frequency limit of the density of states. The damp-
ing due to mass disorder in the long-wavelength
limit is very similar to that due to structural dis-
order calculated in Ref. 8 and in Eq. (2.9) of this
paper.

IV. RANDOM SPRING-CONSTANT CHAIN

5j.j(I„j+j&) —5j(Ij —je)

u„=uoexp in&+ ~j& g, + —,egg 7 +0 q

where

j},= (r/I', ) —1 = I, —1

(4. 8)

(4. 7)

is a random variable with mean zero and variance
The problem is thus equivalent to the random

mass chain with the random variable j7j of Eq. (4.7)
replacing the random variable Pj = m, /M —1.

This result could have been anticipated more di-
rectly. Introduce the new dependent variable.

&j = Fj(jjj

The equation of motion for E, is

—&'(r/I', }F,=F...—2F, +F„„

(4. 8)

(4.9)

which is the same as the random mass equation of
motion for jjj except that m j/M is replaced by I'/I;.
Equation (4. &) can be rewritten

Ej = I jjjj (I —z j ) —j6I (jjIj j/I j + 5 j).
The large fluctuations from site to site are ex-
tracted in the term I'/I', . The remaining term 5,
is of order &. At long wavelengths both E, and u,
must vary slowly from site to site, and we have

Thus the solution for E, using the results of Sec. III
is directly applicable to the displacement in the
random spring-constant case, as verified by direct
calculation.

The arguments leading from Eq. (4.8) to a cal-
culation of the displacement-displacement correla-
tion function are identical to those leading from
Eq. (3.17) to Eq. (3.22). The result correspond-
ing to Eq. (3.19) is

+n

C,",„C,"*=X 'exp inc+~& q„--, n ~'~' .
(4.10)

When structural and c.dynamic disorder are both
present, we must start from Eq. (4. 10). This is
considered in Sec. V.

The calculation of the density of states is un-
changed from Sec. III. The transformation (4. 8)
from displacement u, to force E, is linear. The

~2~( Ij + I j+ j ) b~(C jag 5j+1 Lj 5j)
(4. 5)

Equation (4. 5) is analogous to Eq. (3.13), and it
can be solved approximately by the same proce-
dures which led from Eq. (3.13) to Eq. (3.17).
The algebra is more complicated, but the final re-
sult is very similar. The displacement u„ is given
by
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If both the spring constant and equilibrium sepa-
ration are disordered we must combine the effects
considered in Secs. II and IV. Substituting Eq. (4.10)
into Eq. (2. 5), and proceeding as we did to obtain
Eq. (2.7) we find

p(v k} = gine g Inle e /-k (g-» "an giean)2 R (5.1)

where the random variable p„was defined in Sec.
II, and the random variable

e„=l/2$ e, (5.2)

is normally distributed with mean zero and vari-
ance &n7'3. The problem is trivial if the spring
constant and equilibrium separation are indepen-
dently distributed. We then have

(g-ikan g«an} —(g e»n}(g-«an)

and the final result is a Lorentzian line shape as in
Eq. (3.22) with the only change being that

p,
' - r '+ 2(er/a)'

Qf more physical interest is the case that the spring
constant is a given function of the equilibrium sep-
aration. Then p„ is still a normally distributed
random variable with mean na and variance no~,
but Q„ is a given function of p„. To illustrate the
point consider the simplest case mhere

I /I i =1+Ca (Rrei Ri —a). (5.3)

A positive value of C corresponds to the physically
plausible case in which the spring constant de-
creases with increasing equilibrium separation.
Equation (5. 3) can be written

counting of normal modes is the same for both
choices of dependent variable. Since the F, obey
the same equation studied in Sec. GI the result is
the same. Again the Debye theory is correct. The
only caution is that the effective spring constant
appropriate to both elastic properties and low-tem-
perature heat capacity is given by Eq. (4. 1). This
simple transformation of the random spring prob-
lem into the random mass problem holds only in
one dimension. In more than one dimension even
the correct sound speed is unknown in the random
spring case.

V. GLASSLIKE CHAIN

and

g-ikan giean) g ik-na g-inlet (5. 6)

where

e = —,'(a/a)'(ka ——,'& C)'. (5. V)

In the Brillouin peak we can replace & by ka so that

8 = a(ker} (1+ a C —C}. (5. 6)

The first term in Eq. (5.&) gives the structural
damping of Sec. II. The second term gives the
phase-incoherence contribution to the dynamical
damping of Sec. IV. The third term gives the de-
structive interference between them. The physical
origin of this destructive interference is easily un-
derstood. Consider an equilibrium separation less
than the mean value. The spring constant will be
increased. This more nearly matches the phase
change in a plane wave which mill be reduced
when the separation is less than average. Thus a
plane wave more nearly matches a single normal
mode, and the damping is reduced. In particular
when C =2 the damping due to phase incoherence
can be eliminated entirely. The damping due to the
localization will, however, still remain. The final
result, combining Eqs. (5.1), and (5.6) is
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In summary we have extended the discussion of
wave propagation in a disordered chain to include
the combined effects of structural and dynamic dis-
order and the correlations between them. To do
this we had to distinguish the dynamical effects of
phase incoherence from those of normal-mode lo-
calization. The main physical point is that fluctua-
tions in one dimension can contribute subtle effects
to the attenuation of long-wavelength sound modes,
but they can not change the dominant low-frequency
behavior. We have used, however, much of the
arsenal of special one-dimensional tricks. None
of our conclusions can be extended to three-dimen-
sional systems of direct physical interest.

P„=—,
' Ca '(p„-na).

In particular the variance of I'/I', becomes

~' = (C ir/a}'

(5.4)
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