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We describe in this article the principles of production and observation of magnetic ordering in

systems of nuclear spins subjected to dipole-dipole interactions. The cooling necessary for producing

ordering, which concerns only the nuclei, is obtained by a two-step process: dynamic polarization in a

high field followed by adiabatic nuclear demagnetization. The study is mostly limited to adiabatic
demagnetization in the rotating frame, for which the effective nuclear spin-spin interactions are
truncated dipolar interactions. We list briefly a number of measurements that can be made, mostly

relevant to magnetic resonance techniques, together with the information they yield on the ordering.
The prediction of the nature of ordered structures, both at positive and negative temperatures, is made

through the use of the local Weiss-field approximation. In the case of simple cubic systems of spins

1/2, one predicts the occurrence of three different antiferromagnetic structures. The Weiss-field

approximation, occasionally supplemented with high-temperature approximation to spin temperature

theory, is finally used for predicting as a function of entropy various properties of the

antiferromagnetic states: sublattice magnetizations, transition entropy, transverse and longitudinal

susceptibilities, transition field, and shape of the fast-passage dispersion signal.

I. INTRODUCTION

Following the early proposal of a method for pro-
ducing magnetic ordering in systems of nuclear
spins subjected to dipole-dipole interactions, ' ex-
periments have been performed in calcium fluoride
and lithium fluoride that provided evidence for the
existence of antiferromagnetism, in CaF2 and
I iF, ' ' and of ferromagnetism, in CaF~. " In
the short publications describing these results we
contented ourselves with a brief description of the
techniques of production and observation of nuclear
magnetic ordering and of the theoretical methods
used for describing the nature and properties of
the ordered states.

The purpose of the present article is to give a
fuller description of some of the principles and
methods used in this study.

In the rest of the Introduction we recall briefly
the nature of the problem investigated and the prin-
ciple of production of nuclear magnetic ordering,
and we give a short list of the types of measure-
ments that can be made.

This is followed, in Sec. II, by the description
of the local Weiss-field approximation, as applied
to simple cubic systems of spins & subjected to
truncated dipole-dipole interactions, for predicting
the ordered structures occurring at low tempera-
ture. Finally, Sec. III uses a combination of
Weiss-field and high-temperature approximations
for predicting the properties of antiferromagnetic
structures as a function of field and temperature.
This last part is limited to the analysis of a par-
ticular antiferromsgnetic structure, observed in
calcium fluoride, on which most of the measure-
ments have been performed so far. Some of the

published experimental results are reproduced on
the figures, for the purpose of testing the validity
of the theoretical curves.

Use of more sophisticated theoretical methods
and investigation of other structures are deferred
to future publications. One may note, however,
that a detailed analysis of nuclear antiferromag-
netism by the spin-wave and the random-phase ap-
proximations has been given in a thesis (Ref. 7) to
which the reader is referred.

A. Summary of the principle of production of nuclear magnetic
ordering

The production of magnetic ordering in nuclear
spin systems subjected to dipole-dipole interactions
requires exceedingly low temperatures, as a con-
sequence of the smallness of these interactions.
As a rough estimate, the critical temperature T,
for these systems is such that k& T, is comparable
with the interaction energy between nuclei nearest
neighbors. The latter being typically of the order
of a few kHz (in frequency units), the temperature
T, is expected to be of the order of 10 K or less,
which is well outside the reach of present cryogenic
techniques.

We use a cooling process in which only the nucle-
ar spins are cooled to the microdegree range,
whereas the lattice remains at relatively high tem-
perature (typically 0. 3 K in our experiments). An
obviously necessary condition is that one can find
nuclear spin systems sufficiently loosely coupled
to the lattice to be practically isolated during a
time T, long enough to perform observations on
them. Furthermore, it is necessary that these
isolated systems reach in a time T, much shorter
than Ti a state of internal equilibrium character-
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ized by a temperature. The first condition can be
fulfilled by using an insulating diamagnetic solid at
low temperature. As for the second one, its valid-
ity has been postulated long ago and used as the
basis of the spin-temperature theory. This theory
has been verified in a great many experiments'
but, apart from the present work, only under high-
temperature conditions, that is, when kaT is much
larger than the average energy per spin. It is only
under very special conditions but this theory has
been observed to fail. " The present study is based
on the assumption that the spin-temperature con-
cept remains valid even at low temperature. It is
justified by the experimental results obtained so
far.

The nuclear cooling process used in this study is
a two-step process which works as follows.

(a) The nuclear spins are dynamically polarized
in a high external field Ho by the solid effect, "
i.e. , by inducing with a microwave field of appro-
priate frequency flip-flop transitions between the
nuclear spins and suitable electronic spins present
at low concentration in the sample. Increasing the
polarization of the nuclear spins is equivalent to a
cooling, as shown for instance for spins &. Their
polarization P is related to their temperature T
according to

P = tanh(h()B/ 2(ks T),
so that, say, in a field where &u()/2))'=100 MHz, a.

polarization of 507(; corresponds to a spin tempera-
ture T=4. Vx10"3 K.

(b) The polarized nuclear spins are subjected to
an adiabatic demagnetization, which at the same
time reduces their Hamiltonian to its dipolar part
and decreases their temperature by a large factor.
The cooling achieved by this step is limited by the
residual dipolar field at the nuclear site-Weiss-
field when the final state is magnetically ordered,
or local field when it is not. An order-of-magni-
tude calculation within the high-temperature ap-
proximation to spin-temperature theory' yields a
decrease of temperature by a factor approximately
104 from a field of say 25 kG to zero applied field,
which together with the cooling achieved in the first
step, is sufficient to bring the spin temperature
into the microdegree range necessary for the pro-
duction of ordering.

It is in fact simpler to discuss this process in
terms of entropy rather than temperature: The dy-
namic polarization of the nuclear spins in high field
decreases their entropy, and the adiabatic demag-
netization simply removes the unwanted high field
while keeping the entropy constant.

One consequence of the fact that we are dealing
with nuclear spin systems isolated from the lattice
is that we can study their low-temperature proper-
ties not only when their interactions are the ordi-

nary dipole-dipole interactions, but also when they
are truncated dipole-dipole interactions. This is
done by performing the adiabatic demagnetization
either in the laboratory frame or in the rotating
frame, respectively. These notions are very fa-
miliar in nuclear magnetism. We recall them very
briefly.

Following an adiabatic demagnetization in the
laboratory frame, that is, an actual decrease of
the applied field to zero, the final Hamiltonian of
the system reduces to its dipole-dipole Hamilto-
nian. If we suppose that the sample contains only
one nuclear species of spins I, this Hamiltonian is
of the form

(I;;;)(T; i;))

where ~&& is the distance between spins i and j.
That the demagnetization ends up with a cooling

of 3C() results from the fact (well established in the
high-temperature limit) that a fast thermal mixing
between Zeeman and dipolar interactions takes
place as soon as the applied field becomes less than
a few times the local dipolar field. The mixing
time decreases steeply with applied field and

reaches eventually a value T2 typically of the order
of 100 p. sec. The total Hamiltonian being

K = yHoIz+3CD = &oIz+&D

thermal equilibrium corresponds to a density ma-
trix of the form

e -8x/Tr (e-Bx )

where p is the inverse temperature.
In a high field, on the other hand, that is, when

the Zeeman interaction is much larger than the
dipole-dipole one, the establishment of a thermal
equilibrium within the spin system is exceedingly
slow. It can be shown that the system possesses
two quasiconstants of the motion: the Zeeman in-
teraction &oI, and the secular part ',KD of the dipole-
dipole interaction, that is, that part of XD which
commutes with I,. This so-called secular or trun-
cated dipole-dipole interaction is of the form

."tCD =—2 A(;(2I,'P, —I„'I'„-I',I',),

with

A;, = —,'y'h (1 —Scos'8;,)r, , (5)

where 6;; is the angle between the applied field Ho

and rg~.
One can establish a thermal contact between

Zeeman and truncated dipolar interactions by irra-
diating the sample with an rf field H& perpendicular
to Ho and rotating with a frequency (d close to the
Larmor frequency (do = —yH& of the spins. In a
frame rotating with frequency ~, the evolution of
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the density matrix of the spin system depends on
the following effective Hamiltonian:

K*= AI~+ w&I„+KD

The spin-temperature theory states that the system
evolves toward a state of equilibrium characterized
by a. temperature in the rotating frame, i.e. , that
its density matrix in the rotating frame becomes

g = e-"*/Tr( "j.
The rate of achievement of equilibrium, which we
can formally calculate as a function of 6 and &„'
can be made fast. The so-called adiabatic demag-
netization in the rotating frame is performed by a
fast passage": One applies an rf field at a distance
5 from resonance such that I 4 I

» I K& I and slowly
decreases I 5 I to zero. The final Hamiltonian is
u&I„+KD =KD if co& is small. One can also decrease
adiabatically && to zero, so that the Hamiltonian is
truly K,'.

Once we have made && =0, there is no need of
using a rotating frame any more and we can con-
sider the system as viewed from the laboratory
frame. Since in a high field there are two quasi-
constants of the motion, &OI, and X~, the quasi-
equilibrium form of the density matrix is

o = e- "o"-' &/Tr( "), (8)

with two different inverse temperatures Q. and P

for the two quasiconstants of the motion. The ef-
fect of the fast passage is to make n = 0 and P large.

All experiments performed so far have used adi-
abatic demagnetization in the rotating frame, and
the rest of this paper is restricted to the study of
the low-temperature properties of the truncated
Ha, miltonian KD.

The main characteristics of this study are the
following.

(a) The Hamiltonian XD is known with certainty,
with no adjustable parameter. The study of nuclear
dipolar magnetic ordering is then a "clean" prob-
lem that affords a test of the validity of the approx-
imate statistical theories of magnetism. The situ-
ation is not quite so bright because of the presence
of the electronic paramagnetic impurities neces-
sary for performing the dynamic polarization.
Their perturbating influence can be rendered neg-
ligible by decreasing their concentration. It is up
to experiment to determine which concentrations
are acceptable.

(b) The Hamiltonian 3CD depends on the orienta. -
tion of the external field Hz through the values of
&;~ JEqs. (4) a.nd (5)], so that the ordered struc-
tures are likely to depend on this orientation.

(c) The spin temperature in the demagnetized
state can be made at will positive or negative, de-
pending on the sign of 6 = &0 —& when starting the
fast passage. This possibility, well known in nu-

clear magnetism, is linked to the fact tha, t the di-
polar Hamiltonian has an upper bound to its energy
spectrum. When T-+0, the state of the system is
that of lowest energy; when T- —0, it is that of
highest energy. It is then possible, with the same
Hamiltonian KD, to study two different orderings.

(d) It is not the temperature which is the most
directly accessible parameter, but the entropy of
the system.

B. Types of measurements

We list briefly some of the measurements that
can be performed and the kind of information they
yield. Most use the techniques of magnetic reso-
nance.

1. Dispersion signal during the fast passage

The dispersion signal u, which is the magnetiza-
tion in phase with the rf field, is static when viewed
from the rotating frame and proportional to the
transverse susceptibility Z, of the system. Of par-
ticular interest is the value of y„ in zero effec-
tive field, that is, at the center of the fast passage.
Furthermore, it suffers a noticeable change a,t the
transition from the high-effective-field paramag-
netic phase to the low-effective-field ordered
phase, which offers the possibility of measuring
the critical field of transition.

2. Longitudinal magnetization

The bulk longitudinal magnetization in the pres-
ence of a nonzero longitudinal effective field is
proportional to the longitudinal susceptibility p of
the system. It can be measured from the area of
the absorption signal, or through the field it
creates in the neighborhood of the sample, a field
which can be determined for instance by the shift
of the resonance frequency of liquid He'. Other
schemes can be devised for measuring this suscep-
tibility. They will be described in a, different
article.

3. Resonance signalin the demagnetized state

One can observe with a small nonsatura, ting rf
field either the absorption or the dispersion signal,
yielding the following information: The dispersion
signal at the center of the resonance is proportion-
al to y, . The first moment of the absorption signal
is proportional to the dipolar energy. This result,
which will be proved elsewhere, allows a simple
and accurate measurement (within a few percent) of
this energy.

Let us take, for instance, the case of an antifer-
romagnetic structure. Recording the absorption
signal at frequency ~ can be shown to be equivalent
to performing an antiferromagnetic resonance ex-
periment with a field rotating at the low frequency
(&uo —u), while benefiting from the sensitivity of
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resonance at the high frequency (d. %e get in that
way information on sublattice magnetizations' as
well as on spin-spin relaxation in the ordered
phase.

4. Resonance of a nucEear magnet'ic probe

Besides the main nuclear spins whose ordering
is studied, the sample may contain nuclear spins
of a different species at low concentration, such
as 'Ca inCaF2, 'Sr in SrF2, or Li in LiF. Be-
cause of their low concentration, these impurity
spins do not perturb the ordering of the main spins
and can be used to probe this ordering on a, micro-
scopic scale, for instance when the latter create
different dipolar fields at the sites of different
probe nuclei, which cause a splitting of their reso-
nance signal. " The impurity spins can also be
used to measure the dipolar temperature T~: %hen
an rf field is applied at a distance b, from their
resonance, their effective Zeeman interaction 6 S,
acquires the same temperature as that of the di-
polar interactions of the main spins I through ther-
mal mixing. Their final magnetization is rel.ated
in a known way [by a Brillouin function of r /RT~]
to this common temperature, which can thus be
measured.

5. neutron-diffraction study

Neutron diffraction, which is a unique method for
ascertaining the nature of a magnetic ordered
structure, ' can be used with nuclear magnetic
spins despite the very low value of their magnetic
moment, because the spin-dependent part of neu-
tron-nucleus scattering is mostly caused by strong
interaction and can be much larger than their mag-
netic scattering. '8' Experimentally, this ampli-
tude is very large for protons, which should make
it; easy to study the ordering of a proton system,
whereas it is so small for fluorine that it is impos-
sible to use neutron diffraction to study antiferro-
magnetism in calcium fluoride.

II. DERIVATION OF THE ORDERED STRUCTURES

The determination of magnetic ordered struc-
tures other than ferromagnetic is a problem that
has not received a definite answer yet. One has
always to resort to approximate methods open to
criticism, whose validity has ultimately to be
checked by experiment.

%e use in this section a method developed by
Villain that makes use of the local Weiss-field
approximation. The discussion will be limited to
systems of identical spins 2 forming a Bravais lat-
tice with a center of symmetry and eventually spe-
cialized to the case of a simple cubic lattice. An
alternative method is described in Bef. 7.

The local %eiss-field approximation is the fol-
lowing. When considering the interaction of a giv-

en spin I& with all other spins of the sample, one
treats only that spin I& as a quantum-mechanical
observable and replaces the spin operators of all
other particles by their thermal average, i.e. , by
c numbers. This amounts to neglecting correla-
tions between spins. This average interaction is
equivalent to the Zeeman coupling w&

~ I; of the spin
I& with a, fictitious magnetic field H; = —&u&/y, the
so-called local Weiss field. We will call w& the
Weiss frequency.

The spin-spin energy, expressed in frequency
units, takes the form

where the factor & accounts for the fact that this is
a self-energy.

According to Eq. (4) the components of the fre-
quency (d; are

u), „=—Q A„(P„&,

(u;, = 2 24,~( I',) .

lf the external field is H (this is in our case an
effective field in the rotating frame) the total field
experienced by the spin I, is H; =H+ Hg and the
thermal average of I; at the inverse temperature
P is given by the usual Brillouin function; that is,
for a spin &

(&&& = —-'(~&'/I ~;I) tanh(kl
I
~~'I), (11)

with v~ = —yH+(d&. %e limit ourselves for the mo-
ment to the case when H = 0, so that Eq. (11)be-
comes

(1 &
= —z(~g/I ~c

I }tanh(& &
I ~g I }

This vectorial equation is equivalent to a system of
three equations for the components (I'„), (I',), and
(I,') of (1,). If there are N spine in the sample, Eq.
(12) summarizes a system of SN equations which
has, for every value of P, a number of solutions.
Among these solutions we must select those for
which all components (I'„), (I',), and (I,') are real
numbers.

The next step consists of determining among all
these solutions the one that is stable. We can use
three different forms for the thermodynamic sta-
bility criterion. %e give first these forms for
systems that can be found only at positive tempera-
tures. The stable state among many possible
states of the system is as follows: at constant tem-
perature, the state for which the free energy F = E
—TS = E —S/P is minimum (we use units for which
PI= ks = 1); at constant energy, the state for which
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the entropy is maximum; at constant entropy, the
state for which the energy is minimum.

When dealing with nuclear spin systems we
choose the zero of energy to be that of the system
at infinite temperature. Systems at positive tem-
perature then have negative energies and systems
at negative temperature have positive energies. It
can be shown that in the process or preparation of
the system (that is, adiabatic demagnetization from
a. high field) the sign of the energy and therefore
also the sign of the temperature cannot change.
The determination of stable structures has to be
made independently for positive temperatures
(i.e. , negative energies) and for negative tempera-
tures (i.e. , positive energies). The former ex-
pressions for stability criterion are modified as
follows. The stable structure among many pos-
sible structures whose energies have the same
well-defined sign is as follows: at constant tem-
perature the one for which I F I is maximum; at
constant energy the one for which S is maximum;
at constant entropy the one for which I E I is maxi-
mum.

The energy is given by Eq. (9). As for the en-
tropy it is within the Weiss-field approximation
equa]

(13)

where P& is the modulus of the polarization p&

= 2& 1~&.

To summarize, the program for determining the
stable structures is made of two steps: (i) Find at
all temperatures all structures satisfying Eq. (12);
(ii) use the stability criterion to find among these
the stable ones as a function of temperature, ener-
gy, or entropy. This program cannot be fulfilled
for it is in general not possible to find all solutions
of Eq. (12) at arbitrary values of temperature.

The procedure that is adopted, less general than
the one just outlined, is based on the following
points:

(i) It is possible to find all solutions of Eq. (12)
in the limiting case when all (I,) are vanishingly
small.

(ii} We can use the stability criterion to deter-
mine the stable structure in this limiting case.

(iii) Among the structures that satisfy Eq. (12)
in the limiting case, some remain solutions of
these equations at all temperatures (to within a
scaling of the values of Pq) whereas many do not.
At an arbitrary temperature we know then but a few
of all possible solutions of Eq. (12), corresponding
to these permanent" structures.

(iv) The relative stability of these permanent
structures does not depend on temperature.

—Z A„&f'„& —X&1„'&= 0, (17a)

(17b)

(17c)

To proceed further, we introduce the following
Fourier transforms:

1(k) = A -"'pe"'~ I (18)

(v) When in the limiting case of small polariza-
tions the stable structure is a permanent one we
make the hypothesis that this structure remains
stable at all temperatures with respect to all solu-
tions of Eq. (12}although we only know this to be
true with respect to a few of them.

(vi) When in the limiting case of small polariza-
tions the stable structure is not a permanent one
this procedure yields no answer as to the ordered
structure.

In the rest of this section we analyze these vari-
ous points and then use this analysis to predict the
ordered structures in a simple cubic lattice.

A. Generalities on the solutions of local gneiss-field equations

The limit when all 1(I;& I are infinitely small
corresponds by definition to the critical tempera, -
ture for the ordered structure. The Weiss-fre-
quency magnitudes I cu; I are also small in this lim-
it and we can replace in Eq. (12) the hyperbolic
tangent by its argument:

&I,&
= 4P, &-u( . (14)

Since according to Eq. (10) &u; is a linear combina-
tion of the various spin-component average values,
Eq. (14) summarizes a system of 3N linear homo-
genous equations relating the spin-component aver-
Bge values of the N nuclei of the sample. It is an
eigenvalue problem which has 3N solutions, corre-
sponding to 3N values of P„ to be determined.

Equation (14) can also be written

i; = X&I;&, (15)

with

X = —4/P, = —4ks T,/h .
Equations (14) and (15) correspond to structures
where the Weiss-field experienced by a given spin
is proportional to the magnetization of that spin,
with a proportionality constant identical for all
spins.

We now analyze the various structures satisfying
Eq. (15). According to the form (10) of ~„Eq.
(15) corresponds to the following set of equations:
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where r; is the vector joining the origin (taken at
a. lattice site) to the location of the spin I~, and k
is one of the X vectors of the reciprocal lattice be-
longing to the first Brillouin zone.

Equation (19) is meaningful only insofar as the
sum over i is independent of index j, a question
that will be examined later on. Let us assume for
the moment that this is the case. According to Eq.
(19), A( —k) =A*(k}. On the other hand, since the
lattice has a center of symmetry, we have A( —k)
=A(k) so that all A(k) are real numbers.

By an elementary and standard calculation, the
system of Eqs. (1V) is transformed into

[ —A(k) —~]&I„(k))= O, (20a)

[ —A(k) —X](I,(k)) = 0,
[2A(k} —~]&I,(k)) = O .

The 3N solutions of Eqs. (20) are of two differ-
ent types: longitudinal and transverse. They are
listed below.

Brillouin zone. There are then as many indepen-
dent longitudinal solutions as distinct vectors k in
the first Brillouin zone, that is, ¹

&I',) =(I,) =o (25)

(I„') is rea. l if &I„(k,)) =(I„(—ko))*. This can be
achieved in two independent ways, which yields two
independent solutions.

We can also have

X = —A(ko), &I (ko)) 4 0, (I ( —ko)) 4 0,

Z. Transverse structures

For every couple of vectors + ko of the first
Brillouin zone there are four independent solutions
of Eqs. (20). We can have

~ = -A(k, ), &I„(k,)) ~0, &I„(-k,)) ~O,

&I.(k)& = o for k4+ko, (24)

(I,(k)) = (I,(k)) = 0 for all k;
from which, for individual spins,

&I ) N [e-i o s&l ('k ))+e "0'
i&I

'( k ))]

1. I.ongi tudinaI structures
(Iy(k)) = 0 for k&+ko, (26)

Let ko be a given vector k. Equations (20) are
satisfied by the choice:

X = 2A(ko), &I,(ko)) 4 0, &Iy( —ko)) & 0,
(I,(k)) = 0 for k e + ko,

(I„(k)) = (I,(k})= 0 for all vectors k .

Inverting Eq. (18)

I;=N jJ~ e '"'i I k

(21)

(22)

we get

&I,') = X-"'[ -'"0"
&I,(k,)) + e'"0' &I.(-ko))1,

&I„') = &Iy) = 0 . (23)

(I,(ko)) = &I,( —ko)) = e

or

&I,(k,)) = —(I,( —k, )) = f~ .

The value of E is arbitrary and is only bound to be
small.

We have then found two independent degenerate
solutions for each couple of values +ko, except
when +ko is not distinct from -ko, in which case
there is only one solution. This happens when ko
=0 and when ko is at the boundary of the first

The condition (I,') equals a real number is satis-
fied by choosing (I,( —ko)) = (I,(ko})*. This can be
done in two independent ways. For instance,

(I„(k)) = &I,(k)) = 0 for all k;
from which

&Is) Q 1/2[e lko yi-&I ('k ))

+ e'"o'~&Iy( —ko))] . (27)

Again, &I',) is real if (I,(ko)) = (I,( -ko))*, which can
be achieved in two independent ways and yields two

independent solutions.
These four solutions are degenerate, so that

their linear combinations are also solutions of
Eqs. (20).

Taking into account all N vectors k of the first
Brillouin zone we have 2N-independent transverse
solutions, which together with the N longitudinal
solutions solve the problem of finding all solutions
of Eqs. (20}. Each different value of X corre-
sponds to a different critical temperature, accord-
ing to Eq. (16).

The great simplicity of the solutions is a direct
consequence of the use of a truncated dipole-dipole
interaction. When the full dipole-dipole interaction
is used, that is, for the study of magnetic ordering
in actual zero field, the z component of the Weiss
field H;, for instance, depends on the various &I,'),
but also on the various &I„') and &I~/ The theory.
leads, in place of Eqs. (20), to a. set of three equa-
tions for each vector k, of the form

a&I„(k))+ b(Iy(k))+ e&I,(k)) = 0 .

This system has to be diagonalized by a rotation
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S=Nln2--~ P» .1~ p

2 (28)

The energy is, according to Eqs. (9) and (15), equal
to

E=1Zxl&l, &l
= —, xZP, , (29)

or else

E = —,
'

X(N ln2 —S) . (29')

a priori different for each value of k. Although
possible, the calculations are much more compli-
cated than in the present case.

One should remember that all these structures
have been determined as viewed from the rotating
frame. Longitudinal structures look the same in
the laboratory frame as in the rotating frame. As
for transverse structures they correspond, when
viewed from the laboratory frame, to spin orienta-
tions that are rotating at the Larmor frequency
around the dc field Hp. Ordering in these struc-
tures merely implies fixed relative orientations of
the various spins.

For comparing the solutions found in the limiting
case of vanishingly small polarizations one can use
a power expansion of the entropy (13) with respect
to p», which yields

tures are then those that satisfy both Eqs. (12) and
(15), i.e. ,

t~(o&
l ~il) = —&I ~» I (30)

This is possible only if I co» I is independent of the
subscript i, which implies that

l(l, )l = l~-'~,
l
=a, (31)

where a is a constant depending on P.
General solutions of Eq. (30), found by direct

inspection, are the following.
I.ongitudinal permanent structures. They are of

three different kinds.
(i) ko= 0, &1,(0)) &0. This corresponds to &I,')

= const, that is, to a ferromagnetic structure.
(ii) ko is at the boundary of the Brillouin zone.

We have then e"'"P'» = e» "P'" = + 1. If we choose
(I,(ko)) = &I,( —ko)) = o'aN', &I,') is according to Eq.
(23) alternatively equal to + a and —a in successive
planes perpendicular to kp. This corresponds to
antiferromagnetic structures consisting of planes
of magnetization alternative1y parallel and anti-
parallel to the dc field Hp.

(iii) 2ko is at the boundary of the Brillouin zone.
e ' o'~ = ( —i)" in the nth plane from the origin per-
pendicular to kp. By choosing

&I,(ko)) = (-',a)N" (1+i)

According to the third form of the stability cri-
terion the stable structures at constant entropy in
this limiting case are as follows: at positive tem-
perature the structure for which X is minimum
(X&0); at negative temperature the structure for
which X is maximum (~ & 0). lt is easily found that
the two other forms of stability criterion predict
the same stable structures.

The determination of stable structures goes as
follows. We first determine the vector kl that
makes A(k&) minimum and the vector ko that makes
A(ko) maximum.

The structure that is stable at positive tempera-
ture is either longitudinal with kp =k&, the corre-
sponding X being X, =2A(k, ); or transverse with ko
=k„ the corresponding X being &, = -A(k, ), depend-
ing on which X is smaller.

The structure that is stable at negative tempera-
ture is either longitudinal with kp =k&, the corre-
sponding X being Xo= 2A(ko); or transverse with ko
=k&, the corresponding X being X,'= -A(k&), depend-
ing on which X is larger.

Our next task is to find among all 3N structures
determined above those that are permanent. " A

structure is defined by the relative values of polar-
izations p». It is said to be permanent if a change
of temperature effects all magnitudes p» by the
same factor, that is, according to Eqs. (10), if the
relation (15) remains valid. The permanent struc-

&I.(-k,)) =(oa)N'"(l-i),

we get from Eq. (23)

(I,') =+a for the planes 0, 1,4, 5, 8, 9, etc. ,

(I,') = —a for the planes 2, 3, 6, 7, 10, 11, etc.

This corresponds to an antiferromagnetic struc-
ture consisting of pairs of adjacent planes alter-
natively parallel and antiparallel to Hp.

Transverse permanent structures. For every
couple of vectors + kp it is possible to find a per-
manent structure that is a linear combination of
solutions (25) and (26). If we choose

&I (ko)) = &I ( ko)) —(oa)N

&I)(ko)) = —&I)( —ko)) = i(2a)N'

we get, according to Eq. (23),

(I„)=acos(ko ~ r&) and &I,) =asin(ko ~ r&) .
This corresponds to a helical structure where,
along the direction kp, the magnetization rotates in
a plane perpendicular to Hp.

There may exist other permanent structures de-
pending on the particular values of the A(k) in spe-
ClflC CaSeS ~

As permanent structures correspond to

P& =2l &1,) l
=P =const,
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the entropy and the energy take the forms

S = N/ln2 ——,[(1+P) ln(1+ P) + (1 —P) ln(l —P)]j, (32)

E= BNXP (33)

Different permanent structures have equal entro-
pies when they have equal spin polarizations p.
According to the third form of stability criterion
and Eq. (33) the most stable structure among them
is that of minimum X at positive temperature and
that of maximum X at negative temperature. This
criterion of relative stability is exactly the same
as in the limiting case of small polarization, as
stated earlier.

B. Stable structures in a cubic lattice

The Fourier transforms of the dipole-dipole in-
teractions have been computed by Cohen and Kef-
fer for various cubic lattices. They have tabu-
lated, for a series of discrete values of k regularly
distributed in the Brillouin zone, the following

quantities:

S,(k)=p-'Q ~r, ~-'e"'(

S '1(k) p- g i~
~ ~

-5ef)('((
2

2A-

A(k) = n, fS,(k) —3[a'S5 (k)+O'S5""(k)

+ y Sq i(k)+2nPSq "(k)+2PyS5 (k)

where i, j= X, Y, Z, the primed sums are taken over
all lattice vectors r, except r, =0, and p is the
number of lattice points per unit volume. The axes
X, Y, Z are aligned with the fourfold axes of the
cubic system. Let n, P, and y be the cosines of the
direction z of the field Hz with respect to X, Y, and

Z. The dipolar sum A(k) is equal to

A(k) =, —(3cos 8, —1),y hn 4m
(35)

where 6I~ is the angle between the vector k and the
direction z.

(iii) When I k I

' becomes comparable with the
sample dimensions, that is, in a sphere when

I k I
R- 1, A(k) is not well defined since the sum

(1S) depends on the subscript j. This is due to the
long range of dipole-dipole interactions. A(k) has
been computed in this range with the spin j at the
center of a sphere. The result is

(-) y'll 4w(,
)(

Bj,(IR)
)2Q

with k = l k (, and j, is the Bessel function of order
1. It varies from 0 when kR=0 to the va. lue (35)
when kR» 1. Its maximum value is about 10 j(-,

larger than (35).
This unpleasant behavior of Fourier transforms

is limited to values of k that constitute a very
small fraction of the first Brillouin zone. We will

assume that we can ignore the vectors k of this
pathological domain unless they play a. particular
role. More explicitly, if for a, particular orienta-
tion of the field Ho, the extrema values of A(k) cor-
respond to small k values, that is,

8m y An
A(k)m~= 3 2 s

A(0) = —— n .4myA
3 2Q

(ii) When I k I

' is much smaller than the sample
dimensions the sum A(k} is well defined. Let, for
instance, R be the radius of a. spherical sample.
The condition is I k I R» 1. When I k I

' is large
compared with the lattice parameter a, while still
much smaller than R, the lattice sum has a very
simple value:

+ 2oyS, '(k)] J, (34)

where a is the lattice parameter, and n is the num-

ber of spins per unit cell.
The following general remarks can be made in

connection with these dipolar sums.
(i) For k=0 the sum A(0} =g,'A;, is well defined,

i.e. , independent of subscript j provided the shape
of the sample is an ellipsoid. Important values
of this sum are the following:

Spherical sample,

A(0) =0;
Infinity flat disk perpendicular to z,

A(0) = — n.8~ y'A-

3 2Q

Infinity long needle parallel to z,

4n y'A-n
A(k}min= -

3

the present mathematical technique may not be
suited to predicting the ordering that will occur.
These cases will in the present article be left ex-
plicitly aside. They will be treated in a future pub-
lication.

For bcc and fcc lattices the extrema values of
A(k) correspond actually to small k values and

these lattices will not be studied.
In a. simple cubic lattice, theory predicts the oc-

currence of three different antiferromagnetic
structures: two at positive temperatures and one
at negative temperature. They are the following,
at some typical orientations of the magnetic field
Hg.
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b1 C
Structure I Structure Z Structure IK

T~0 T~0 T~O
FIG. 1. Predicted antiferromagnetic structures in a

simple cubic system of spins 2 subjected to truncated
dipole-dipole interactions.

1. Positive temperature

Structure I, Ho 11 [001]:

k, = (II/a, II/a, 0),
A(k, ) = —5. 352 y'8/2a', xI =2A(k, ),
T, = —hXI/4ka =3.4xlo ' K .

(36)

(36')

It is a two-sublattice antiferromagnetic structure
where successive planes perpendicular to [110]
have magnetizations alternatively parallel and anti-
parallel to [001], the direction of the dc field.

Structure II, Ho~~[110]:

k„=(0, 0, II/a),

A(k») = —4. 843 y II/2a, XII = 2A(kII) ~ (37)

(37')T, =3.06x10 7 K .
Successive planes perpendicular to [001] have mag-
netizations alternatively parallel and antiparallel
to [110].

2. Negative temperature

Structure III, Ho~t[001]:

kI» = kII = (o, 0, II/a),

A(k„) =9.687 y'8/2a',

Tc = —6. 13x10" K .
~I I I ~(kI I ) ~ (38)

(38')

Successive planes perpendicular to [001] have mag-
netizations alternatively parallel and antiparallel
to [001].

The structure I is known in the literature as the
magnetic structure C, and structures II and III are
known as structures A. These structures are
shown on Fig. 1.

The domain of stability of these structures is
determined by the variation of the A(k}'s with the
orientation of magnetic field Ho.

For both k, = (II/a, II/a, 0) and k» = (0, 0, II/a) one
has

SxF SI z Szx 05 5 Z

SXx SYY & (q SZZ}

from which, according to Eq. (34),
2 2

A(k ) 5 352
'y 8 3cos Hz —1
2Q 2

2 2

A(k ) =9.687Il '
2 3

&n' 2@
A(k) & —

3
= 8. 38 at T&0 .

It can be shown that no other structures (corre-
sponding to different k values) interfere in this sta. -
bility problem. The maps of stable structures with
respect to dc-field orientation are pictured in Fig.
2 for 8 of the entire sphere. The domains IV cor-
respond to A(k) maximum and minimum for small
k values.

The boundaries correspond to the following an-
gles:

Along AB, Hz = 22';

At C,

Along J3D, Hx= 7&';

Along L, Hz=17. 5

The same stable antiferromagnetic structures
are predicted in a crystal such as LiF. Its struc-
ture is of the NaCl type, i.e. , each atomic species
forms an fcc lattice. If we disregard the differ-
ence between nuclear species, we have a simple
cubic lattice of nuclear magnetic spins in which is

a) T~o b) T«0
FIG. 2. Map of stable structures in a cubic system of

spins & with truncated dipole-dipole interactions as a
function of orientation of magnetic field with respect to
crystalline axes. Structures I-III are those of Fig. 1.
Structures corresponding to areas IV are not analyzed.

where Bz is the angle between Ho and direction
[ool].

We will disregard the anomalous behavior of
Fourier transforms for kR-1. Then as a rough
condition of stability of antiferromagnetic struc-
tures with respect to structures pertaining to small
k values we have

A(k)& —— = —4. 19 at T&04m ye
3 2' 2Q
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predicted the onset at low temperature of the
structures depicted above. Each sublattice of the
antiferromagnetic structures would contain spins
of both species. The extension to the case of sev-
eral spin species of the method of the local Weiss
field will not be developed here.

or else, according to Eqs. (15) and (20),

(u„, = n + A(0)p,";
from which

q+ r = A(0) .

(42)

(43)

If, on the other hand, p„=-p~ along z, we have
III. WEISS-FIELD AND HIGH-TEMPERATURE

APPROXIMATION TO THE PROPERTIES OF
ANTIFERROMAGNETIC STRUCTURES

(u„, = a+ (q —r)p,
"= b, +A(ko) p, , (44)

4 = —(~~& I ~~ I ) tanh(-'&
I ~~

I
)

Ps = ((ds/
I
(ds

I ) tanh(2P
I
(ds

I
)

The components of the frequencies are

~(qp + rp )

~ay = —2(qpy+ rpy ),
(d& =~+eP +&0

(39)

(39')

(40)

~s = ~s —2 (qp + rp )

~a = —a(qp + rp ),
~as = ~+ qpg + rpg ),

(40')

where q and ~ are constants that depend on the
shape of the sample and are computed below.
These equations are consequences of Eqs. (10),
(11), and (15). Let us consider the special case
when p& =p& and they are aligned along z. We have
then

&as = ~as = ~+ (q+ r)ps (41)

We analyze now several properties of the anti-
ferromagnetic structures, derived in Sec. II, as a
function of field and entropy, within the Weiss-field
approximation. It will prove, however, that this
approximation is often untenable and that more
elaborate treatments are required. In this article
we will restrict ourselves to a very rough correc-
tion to the Weiss-field approximation based on the
high-temperature approximation to spin-tempera-
ture theory. We give only the results of this high-
temperature correction to the Weiss-field theory.
The method for performing the high-temperature
expansion of physical quantities will be published
elsewhere. The analysis is mostly devoted to
those properties that are amenable to measure-
ment by NMH techniques.

Let A and B be the sublattices whose magnetiza-
tions are opposite in zero field and at low tempera-
ture. At various fields and temperatures all spins
of a given sublattice have the same polarization
and experience the same Weiss field. Let us call
p& and p~ the polarization vectors of each spin of
sublattice A and 8, respectively, and ~& and (d&

the frequencies corresponding to the fields they
experience. These vectors are related through

where ko is the vector k pertaining to the antiferro-
magnetic structure; from which

q —r = A(ko),

that is,

q = —.'[&(O)+ a(k,)],
r = —,'[A(0) —A(k, )] .

(45)

(48)

In the particular case of a spherical sample we

have A(0) =0 and

jq= —r= ,A( k)o. -

A. Sublattice magnetization in zero field

(47)

The sublattice magnetization is the most funda-
mental property of an antiferromagnet. Its value
can be reached in principle by neutron diffraction
and by antiferromagnetic resonance.

The system contains &N spins of polarization
Ip& I =P& and &A spins of polarization P~. Its en-
tropy is, according to Eq. (13), equal to

2X[s(p„)+-s(p,)J, (48)

where s( p) is the entropy per spin of polarization

P in the Weiss-field approximation. In zero field
we have p& = —p~, i.e. , I p„ I

=
I p~ I =P„, that, is,

S = Ns(p„) . (48')

The state of the system has been reached by adia-
batic demagnetization of a paramagnetic state with
all spins parallel and with equal polarizations p&.

Writing that the initial entropy

S, =vs(p, )

is equal to the final one (48'), we get

PA Pi

(49)

(50)

The paradoxical and obviously wrong result is
that, however small the initial polarization, the
system becomes antiferromagnetic upon adiabatic
demagnetization. This severe deficiency of the
Weiss-field approximation arises from its complete
neglect of the entropy associated with short-range
order. In the high-temperature approximation to
spin-temperature theory' it is apparent that the
energy and the entropy associated with the local
field Hl, correspond to short-range order. Since
the Weiss-field approximation knows no local field
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Pq/0; = ~o/D, (51)

where &p is the initial Larmor frequency and D is
the local frequency, defined by

other than the Weiss-field itself, it predicts that
whatever the initial temperature in high field, adi-
abatic demagnetization will decrease it below the
critical temperature.

It is known from other domains of magnetism
that the Weiss-field value for the critical tempera-
ture T, is not too bad an approximation to its actual
value. We can attempt to get a rough approxima-
tion of the transition entropy as follows. We take
for granted the Weiss-fie1d values of T, [Eqs. (36'),
(37'), and (38')] and we use the high-temperature
approximation to spin-temperature theory to find
which initial polarizations yield these temperatures
after demagnetization. According to this theory,
the relationship between initial and final inverse
temperatures, when performing an adiabatic de-
magnetization from a high initial field to zero, is

&) Xg!
!

!

FIG. 3. Sublattice polarizations and fields for an anti-
ferromagnet in the presence of a small transverse field.
The figure corresponds to the case of a positive tempera-
ture.

D' = Tr(X,")/Tr(f', ) . (52)

Since in high field and at high temperature, the
polarization of a spin & is equal to

1P= —2I )&p p

adiabatic demagnetization yields an inverse tem-
perature equal to I3, if the initial polarization is,
in absolute value,

(53)

Selected values of D in a simple cubic lattice are
the following:

Ifo II[100], D = 3. 16 y~h/2a';

Poll[110], D=1.S6 y I/2a3 .
Figures for the three antiferromagnetic struc-

tures are the following:
Structure I, Ho~~[100], T&0:

net magnetization of the system is zero. If a small
rf field H„which in the rotating frame is seen as
a static field, is applied perpendicular to z, the
sublattice polarizations tilt by a small angle 8 so
as to be aligned with the total field they experi-
ence. One has to first order in 0

PA» Pp PA, = ~P, P&, =0,

PB» P & PBx ~P
& Pay

(55)

(56)

~„g= A(ko)P, (u „„=(u~ ——,A(0) GP, (u„, = 0,

KAg = —A(kO)p, wax = (dg 2A(0)8p, vz, = 0 .
This situation is depicted in Fig. 3. From the con-
dition

P~x
&

&~a &i ~A(0) 8P
P~z ~gg A(ko) p

Pp ——0. 59,
Structure II, Ho ~ ~ [110], T & 0:

Pp =0.405,

Structure III, Ho~~[100], T& 0:

Pp =0. 326 .

(54)

(54')

(54")

we get

8 = u), /(P[A(ko)+-,'A(0)]) .
If we define the transverse susceptibility as

we get

(58)

However approximate, these values are indica-
tive of the amount of initial polarization required
to see an effect after adiabatic demagnetization.
This approximation will be used in various forms
in the following.

B. Transverse susceptibility in zero field

In zero effective field the sublattice polariza-
tions, aligned along z, are opposite, so that the

X, =1/ [A(ko)+ zA(0)] ~ (58)

This susceptibility is indePendent of sublattice po-
larization in the antiferromagnetic state. This
property is the first that has been predicted for
antiferromagnets. ' It has been observed to hold
approximately for all antiferromagnetic systems
of electronic spins.

Comparison of this behavior with that predicted
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FIG. 4. Transverse susceptibility in zero field as a
function of initial polarization, with Hp II[1001 and at nega-
tive temperature, according to both the %'eiss-field and

the high-temperature approximations. (a) Infinitely flat
disk perpendicular to Hp, tb) spherical sample; (c) in-
finitely long needle parallel to Hp.

at low initial polarization by spin-temperature the-
ory offers another way of estimating the transition
entropy. We suppose that we are in a paramag-

7 T T'netic state, so that p„=p~=p and (d„=~~=(d . In
the high-temperature approximation to spin-tem-
perature theory we have P ~P&u, (n =x, y, z). Then
if we start the adiabatic demagnetization with ini-
tial polarization P& we get according to Eq. (51)

Px =Ps&x/DI

from which, according to Eqs. (40) and (43),

P. =P,[, ,'A(0)p. l/D--
or else

(60)

(61)

It is equal to the value (59) in the antiferromagnetic
state when the initial polarization value I P; I is
equal to

P, =Dl I:A(k,)1.
This is identical with Eq. (53) and yields the same
va.luce of p, as Eqs. (54)-(54").

This value of P& is independent of the value of
A(0), that is, independent of the sample shape pro-
vided it is an ellipsoid. It reflects the fact that the
demagnetizating field ——,A(0)p„affects in the same
way the transverse susceptibility in the paramag-
netic and in the antiferromagnetic state.

Figure 4 shows the variation of g, with initial
polarization predicted by Eqs. (59) and (61) for
structure III (Holi[100] and T&0) for three different
sample shapes: sphere, infinitely flat disk perpen-

Let us start in zero field with polarizations
a,long z and P,"= —p, =P, and let P be the inverse
temperature corresponding to these values. We
then introduce adiabatically a small field —6/y

I I I& 0.&4-*

High Temp.

0.'I2

0

~ 0.08

~ 0.06

g 0.04

I I I I I

VAiss

igh Temp

3 Order

N o.o2

C
O
I

I I 1 I I

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Initial polarization p;

FIG. 5. Transverse susceptibility in zero field as a
function of initial polarization for a spherical sample,
with Hp II [1001 and at negative temperature, according to
gneiss-field, first-order high-temperature, and third-
order high-temperature approximations, together with
experimental results for CaF2.

dicular to Ho, and infinitely long needle parallel to
Ho+

In order to estimate the importance of nonli. near
effects in spin temperature in the paramagnetic
state while approaching the transition, we have
computed the variation of y, with initial polariza-
tion to third order with respect to inverse temper-
ature. This variation is shown on Fig. 5 for
Ho II [100] in a spherical sample.

On the same figure are plotted the experimental
values of X, observed for ' F spins in a spherical
sample of CaF2. The polarization scale was de-
termined in these experiments by comparison of
absorption signal areas with that of a thermal equi-
librium signal at 4. 2 K. Its accuracy is of the or-
der of 10%). The ordinates were adjusted so a,s to
fit the value of X, in the plateau to the theoretical
value [Eq. (59)]. The over-all agreement between
experiment and theory is satisfactory. The strik-
ing prediction of the theory, namely, the occur-
rence of a plateau in the variation of X, versus ini-
tial polarization, has also been confirmed, although
only qualitatively, for Ho~i[100] and T&0 (corre-
sponding to the theoretical prediction of structure
I), and for Hoist[110] and T& 0 (corresponding to the
theoretical prediction of structure II). The "turn-
over" initial polarizations correspond grossly to
those predicted. A detailed description of these
experiments together with new results will be pub-
lished later.

C. Longitudinal susceptibility in zero field
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where we have used

——,'kA(k )P=tnnn '(k)=, In(& ) .

In the paramagnetic case, a combination of Weiss-
field and high-temperature approximations for
spin-temperature theory yields for P, =P, =Pg

p, = p;[~+&(0)p.l/D,

D
C:

Ul
C0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Znitial polarization p;

FIG. 6. Longitudinal susceptibility in zero field as a
function of initial polarization for a spherical sample,
with Ho II [100) and at negative temperature, according to
Weiss-field, first-order high-temperature, and third-
order high-temperature approximations.

Mg(h, p+dp) =MA(on p)+ ' 6+ ' dp,
9cog

while

as(o, p) as(o, p)
8P

along z and look for the total longitudinal magneti-
zation, which is proportional to 4. The magneti-
zation is proportional to the isentropic longitudinal
susceptibility which, as we show now, is in the
present case equal to the isothermal susceptibility.
Let d|3 be the variation of temperature correspond-
ing to the isentropic introduction of the field 4.
The total longitudinal magnetization is

from which

x . .= p;/ia-~(o)p;1. (64)

Figure 6 is a plot of y, I versus initial polarization
according to Eqs. (63) and (64) for structure III in
a spherical sample. On this figure is also plotted
the variation of X „ in the paramagnetic phase ac-
cording to third-order expansion in P, the calcula-
tion of which is not given here.

The qualitative feature of Eq. (63), namely, that
in the antiferromagnetic state XI decreases when
the sublattice polarizations increase, is also one
of the early predictions on antiferromagnetism
that has been well verified in electronic spin sys-
tems. Together with the constancy of X, it is very
characteristic of antiferromagnets. This feature
has been experimentally verified by measuring XII

not as a function of entropy, but as a function of
dipolar energy, by a procedure that will not be
described here. The results are shown on Fig. 7,
together with the Weiss-field theoretical prediction
in the antiferromagnetic state and first- and third-
order high-temperature expansions in the paramag-
netic state. The Weiss-field value of the dipolar
energy in the antiferromagnetic state is, according
to Eqs. (29) and (36)-(38) given by

Since in zero field the magnetization vanishes we
have M, (0, p) = a M,(0, p)/a p = 0 and M,(b, p + dp) does
not depend on dP to first order, which proves the
statement.

In zero field the polarizations are along z and are
equal to P,"=—P, =P. In the field —A/r they are
equal to p,"=p+ e and p, = —p+ c'. Equations (39)
and (40) yield, to first order in b., e, and e',

c = et = —kp&(I —p')/ [I+2p&(0)(I -P')1 . (62)

We define the longitudinal susceptibility as

rt(

O
CV

4 0.1
CL
4l
O
U)

th

High Temp.
1" Order

XII Pg

and we get

x(I = e/& = kP(l P'—)/[I + AP&(0)(I ——P')1

kpA(ii, ) -A(n)(I -p') In( ) (63)

1 2 3
Dipolor Energy per spin (10 ergs)

-23

FIG. 7. Longitudinal susceptibility in zero field as a
function of energy for a spherical sample of CaF2, with
Ho tl [100] and at negative temperature, according to
Weiss-field, and first-order high-temperature and third-
order high-temperature approximations, together with
experimental results.
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l I l I l ) I I along z, is equal to p,"=p„, the value of ip, I =p&

is, according to Eq. (48), obtained from

s(p„)+s(pa) =2s(p}, (65)

~—ln2-C
CL
N

CL
O

C,
hl

fpBi P p~
Polarization

FIG. 8. Selection of a couple of values of sublattice
polarizations Pz and IPz I corresponding within the %'eiss-
field approximation to the same entropy as the initial
polarization p.

E~/N= 4A(ko}P

In the p3ramagnetic state, the first-order high-
temperature approximation to spin-temperature
theory' yields the value

Eg/N=~gP;D .
There is an over-all semiquantitative agreement
between the variation of p„and that predicted by
the above approximate theories.

D. Sublattice polarizations, transition field, and dispersion
signal during a fast passage

Ac = oA(ko)(1 —p') ln 1-p (67)

as shown on Fig. 8. The sign of p, is left undeter-
mined.

Given values of p," and p, which satisfy Eq. (65)
we look for values of 6 and P that satisfy Egs. (39}
and (39'), and (40) and (40'). A straightforward
calculation yields

+ —2A(ko)(pg Ps)(us+ uo)/(ux uo) ~ (66)

where we use the notation

u„= tanh (P„) and uo = tanh (Po) .

The value of P can then be calculated if desired
from one of Eqs. (39) and (39').

As an example, Fig. 9 shows the variation of
P," and P, es a function of effective field for an ini-
tial polarization P =0.4. The field values corre-
spond to Car, with Ho~i[100].

Z Transition field

It can be shown from the Weiss-field equations
that when

2ptanh '(p) ~1,
which corresponds to initial polarizations P
—0.647, the transition from paramagnetism to
antiferromagnetism is of second order and takes
place at the field for which P, —P~- 0. A straight-
forward but tedious calculation yields for the crit-
ical fieM

The fast passage, i.e. , the adiabatic demagneti-
zation followed by remagnetization, takes place at
constant entropy. All properties of the antiferro-
magnet during a fast passage, that is, for nonzero
values of n, are calculated from Eqs. (39}, (39'),
(40}, (40'), and (48). We will describe but a few of
these properties without giving the proofs. We will
consider for simplicity the case of a spherical
sample, so that A(0) =0. We will limit ourselves
to initial polarizations P 0.65, the reason being
that with initial polarizations above this value the
phenomena are complicated by the occurrence, in
an entropy-dependent range of nonzero effective
fields, of a more complex structure whose de-
scription is postponed to a later publication.

1. Sublattiee polarizations

Ul
C
O 0.5—
O
N
I
O
0
cL 0

—0.5—

I l

2 ao/y 3

Effective field h, / g (G j

Within the Weiss-field approximation, the sub-
lattice polarizations are determined most simply
as follows. Let P be the initial polarization. If
in a field 4/y the polarization of sublattice A,

FIG. 9. Sublattice polarizations as a function of effec-
tive longitudinal field. The entropy corresponds to an
initial polarization p&

= 0.4. Figures correspond to struc-
ture III (Ho II [100] and T & 0) in a spherical sample of CaF2.
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on Fig. 10. However approximate, they fit rea-
sonably the predictions of the combined gneiss-field
plus high-temperature approximation.

3. Dispersion signal

In the presence of the rf field driving the fast
passage the total spin polarization u along» is
calculated by first-order perturbation. The mag-
nitudes of the polarizations are those calculated in
Sec. IIID2 and these polarizations are tilted by a
small angle so as to make them parallel to the to-
tal field experienced by the spins.

In the high-field paramagnetic phase we have p&

pB pu and

,/P. = ~/P. = ~/P,

Initial polarization p;

FIG. 10. Critical field as a function of initial polar-
izationina spherical sample of CaF2 with structure III
(Hp II t100], T & 0) using gneiss-field, gneiss-field plus
first-order high-temperature, and gneiss-field plus third-
order high-temperature approximations. Comparison
with experimental results.

and for the critical inverse temperature

I.=- [-.'~(k.)(l -P')j-'. (68)

The variation of H, = 4,/y as a function of initial
polarization P is plotted in Fig. 10. The figures
correspond to structure IH (Hot)[100], T&0) for
'QF spins in CaF&.

The inadequacy of the Vfeiss-field approximation
for accounting for the entropy is here again appar-
ent in the unacceptable prediction that the critical
field vanishes only at zero initial polarization. In
an attempt to improve this result we can use the
same approximation as before. Namely, we com-
pute P, as a function of d, according to Eqs. (67)
and (68). Then we use a high-temperature expan-
sion to compute the entropy corresponding to those
values of P and b,, and finally we determine the
initial polarization that corresponds to this entro-
py. The result, critical field as a function of ini-
tial polarization, is also plotted in Fig. 10 for
first-order and third-order approximations to the
entropy. This calculation corresponds to second-
order transitions, when at the transition the sys-
tem is paramagnetic. The "critical" initial polar-
izations obtained by this procedure, 0. 32 and
0. 345, for first-order and third-order approxima-
tions, respectively, are close to those obtained
before. The formula S = S(P, h) and its derivation
will be given in a forthcoming paper.

Approximate values of transition fields have been
derived from the shape of the fast-passage signals
described in Sec. IIID3. These values are plotted

from which

Lr Px P&i/~
1 ~

(68)

and the dispersion signal is hyperbolic. In the
low-field antiferromagnetic phase a straightfor-
ward calculation yields for a spherical sample

I I I I I I I I

-20 -15 -10 -5 0 5 10 15 20
Distance from resonance(G)

FIG. 11. Fast-passage dispersion signal in CaF2 with
T & 0 and Hp II [100). Top: experimental signals with ini-
tial polarizations p&

= 0. 59 and 0.28. Bottom: signal
predicted by gneiss-field approximation for p&

= 0. 59.

u ~(p."+P')+ -'&(ko)[4P,"P.' —(P,")' —(P,')'1
2S'+ ,'m(k, )( p", + p,'—)—~A(k, )'( p,"-p,')'

(70)
The variation predicted by Eqs. (69) and (70) is
plotted in Fig. 11, the lower part for P =0. 59. The
figures correspond to structure III in a. spherical
sample of CaFz. In the upper part of this figure
are shown experimental fast-passage signals ob-
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served in a, spherical sample of CaF2 at negative
temperature aud with Ho~lC100] for two values of
initial polarization: 59 and 28'7&. The singularity
predicted by the Weiss-field approximation at the
passage from para, magnetism to antiferromagne-
tism is to a large extent smeared out in the experi-
mental signal with P; =0. 59. It reduces to a pla-
teau that begins at an effective field comparable to
the theoretical transition field. This plateau is ob-
served in the range of initial polarizations for
which the transverse susceptibility in zero field
y, is constant. Such a shape departs markedly
from the usual shape of fast-passage signals at
high temperature, as exemplified by the fast-pas-
sage signal corresponding to p& =0. 28.

IV. CONCLUSION

This article consists essentially of two parts.
In the first part we have described the general
principles underlying the production and study of
magnetic ordering in nuclear spin systems. The
problem of producing magnetic ordering is essen-
tially that of cooling the nuclear spins to sufficient-
ly low temperatures. It is solved by a two-step
process: dynamic polarization in a high field fol-
lowed by nuclear adiabatic demagnetization either
in the laboratory frame or in the rotating frame.
A consequence of this procedure is that the tem-
perature is not the most; accessible experimental
parameter. We have listed with few details a
number of measurements that can be made and the
kind of information they yield on the properties of
the ordered state. Most of these measurements
use the technique of nuclear magnetic resonance
and as such they depart markedly from those used
to investigate electronic spin systems.

The second part of the article makes use of a
particular approximation method, the Weiss-field
approximation, to derive the main properties of
the ordered states: the nature of the ordered struc-
tures and the variation with entropy of some of the
physical quantities amenable to measurement. This
investigation is limited to systems consisting of a
simple cubic array of one nuclear species of spins
& subjected to truncated dipole-dipole interactions.
The same methods can of course be used to study
more complex situations: a nontruncated spin-spin
Hamiltonian in actual zero field, more complex
crystalline structures, spins higher than —,, the
existence of scalar as well as dipolar interactions

between spins and the presence of several spin spe-
cies. The limited ambition of using the simplest
possible approximation to get a qualitative picture
of the phenomena proves insufficient insofar as,
because of the poor value of entropy yielded by the
Weiss-field method, the latter gives a completely
erroneous prediction for the transition from para, -
magnetism to antiferromagnetism. An attempt is
made to amend these faulty predictions by combin-
ing the Weiss-field approximation with the high-
temperature approximation to spin-temperature
theory. The most severe criticism that can be
made to this method is that the results it yields are
inconsistent from the point of view of thermody-
namics. This point will be analyzed in detail in a
future article where we will develop a closely re-
lated approximation in a consistent way.

Nuclear-magnetic-resonance measurements give
no direct proof of the existence of antiferromagne-
tism, contrary to neutron diffraction. The purpose
of the NMR investigation must be to measure as
many quantities as possible, to calculate them by
as good theories as possible and to hope for over-
all agreement. The experimental results obtained
so far exhibit semiquantitative agreement with the
makeshift theory given above as regards parallel
and perpendicular susceptibilities and transition
fields, and qualitative agreement as regards the
shape of fast-passage signals. In any case they
provide strong support to the existence of nuclear-
dipolar antif erromagnetism.

The occurrence of a magnetic phase transition
under such unusual conditions as effective interac-
tions in a rotating frame and negative absolute tem-
perature illustrates the quality of nuclear spin sys-
tems as model systems for thermodynamics. These
studies give furthermore a physical meaning to
temperatures in the microdegree range that would,
for other systems, be hardly distinguishable from
absolute zero.
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