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Gradient term in the Kohn-Sham exchange-correlation potential~
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We show that the gradient expansion of the Kohn-Sham potential does not exist for the case of pure

exchange but that when correlation is taken into account by screening the exchange, the expansion does

exist and has a diFerent dependence on the charge density than that assumed by Herman et al. and

by Sham. We obtain the gradient term to all powers in e . Our gradient term vanishes in regions

where the charge density vanishes, unlike the gradient term calculated by Herman et al. and Sham

which becomes infinite.

I. INTRODUCTION

Hohenberg and Kohn' and Kohn and Sham2 (KS)
have shown that the energy of an interacting elec-
tron gas may be written as a functional of the charge
density

[-—,9 + (/)(r) + p „(n(r) ) ]+, (r) = e, +& (r),

and setting

N.()=
~1

(6)

E„[n]=T,[n]+J~ 3)(r)n(r) dr

+ — —,drdr +E„,[n],1
~

n(r)n(r') - -,

where T,[n] is the kinetic-energy functional for non-
interacting electrons and E [n] is the exchange and
correlation energy functional,

T,[n] = — (83/ n) n dr+ —I t (n) ~IV/n
~

dr+ ~ ~ ~s 10 2 4
(2)

E„,[n] = g„(n)n dr+ — gi, ) (n)
~

')/n
~

dr+ ~ ~ ~, (8)

where N is the number of electrons. It is to be
emphasized that the one-electron eigenvalues E,
and eigenfunctions 4', (r) are meaningless in them-
selves. Only the total charge density (7) and total
energy obtained by substituting (7) in (1) are mean-
ingful.

Herman et al. 4 (dropping correlation effects)
tried to include the IVn 12 exchange terms in (6) by
replacing p„(n(r)) by the variation of E,[n] with
respect to n, Vn, and V~n. They chose to write

E,[n] = — n V„s(n) dr+ 2 P
' n G(n) V,2(n) dr, (8)

gt2) and ti2) are unknown functions of n, 2)(3") is the

external potential (i.e. , the nuclear potential in

an atom or crystal), and g„ is the exchange plus
correlation energy per electron in a free-electron
gas.

Dropping the IV'n I~ terms, KS obtained from the

stationary property of Eq. (1), subject to the con-

dition

where P is a constant to be determined,

„g 3 4 &n 2&'n
G(n) =n-'" ——

3 n n

and the Slater exchange potential

V„,=2S„=-8[(8/8,)n(r)] / .

5n(r) dr= 0, (4)

Integrating by parts on the V3n term one sees that

(8} is identical to (8), providing

the equation

5n(")(e( ) ~
' ~ ~,( (|)) & =0,5T, [n]

5n(r
(6)

g(2)(n) 8P(8/ )1/3n 4/3

Taking V =5„,~,v2„(2n Vn)(n)+ 2 pnG(n) V,2(n)), Her-
man et al. obtained

where 93(r) = 3)(r)+ I dr n(r )/I r —r I and p„(n)
=d[ng„(n)]/dn. Noting that Eqs. (4) and (5) are
identical to what is obtained for a system of non-

interacting electrons moving in a potential (I3(r)

+ }(,„,(n(r}), KS pointed out that one obtains the n(r)
which satisfies these equations by solving the one-
electron Schrodinger equation

V.= 3 V~(n)+ P G(n} V„,(n) .
The choice of Herman et al. for G(n), or equiva-
lently g(2)(n), was dictated by the requirement that
the gradient terms in V, be dimensionally equiva-
lent to V,s. Substituting V„ for p, in Eq. (6) they
adjusted P either to minimize the total energy or to
make the total energy equal to the Hartree-Fock
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energy. They found P = 5 x 10 ' and 3. 14 x10 ', re-
spectively, for atomic krypton with little variation for
other atoms. Sham' attempted a first-principles cal-
culation of P (which we discuss in Sec. II) and found'

g =1.13x10 . Thus, V, presentstwoparadoxes; the
"experimental" values differ from the theoretical
value by a factor of 3 or 5, and in the limit of zero
charge density V, becomes infinite rather than zero
(Herman et aL multiplied V„by an exponential damp-
ing factor to remove this infinity).

The resolution of these paradoxes is simply that
both Herman et al. and Sham were wrong when they
assumed g~u(n) must be proportional to n ~~ [Eq.
(ll)] in order that the gradient term of E,[n] scale
in the same way as the local term. The local term
is a pure exchange energy, i.e. , a Coulomb poten-
tial energy, whereas the gradient term contains
both potential- and kinetic-energy contributions and
therefore does not scale as a Coulomb energy. This
is obvious from Eq. (1), where E, is seen to be the
total energy minus the Hartree potential energy
minus the kinetic energy of a nonintexaeting charge
distribution. Thus E„represents the exchange en-
ergy, plus the actual kinetic energy, minus the
kinetic energy of noninteracting electrons with the
same charge density. These two kinetic-energy
terms cancel only in the trivial case of a free-elec-
tron gas, and therefore the local term of E is a
pure exchange term while the gradient term is not.
Although we are unable to give an absolute proof of
our assertion that the kinetic-energy functional in
a system with exchange differs from the noninter-
acting kinetic-energy functional, the following argu-
ment seems quite convincing. Consider an elec-
tron gas in the Hartree approximation with a weak

applied potential V&e' '. This will induce a Fou-
rier componentof charge density po. Consider also
theHartree-Fockcase with a V- andp- . Nowchoose

HP HP
Vo tobesuchthat po =pII. If thetwokinetic-energy
functionals are identical then the two systems will
have the same kinetic energy. But the one-electron
wave functions for the two systems are entirely dif-
ferent. This follows from the fact that the nonlocal
exchange operator may be replaced by a Chfferent
local potential for each electron; thus the total po-
tential seen by each electron is different and there-
fore different from the Hartree potential. Since
the two systems consist of different wave functions,
it seems most unlikely that the expectation value
of the kinetic-energy operator will be the same for
both systems.

Assuming the Kohn-Sham theory to be correct,
the virial theorem must hold. However it is not
clear whether or not it should hold term by term
in the gradient expansion. Many, including Sham,
have shown that it holds in the case of exchange
without correlation for the first term of the expan-
sion (i. e. , local charge density approximation) and

Following Sham, ' we write the integral equation
for the irreducible vertex function

3

A(k+q, k) =1-
2m}'

&( 8(k + q, k )u(k —k )A(k + q, k ),
where for the case of pure exchange

u(q) = 4we'/q', (14)

and

S(k +q, k') =(f&.4-ff, )/[E(k'+q)-E(k')]. (15)

ff is the occupation number of the state k and E(k)
is the electron energy in a homogeneous system,

E(k) = p JP+ Ez, (k) .
When correlation is included, Eq. (13) is an ap-
proximation which assumes that the spin symmetric
part of the effective particle-hole interaction is
energy independent. The major effect of correla-
tion is to screen the exchange interaction and so
we will replace (14}by
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FIG. 1. Graph of Q as a function of ~k+ in Hartree
atomic units; Q is defined in Eq. {34) in the text. The
dashed curve is Sham's Q.

Sham' has stated that it holds for the gradient terms
as well. However, this assertion was based on the
assumption that the gradient term in E„.scaled like
pure exchange. ln Sec. 0 we show that the gradi-
ent term in E„ is singular, so that the question be-
comes moot. Vfe then derive the gradient term for
the case of screened exchange (the screening is an
effect of correlation). The expression is so com-
plicated that the kinetic, exchange, and correlation
parts caput be separated. Even if they could,
however, it is not likely that the virial theorem
would hold because of the approximations inherent
in screened exchange.

II. GRADIENT TERM IN THE EXCHANGEXORRELATION
ENERGY
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x(q) = 2j z
",e(i t), f)A(i+ t), e (18)

u(q) = 4ve'/(q'+ X') .
For computational ease Sham also worked with (17)
but took the limit X-0 at the end. Because he
worked only to first order in e3, he obtained a
finite result for g(2i(n), but, as we shall see, due
to the infinite density of states at the Fermi surface
in the Hartree-Fock approximation, g(2)(n) is ac-
tually infinite in the X-0 limit and one cannot
separate the exchange and correlation terms in the
gradient expansion.

Expanding the density response function

in a Taylor series

x(q) = x'"+x"'q'+ ~ ~, (19)

Sham obtained

EN'(n) X="'/(X'")' X—"'/(X'")' (2O)

Because he assumed the density dependence of g~~'

is n ' ', Sham inserted (13) into (18) iterating A

and retaining only terms to first order in e, higher
powers of e2 entering as e~/eke which yield extra
factors of n ' 3. The screened exchange energy is
given by

(k)
d'k f (k ki) e'kp

1
& ~, k+ pk, k- kr kg + X'- k' (k+ kg)'+), '

(

so that making an expansion in powers of e is equivalent to assuming that [E~(k+ q) —E„(k)]/ [2(k+ q)
——', k ]«1. Because of the 6-function nature of df, /dE, k ends up being evaluated on the Fermi surface,
where in the X-0 limit the ratio is not much less than one but is actually infinite. Therefore, not only was
Sham's physical reason for expanding in powers of e invalid, but it is also mathematically invalid as well.

We have solved for g(@(n) without any expansion in powers of e2. We first expand 8 to order qm,

e(k+(1 k) =f + ——(q~+2qkg) f + ————

+ivory

q~i)2.
4 A,

(22)

where p is the cosine of the angle between k and q, v = dE/dk with E given by (16) and (21) and the primes
on f~ indicate differentiation with respect to E We also. expand &to order q,

A(k+(l, k) =a+ bq~/k~z+ cqp/kz+ dq2p~/kJ, ,

where a, b, c, and d are functions of k to be determined. Substituting (22) and (23) in (18), we obtain

(23)

kg~ )f, , , dc, kp, dv 1 @ dipl)
~a + b +3d —3c —-A ———a 1+—— + ——

~F ( @kg 18 yF gy F 2 ~F ~~jF

(24)

where the subscript E indicates that a quantity is to be evaluated on the Fermi surface. %e next insert
(22) and (23) in (13), use the spherical-harmonic addition formula inside the integral, and equate q-inde-
pendent terms to solve for a, terms containing qp, to solve for c, and terms containing q~ or q~ p~ to solve
for b+ 3d. We get

ay = v~/ky Dp,

2 Jp
2 p 4' p ln p (26)

dc e'
2 &4kr + )P 6kt) 16k], 2k(' dk' ~

r dk ~ 2vk~, x' 4k', +x' (48+&'}'

and

e 1 4 2 kr dv
k

da 4k + X' 4a @ '

+ '~~ ~k,D, &6,3
+

3 v dk , ~'
dk

ln x' + 4k' + ~'



2224 LE QNA. RD K LE IN MA. N

72VF dkP P dAF vg d E X2 36 F dk2F

1 kp( 8k-p+ 2X ) 2k' ~ 4k' 21„4k'+ &
k

~& In4@+ ~

(4k +~~/ ),' ' ' 4k'+~' (28)

where

Dr = 1 —(e'/vk~) [1—(X'/4k~) ln(4k~+ ).')/X'] . (29)

In addition, differentiating (16) we obtain

~v e 1 X 40~+ X
1 1 (so)

dv e 2 k'~@+ X3 4'+ X

d v 8 kfr 2)Pky 15lPp+ 6X 3 i]I +X 4lPy + X &i

de ~ vkr X~ (4k~+ )P)~ 4k~+ X~ 2 kp X2 (32)

X =krr =4e k~/v (33)

and evaluated g~~~ as a function of k~. %e write

g„"&(k,) = (s'ik', )&(k,) (s4)

and plot A(kz) in Fig. 1 where we compare it with
Sham's~ result (for unscreened exchange)

Ash = 7/72wk~ . (s5)

Note if for small k~ we write -k~ and substitute
(34) into

Inserting Eqs. (25)-(32) into (24) we obtain X,
whence from Eqs. (19) and (20) gi~i(n) is obtained.
In the X-0 limit we find y and therefore g, pro-
portional to Ink. This infinity' in the Taylor-series
expansion is in all likelihood due not to the un-
screened exchange y being infinite but merely non-
analytic (probably with a q Inq dependence). This
implies (for the case of unscreened exchange) that
although the exchange-energy functional exists, its
gradient expansion [Eq. (3)] does not. If the effect
of correlation is taken into account by making A.

finite then y is obviously analytic. %'e have taken
the Thomas-Fermi value

V„=d[nh, .(n)]/dn+5„, ,„(-.'g„"&(n)
~

Vn ~'), (36)

we obtain terms in V„of the form IVn l~/n"~ and
V2n/n" . Because for any reasonable charge dis-
tribution, (Vn [2/n~ and V2n/n will be finite even
where n-0, we see that 7~, will approach zero or
infinity when n-0 according to whether n is nega-
tive or positive. From Fig. 1 we see that V„does
approach zero as the charge density approaches
zero, which indeed it must for either screened or
unscreened exchange. The infinite V„,(n = 0) of

Sham and Herman et a/. is a consequence of their
neglecting the kinetic contributions to g~~~. %hether
our V„gives better results tha, n Sham's for atomic
calculations can only be determined by performing
the calculations, but we do note that his V„was a
factor-of-3 smaller than the empirical value of
Herman et al. , and that our g~, ~ gets rapidly larger
than his as eke gets la.rger than 5.4. In krypton
at the nucleus mk~ -300, and it does not fall off to
5. 4 until a point somewhat past the maximum of
the outermost valence electron wave function.

Finally, it is worth noting that Ma and Brueck-
ner' have calculated the gradient term in the cor-
relation energy to first order in e . However, to
all orders in e~ this must also be infinite in order
that the gradient term of the exchange plus cor-
relation energy be finite.
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