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Resonant scattering of phonons by iron impurities in zinc sulphide
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A phenomenological model has been proposed for the resonant scattering of phonons due to magnetic

impurities. The expression for the defect relaxation rate, which also includes Rayleigh scattering of
phonons, is of the form
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where A„„„., is the Rayleigh scattering strength; i (=1,2,3,...) denotes a particular phonon-induced

electronic transition; H, represents the strength of spin-phonon coupling; and F,(T) is the fractional

electron population diA'erence between the levels involved in the ith electronic transition. The model

has been applied to explain resonance structure of K vs T curves of iron-doped ZnS. The success of
the model lies in the fact that it gives consistently excellent agreement between theory and experiment

for lightly as well as for heavily doped specimens. The model is, however, a simplification and does

not consider, among other concepts, phonon dispersion, phonon polarization, phonon normal process,

and phonon scattering by Raman processes.

I. INTRODUCTION

In recent years the technique of low-temperature
thermal-conductivity measurements has been used
increasingly as a means for studying the interac-
tions between phonons and lattice defects. Partic-
ular interest has been focused on defect systems
which display a resonant interaction with phonons.
These resonances manifest themselves as dips in
plots of thermal conductivity versus temperature.
The dips are pronounced over relatively narrow
ranges of temperature and correspond to strong
scattering of phonons over a relatively narrow
range of phonon frequencies.

In the present paper we wish to consider reso-
nances, due to Fe ' ions in ZnS, which have been
observed by Slack' during thermal-conductivity
measurements of II-VI compounds, pure and doped.
A number of previous studies of thermal-conduc-
tivity measurements ' have shown that Fe ions
can drastically lower the thermal conductivity of
crystals of Ge, ' ZnS04 ~ 7H&0, CdTe, ' MgCr~04, '
MgAl204, "' ZnS, ' KZnF»' and Mg0. ' " In these
crystals the Fe ' ions have either tetrahedral ' ~
or nearly octahedral' "coordination with their
nearest neighbors. The interaction of the phonons
with the Fe ' ions appears to be strong for both

types of coordinations. In ZnS, Fe ' ions have tet-
rahedral coordination in which phonon interaction
is believed to take place by means of phonon ab-
sorption, which produces upward transitions be-
tween low-lying energy levels of the d-shell elec-
trons of the isolated Fe ' ions. A resonant scat-
tering occurs when the phonon energy is equal to
the interlevel spacing.

The existence of a total of five low-lying energy

levels has been determined for tetrahedral Fe '
ions in ZnS' '

by optical techniques in the near
and far infrared. To a first approximation, all the
levels are equally spaced by an amount 6
(= 15 cm '). This opens the possibility of resonant
scattering of phonons of energy 16, 2h, 36, and
44. The group-theoretical studies of allowed one-
phonon transitions, however, show that only 16,
2A, and 34 transitions are permitted for mixed E
and Tz distortion (see Fig. 10 of Ref. 1). How-

ever, lb transitions between I', and I"4 are found
to be operative in highly doped and strained speci-
mens such as R140 and R115. In this paper, we
develop a simple model for this resonant scattering
which explains the temperature and Fe-concentra-
tion dependence of thermal conductivity. This
theory employs a simple Debye model for lattice
phonons, uses Boltzmann statistics for the electron
populations of the d-shell levels, and has two phe-
nomenological parameters: H;, the spin-phonon
coupling parameter; and S, related to effective
number of Fe ' ions acting as a point defect in the
lattice.

The frequency- and temperature-dependence of
the resonance relaxation rate has been described
by

1 otj

where i denotes a particular phonon-induced elec-
tronic transition, Il; represents the strength of the
spin-phonon coupling, and F; (T) is the fractional
electron-population difference between the levels
involved in the ith electronic transition. Besides
resonance scattering, iron impurities also cause
Rayleigh scattering of phonons, which is produced
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by the local mass difference, and lattice distortion,
caused by substituting an Fe' ion for a Zn ' ion.
The effective relaxation rate, due solely to iron
impurities, is expressed as

1r defect ~defect(d + ~+i i i2 Fi(T) ~

&0&)

where A&„„,is the Rayleigh scattering strength,
characteristic of added impurities.

The success of the model, which incorporates
the above relaxation rate for the defect scattering,
lies in the fact that it gives excellent agreement
between theory and experiment in the case of light-
ly as well as heavily doped specimens. The model
does not consider, among other concepts, phonon
dispersion, phonon polarization, phonon normal-
processes, and phonon scattering by Raman pro-
cesses. The normal (X) processes are neglected,
since the purpose of the present treatment is less
to get an exact parametric fit than to show that
resonance scattering must play an important role.
The fact that a fit was obtained consistently for
pure and doped materials, without invoking X pro-
cesses, implies that either X processes are weak,
or that umklapp (U) processes are as strong as X
processes when X processes are strong. The
present treatment would break down in the case of
resonance scattering when N processes are rela-
tively strong but Uproeesses are relatively weak.
However, such cases of resonance scattering are
very rare.

H. THEORY

The theory that is used to predict the lattice
thermal conductivity K(T) as a function of temper-
ature is based on the formulations of Klemens" and

Callaway. ' It gives

OD/1' x e h&x
J r, (x, T), „,dx, x= t (l)

where OD is the Debye temperature; v is the aver-
age sound velocity; T is the temperature; A and

K& are Planck's constant divided by 2~ and Boltz-
mann's constants, respectively.

The most important parameter in this theory is
the combined relaxation time for phonons,
which is assumed to be given by contributions from
individual processes by the sum of the individual
relaxation rates:

-1
Tc = ~ T j =T~ze+Tdefec

j

Traditionally, four relaxation rates are used to
characterize the pure crystal. They are due to
boundary, point-defect, umklapp, and normal scat-
tering of phonons. The combined relaxation rate
for pure crystal is written

ee1

Tytipe —Tbd+Tyt+TU + Tg (3a.)

The various terms on right-hand side have well
established forms. The relaxation rate for bound-

ary scattering is given by

r bd v~~ Ebd t (3b)

where L is Casimir length and v is the velocity of
sound. For crystals of square cross section of
side d, L =1.12d; for crystals of noninfinite length,
end corrections are necessary. However, for
some reason, the value of T „', that one calculates
usually fails to reproduce the data at lowest tem-

peraturee.

The relaxation rate for scattering by the natural
isotopes in a pure crystal is given by

where Vo is the average volume of a single atom in
the crystal, I is a constant which depends upon the
relative concentration of the different isotopes and
the average atomic mass of the host lattice, and z~

is the velocity of sound. Thus E„ is calculable
from atomic parameters. However, even the pur-
est crystal contains some residual background im-
purities, and these impurities also obey a law of
the form of Eq. (3c), at least at low concentra-
tions. The actual value of E,t needed to reproduce
the data, then, is usually three to five times great-
er than the natural isotope value.

The greater difficulties in fitting pure crystal
data are encountered in the choice of a relaxation
time for phonon-phonon scattering. In his original
treatment, Ca11.away used the following expres-
sions for umklapp and normal phonon-phonon pro-
cesses:

tains the information concerning the phonon scat-
tering by deliberately added impurities.

The general procedure adopted is to use Eq. (l)
to find the proper r ~„((d, T), which gives the best
fit to the thermal conductivity of the pure crystal.
Then, without changing w ~„((d, T), a form for
r d,'„„((d,T) is obtained to fit the doped-crystal da-
ta. The parameters and even the mathematical
form of the ddt„„((d, T) will reflect the character-
istics of the model assumed for the impurity. Now

we shall discuss separately the various scattering
processes present in pure and doped crystals.

A. Pure crysta1

where T,„'„, which in itself is a sum of
tains all the information describing the
scattering in the undoped crystals, and

terms, con-
phonon

1T defect COn-

1 g 2T3 8/bT
U

— 1(d
T-1 g 2T32

where 8 is the Debye temperature and b is a con-



10 RE SoNANT SC AT TE RING QF P HONONS ~ ~- 221

stant of the order of 2 or 3. These expressions
were used successfully by Callaway to fit data for
pure Ge and I iF. However, in the present study
it has been found necessary to depart from this
formalism and follow Slack and Galginaitis, who
used for umklapp scattering

~ -1 P 3(T/e )e eg-lb T

= E X T38 eglbT

IO

0
IO

E
O

We have completely neglected the normal phonon
relaxation rate, as Eq. (3d) has been found suffi-
cient to describe intrinsic phonon scattering in
pure crystals and gives good agreement at high
temperatures. Ebd, E„, and EU are called bound-
ary, point-defect, and umklapp scattering param-
eters, respectively.

In summary, the combined relaxation rate for the
pure crystal in terms of x = Ko/Ks T takes the form

= Z + Z,X4T'+ Z,X'7'e-'~"' (se)

B. Doped crystal

The central part of our problem is the determi-
nation of an appropriate defect scattering relaxation
time. For this purpose, further simplifying as-
sumptions will also be made. It will be assumed
that the Fe ' ions scatter phonons by two indepen-
dent processes. The first process is that of an in-
active point defect which produces a Rayleigh scat-
tering. The second process is termed an active
one, because the defect has internal degrees of
freedom. The phonon scattering here is strongly
frequency selective, because the phonons cause
transitions to, and between, internal excited states
which lie at discrete energies above the ground
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FIG. 2. Thermal conductivity versus temperature of
single crystal of cubic ZnS containing various concentra-
tions of Fe. Solid curves represent the theoretical re-
sults and circles the experimental results of Slack (Ref.
1). The parameter x gives the mole fraction of substi-
tutionally incorporated FeS.
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state. The Rayleigh scattering is produced by the
local mass difference and the lattice distortion
caused by substituting an Fe ' ion for a Zn ' ion.
The relaxation rate for this type of scattering has
the same frequency and temperature dependence as
v,t, and is given by' ' '

—-(3VbNZS /mV )Cu

=E'xT N

TABLE I. Parameters used for calculating the ther-
mal conductivity of pure ZnS crystal.

FIG. 1. Energy-level scheme for Fe, 3d impurities
in ZnS showing the ground state and levels 2 through 5,
all equally spaced by an energy 6=15.0 cm '. The ir-
reducible representations are given by the I'&. The al-
lowed phonon-absorption transitions are given by solid
arrows. Note that phonon. absorption is possible for
three different energies 16, 2A, and 36.

Crystal diameter for R133 I.= 0.13 cm
Average sound velocity v = 3.13x 10~ cm/sec

Debye temperature OD= 344'K
Average volume per atom V0=19.Sx 10 2 cm3

I'=4. 72x 10
p = 5. 10x 10 '6 sec
5 =3.0

E~ = 1.38 x 10 erg 'K
h = 6.62 x 10 27 erg sec
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FIG. 3. Calculated population differences" between
the electronic levels of the d-shell of Fe2' ions in ZnS.
The curves are labeled according to different transitions
(e. g. 35 for I'& I'&) shown in Fig. 1.

where N& is the number of the Fe' ions per unit
volume of the crystal, and S is the total scatter-
ing number for the Fe ' ions acting as a point de-
fect in the lattice. The value of dimensionless pa-
rameters S depends upon local difference in mass,
lattice parameter, and interatomic bonding at the
impurity site. Its values for various impurities in
alkali halides has been estimated by Klemens,
and have been measured by Slack and by Walker
and Pohl. The measured va, lues range 2 S «0.
In our case, ap estimation of S was not possible
due to unava. ilability of data. However, the value
S =0. 3, found to give consistently excellent agree-
ment for lightly as well as for heavily doped crys-
tals, is similar to that for various impurities in
alkali halide s.

The second type of scattering is caused by the res-
onant scattering of Fe 'ions from those phonons which
have energies equal to one of the interlevel spac-
ings 6, 2h, 3~ or 44. This scattering is really
an absorption and reemission of the phonons. The
energy-level scheme for Fe ' ions in ZnS is shown
in Fig. 1. 'Zhe allowed one-phonon transition per-
mitted by group theory is also shown by solid ar-
rows. This part of the problem has been treated
phenomenologically, and we find that the following
form of relaxation rate of phonons interacting res-
onantly gives excellent results:

x F,(T).
(x —xo() T

where i ( = 1, 2, 3, ~ ~ ~ ) denotes a particular phonon-

induced electron transition. The summation over
i indicates that we are considering different transi-
tions simultaneously. Aizo; represents the energy
separation of the levels involved in the ith transi-
tion, and II; is called the spin-phonon coupling pa-
rarneter. F;(T) is the fractional electron-popula-
tion difference between the levels involved in ith
transition, and is calculable from Maxwell-Boltz-
mann statistics.

Thus, we can finally write &d f t in terms of x
= h(u/ks T a.s

7 ~fegt E tX+x T + Hf I yp (4c)

We would like to emphasize at this point that the
success of Eq. (4c) lies in the very fact that it
gives excellent fits to the experimental results for
lightly as well as for heavily doped crystals and, in
turn, gives support to the various assumptions
made in the theory.

III. RESULTS

The results of calculations using Eq. (l) together
with Eqs. (3e) and (4c), respectively, for pure and

TABLE II. Parameters used for calculating thermal conductivity of doped crystals.

C rystal

R114

R140

S=P3P
C rystal

diameter
(cm)

0.29

0.46

0. 24

0. 34

Fe ' conc.
{atom/cm3)

49x 10~8

92 x 1018

350x 10 8

2700 x 10"

(sec ~)

0.241x 10

0. 30x 10

0.013x 10

0. 0092 x 108

6=15.0 cm

Spin-phonon coupling
parameter H& (sec 2}

H3) = 1.958 x 10

H„=5x 1010

H2~
——1.5x 10

H&2=4x 108

H~~= 68. 8 x 10
H)p = 2. 407 x 10
H25=1 ~ 30x 10
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FIG. 4. (a)-(d) Calculated heat current for phonons of frequency co plotted in arbitrary units as a function of x= her/kT
for four different temperatures (T = 3, 30, 80, and 200'K). Solid line: Callaway model with no resonant scattering;
dashed line: Gallaway model with resonant scattering; (NT = 92 x10' atom/cm ).

doped crystals are shown in Fig. 2, along with the
experimental results of Slack.

First, the experimental data for undoped R 133
were fitted as best as possible. It was found nec-
essary to depart from the theoretical value of E„&
to fit the low-temperature data; the value is given
in Table I. The values of parameters P and 5 in
the umklapp relaxation rate were found by matching
the theoretical and experimental curves for T

&100'K. The value of E„used is about three
times greater than the calculated value. Still, there
are some deviations around the peak of the curve
R133, and that might be due to some impurities
present in R133.

To calculate thermal conductivity of doped crys-
tals, we needed to know the energy-level scheme
of Fe ' ions in ZnS, and the various possible tran-
sitions between them. The five low-lying energy
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levels of Fe ' ions in ZnS are shown in Fig. 1; of
these, two are singlet, two are triplet, and one is
doublet. All levels are equally spaced in energy
by 6=15 cm"'. Only 1b,, 26, and 36 transitions
are permitted by group theory. For these transi-
tions we have calculated the population difference
factor E;(T) at different temperatures from Max-
well-Boltzmann statistics, and the results are
shown in Fig. 3. The parameters used in calcula-
tions of thermal conductivity of crystals doped with
different concentrations of impurities are given in
Table II. Note that all the crystals, pure 8133 and

doped, have different sizes; proper changes in the
boundary relaxation rate have been made accord-
ingly.

For 8114, only 2A transition (3- 5) is sufficient
to explain the data, except for slight deviations on
the high-temperature side which can be removed
if some higher-order transition is also considered.
In all other cases, two transitions were found nec-
essary and sufficient to explain experimental re-
sults. In the case of R117, we find that 2n (2-4)
and 3b, (2-5) transitions give excellent agreement,
while for R140 and R115 we find it necessary to in-
clude a 15 transition starting from ground state
with a 3b, transition (2- 5) for fitting the data.

Thus, with the inclusion of a Rayleigh scattering
and a phenomenological resonance relaxation rate
in the Callaway model, we have been able to con-
sistently provide an explanation for E vs T data for
lightly and as well as heavily doped crystals. It is
worthwhile to note that the effect of the Rayleigh
term is simply to reduce the conductivity in mag-
nitude; it is only the resonant term which produces
the desired waviness in the temperature dependence
of the therma1 conductivity. The effect of this res-
onant term can be illustrated very well with the
help of Figs. 4(a)-4(d), where the contribution to
the conductivity for phonons of frequency ur = AT/h
is plotted against x for different temperatures.
For each temperature, two curves are shown —one
for Nr = 92&& 10" atom/cm' and the other for Nr
= 0—but the value of v, ' [Eq. (4a)] has been included
in both. Thus, the difference between the two
curves is entirely due to the resonant term. The
ratio of the conductivities with and without reso-
nant st:attering will equal the ratio of the areas un-
der the curves. One can immediately make the
following obser vations.

(i) At low temperature (T=3'K), spin-phonon
coupling affects the conductivity to a very small
extent. This is due to small values of F,(T), large
values of xo s at this temperature, and major con-
tributions from boundary scattering.

(ii) At T=30'K, the effect of resonance scatter-
ing is very strong, so strong that the conductivity
is reduced by a factor of 7. This is due to the fact
that E;(T) has maxima in this temperature range
and xo&'s have small values.

(iii) At T= 80'K, the intrinsic and resonant pho-
non scatterings are of the same order.

(iv) At T=200'K the effect of resonant scatter-
ing is again small, and conductivity is determined
mainly by intrinsic phonon scatterings.

In summary, this analysis shows that the effect
of resonance is strongest in the intermediate tem-
perature range and is small on both the low- and
the high-temperature sides. This result is char-
acteristic of the model employed.

IV. CONCLUSION

We find that the observed conductivity can be ac-
counted for very well with the help of a model of
resonant scattering of phonons employing a simple
Debye model for lattice phonons, Boltzmann sta-
tistics for the electron population of d-shell levels,
and parameters S related to Fe ' impurities. The
success of the model lies in the fact that it gives
excellent agreement between theory and experi-
ment for lightly as well as for heavily doped speci-
mens. The theory is, however, a simplification,
and it has neglected to consider, among other con-
cepts, phonon dispersion, phonon polarization,
phonon normal processes, and phonon scattering
by Raman processes. The inclusion of such re-
finements might well alter the values found for the
parameters given in Table II. However, we be-
lieve that such refinement will not affect our basic
conclusion that Fe ' ions in ZnS produce a resonant
scattering of phonons.
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