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We study the thermoelectric power of a narrow-band Hubbard chain with an arbitrary number of
electrons per site. The calculations are carried out to the lowest order in the transfer integral. We find

a characteristic electron density (p = 2/3) below which the thermoelectric power is negative at all

temperatures. In contrast, for p & 2/3, the thermoelectric power is small and negative only above a
characteristic temperature, below which there is a change of sign and slope. We comment on the
applicability of these results to the charge-transfer salts of tetracyanoquinodimethan (TCNQ).

I. INTRODUCTION

Recent measurements by Chaikin et al. ' of the
thermoelectric power of the organic conductors
tetrathiofulvalinium-tetracyanoquinodimethan
(TTF-TCNQ) and quinolium TCNQ have stimulated
a new interest in the study of the thermoelectric
power of many-body systems. In particular, Maki~

has investigated the behavior of the thermoelectric
power in the fluctuation region above the supercon-
ducting transition temperature for one- and two-
dimensional systems. Patton and Sham are study-
ing the thermoelectric power of a one-dimensional
electron-phonon system near the Peierls transition.
In addition, the thermoelectric power of the Hub-
bard-Holstein Hamiltonian, Eq. (18), has been cal-
culated by Bari to the lowest order in the band-
width. The thermoelectric power was found to
vanish. More generally it has been recently es-
tablished~ that a particle-hole symmetric inter-
acting electron system has zero thermoelectric
power at al1. temperatures. This holds for crys-
tals with one electron per lattice site and applies
in particular to the half-filled-band one-dimensional
Hubbard model.

As is well known, this model has been applied
to the charge-transfer salt N-methylphenazinium
TCNQ (NMP-TCNQ) which, apart from other in-
teresting properties, exhibits a characteristic tem-
perature dependence of the thermoelectric power.
The thermoelectric power is small and negative
above 200'K with an almost linear temperature de-
pendence, which is suggestive of a. metallic sys-
tern. The slope changes below 200 'K and at about
150 'K the thermoelectric power becomes positive,
which has been interpreted within the framework
of a metal-insulator transition.

The analysis of the thermoelectric power given
in Ref. 6, as stressed by the authors themselves,
was a crude first guess based on a Fermi-liquid
approach and motivated by the lack of an adequate
transport theory. On the other hand, the argument

could be given some credibility, insofar as the cal-
culated transfer integral agreed in magnitude with
that obtained from the Pauli susceptibility and from
the analysis of other low-temperature properties.
However, this sort of Fermi-liquid analysis cannot
be applied to the half-filled-band Hubbard model for
which, as we have mentioned, the thermoelectric
power vanishes.

This fact seems to add something to the increas-
ing evidence' ' which favors a rejection of the sim-
ple Hubbard chain as a mode1. for NMP-TCNQ. On
the other hand, one may try to investigate appro-
priate modifications of the madel, which could lead
to a more consistent description of the properties
of NMP-TCNQ. Along these lines some attempts
have recently been made. In our group we have
investigated the role played by electron-phonon in-
teractions' and by long-range Coulomb forces.
In this paper we study still another aspect of the
deviation from the half-filled-band Hubbard chain,
namely the thermoelectric power at arbitrary elec-
tron density.

Apart from the question of the applicability to
NMP- TCNQ, the variable-density Hubbard chain is
a model of intrinsic interest. Recent studies in-
clude the high-temperature thermodynamic'~
ground-state energy and zero-temperature sus-
ceptibility' and low-lying excitations. ' The trans-
port properties have been rather less stMied. To
our knowledge the only two works on the subject
are those of Ref. 15. In the present paper we de-
rive an expression for the thermoelectric power to
zero order in the hopping parameter f (see Eq.
(1)]. A subsequent paper ha.s been devoted to the
analysis of higher-order terms. '

II. THERMOELECTRIC POWER

Let us restrict our attention to a linear chain
with lattice constant a and one electron per site.
The electronic system is described by the Hubbard
Harniltonian
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H= —tP c(.,c(,(, + h. c. + Ug )p(,n(, , (1)
fo f

where c(), (c(,) is the creation (destruction) operator
for electron at the ith site with spin 0.

In order to calculate the thermoelectric power
we shall make use of the Kubo formalism. ' In
terms of the Kubo formulas for the transport coef-
ficients of a many-body system, the thermoelectric
power S is written as

S(o) /S()) + )(/eS=

where e is the absolute value of the electronic
charge, p. is the chemical potential, and

p oo

S'" =+ —,
' pe'~ (vv(r)+ v(7)v) dr;

40

S~» =+-.'Pe q. ~ +. ~ q ~. ;

(~) sas s~s

while (.~ ~ ) means thermal average and P=(ET) '

(T is the temperature and EC the Boltzmann con-
stant).

Here v and (I) are, respectively, the velocity and
the energy-flux operators which is convenient to
write in the following form:

v = firn —Q [n„H]s(a("), (6)
@~0 kg

Cf(yCi-1a «aCf+1(y y (8)

any transport coefficient within an approximation
that restricts the motion of the carriers to hopping
between iwo sites (we shall see below that the low-
est order in T is indeed t ). However, a study
made by K. Kubo' provides us with the necessary
justification for this procedure. Kubo was inter-
ested in the optical conductivity at zero tempera-
ture and for this he derived an expression for the
frequency-dependent conductivity by using the
Green's function decoupling scheme originated by
Hubbard. Following Kubo's work Bari and Kap-
lan obtained an expression for the conductivity by
perturbation theory to second order in t (the same
procedure that we shall use below to evaluate S).
Their result agrees with Kubo's Green's function
approximation to this order. Furthermore, Bari
and Kaplan analyzed the higher-order corrections
found by Kubo and pointed out that they do not qual-
itatively alter the lowest-order results, thus pro-
viding the justification for using a considerably
less laborious approach.

After these preliminary considerations we pro-
ceed in our evaluation of the thermoelectric power
and firsc of all obtain the necessary expression for
the velocity 3nd energy-flux operators. From
E(ls. (6) and (7) it is easy to derive' the following
forms:

(I) = lim —~ [t), H]e'as'),1 ~
e-0 eq, (7) Uta ~

Q = QV+ Qt = .a. ~ n(~(C(aC( la C( 1aC(a)

where g&h& =H, and q is determined by periodic
boundary conditions.

In addition, being interested only in the narrow-
band limit, we shall use perturbation theory to
evaluate the correlation functions in S~' and S
and retain only the lowest-order term in t. This
procedure is obviously correct for any thermody-
namic calculation, but, for the transport coeffi-
cients, requires some justification. In fact, at
first sight it may appear meaningless to evaluate

t a2

+
@

faf-a &fa«+2a ~

/f4

These expressions are exact but in view of our
narrow-band approximation, the second term in Q

may be dropped at the outset. For the same rea-
son, the full Hamiltonian H may be replaced by the
unperturbed Hamiltonian HO in the correlation func-
tions of S 1~ and S~ . Thus we obtain

S(p) I d T [ o(//o a ); a()(q e (Hpave(Ho c Hp vs Ho q }]
fo" (t~ Tr[s-o(so-& ):p() (vs""pave(spa+ e-'"o' s'spa „)] ' (10)

Now traces of Eq. (10) may be performed straight-
forwardly by using

8&SoaC Qsoa S(vaag aC4o j(y t

and by noting that each trace contains the product
of bvo operators linear in t. This allows us to
restrict the traces to only two sites and we obtain
at once

E PUxS=- — .~ 2 -lnx(,
e e" +x i

where x= e ". As expected, for a half-filled band

S vanishes because p = & U. We should also remark
that S is independent of t so that E(l. (12) is effec-
tively the thermoelectric power in the zero-band-
width limit. The situation is different in the case
of the conductivity c for which only the ratio c/to
can be obtained exactly in the zero-overlap limit.

Next we need. an expression for the chemical po-
tential. This is easily found, as we are effectively
in the zero-bandwidth limit. In fact, the ground-
partition function is simply
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