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%e explain the large second-harmonic generation of ultrasound observed in V,Si by Testardi in terms

of the interaction of the input shear wave with a dynamical strain induced by the low-temperature

structural phase transition. We use the independent-chain model for the d electrons, and expand the

free energy in powers of the total strain. The second-harmonic amplitude obtained by assuming a
deviation from cubic symmetry arising from a homogeneous static strain is calculated to be too small

to explain the experimental result.

In a recent experiment, 1 Testardi found a large
rate of generation of second-harmonic ultrasound
in Vssi, using a shear wave propagated along the
[110]direction, with polarization along [110], as
the driving signal. This is a surprising result, be-
cause the symmetry of the crystal forbids the ap-
pearance of even-ordered harmonics for the shear
wave propagated along the high-symmetry direction.
In this paper we show that the effect is due to the
anharmonic coupling of the shear wave to a dynam-
ic strain, which distorts the shear wave and gives
rise to second-harmonic generation. Ne show that
the estimated amount of conversion of the funda-
mental wave to the second harmonic is in agree-
ment with experiment, and that deviations from
cubic symmetry due to a homogeneous static strain
are too small to explain the effect.

%e use the %'cger-Labb6-Friedel model of in-
dependent chains of d electrons, with the Fermi
level near the I' point of the reciprocal lattice.
This model has been extended recentlys to take into
account the space-group symmetry of the crystal,
and it gives a good description of the structural
phase transition, as well as the temperature de-
pendence of various quantities above and below the
transition. The ultrasonic wave gives rise to a
long-wavelength time-dependent strain in the crys-
tal, and we use the deformation-potential theorem
to calculate the energy shifts of the d electrons.
To lowest order in the strains, the shift of the
electron energies for the chains in the & direction
(1=x,y, z) is

Eg =Jog(f )d~ + t ~~ps ~g q (1)

where

d, =g M'„~'e, (~ } Oj )d„, ,

and g„(j), f~ z are deformation-potential parame-
ters, s~ denotes the strain, and d„ the displace-
ment of sublattice v, e (x(0j ) is the polarization
vector for a zero-wave-vector phonon, and the
summation convention over repeated Greek indices

is used. The d-electron thermodynamic potential
per unit cell is

y T~-'g ln(I+e"-~~i'~'ar)

where p, is the chemical potential and E„-„is the
d-electron energy in the strained lattice. The
chemical potential is given by

8G
8p,

(4)

(5)

where Q .&&. and 0,. arethehigh-temperatureelas-
tic constants and optical-phonon frequencies re-
soectively, and we have neglected the bilinear
coupling of the sublattice displacement to the
strain for present purposes. For the total thermo-
dynamic potentia. l we take the sum of Eqs. (3) and
(5). In this approximation the lattice anharmonicity
enters only through the electronic contribution to
the thermodynamic potential. Both the anharmonic
terms in the lattice potential energy, and the higher-
order terms in the deformation potential, Eq.
(1), have been neglected. We use this approxima-
tion because it gives a good description of the
structural phase transition, and the parameters in
the thermodynamic potential have been accurately
determined for this case.

We represent the applied shear strainby [e, -e, 0],
i.e. , s„„=a, s~= —a, s„=0, and we expand the
free energy,

I' = 0.~2+ I3e'+ ye'+ ~ ~ ~

For the wave vector in the [110]direction, the
shears acting on the (110) plane in the [110)and
[110]directions give equivalent distortions 'of the

where Nd is the number of d electrons per unit cell
in the shallow band, and G is the sum of the elec-
tronic and lattice contributions to the thermodynamic
potential. The harmonic part of the lattice potential
energy given by
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tetragonal phase transition at low temperatures. '
A tetragonal deformation can be written as a sum
of shears on the (110) plane in the [110]direction,
and on the (101) plane in the [101]direction. ~

Since the solution of the nonlinear wave equation
for strong anharmonicity and with the wave vector
not along a high-symmetry direction is a formi-
dable task, we make the assumption that the shear
wave [z, —e, 0] can interact with a dynamic strain
of the form [-q, 0, q]. The total strain, [e-q, -e, q],
then has a component with the symmetry of the low-
temperature tetragonal phase.

We estimate the energy flux of the second-har-
monic wave at the receiving transducer to that of
the fundamental by

(b)

where S~, S& are the strain amplitudes, and we use
E, as a measure of the efficiency of conversion to
the second harmonic. We write

(c}

FIG. 1. Contributions to the free energy from inter-
tig ti I (~d 1 t

( ), and dynamic and static strains g- - - ).

in analogy with the solution of the nonlinear wave
equation for a longitudinal plane wave propagating
along one of the high-symmetry directions in a
cubic crystal. v Here a is the shear modulus and

p the anharmonic coefficient corresponding to Fig.
1(b) in the expansion of the free energy in terms
of e and q. In writing Eq. (8) we have made use of
the fact that p» n. The path length is denoted by
x, and X is the wavelength of the fundamental. The
anharmonic coefficient is obtained from Eqs. (1)-
(5) and is given by

P
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crystal, and this leads to the vanishing of the odd-
order terms in Eq. (6). ' Hence, the contribution
from the third-order electron-phonon scattering
diagram, Fig. 1(a), vanishes for this case. How-

ever, it is possible to have a third-order contribu-
tion if one of the interacting waves is not a pure
shear, as in Fig. 1(b). This can occur if the shear
wave vector is not exactly in the [110]direction,
as could be the case for actual experimental con-
ditions, ' and the crystal is very anharmonic. The
strong anharmonicity couples the shear wave to the
other vibrational modes of the crystal, and since
the resultant can be distorted considerably from a
pure shear wave, it can have a large second-har-
monic component. Equivalently, since the sym-
metry argument given previously no longer holds,
it is possible to have odd-order terms in the ex-
pansion given by Eq. (6).

The strong anharmonicity is responsible for the
softening of the shear modulus and the cubic to

where U= gz„- f~„ is the deformation potential,
v =N ~ n k is the occupation number per unit cell
of one of the threefold degenerate d bands in the
cubic phase, and &o2=0'-Go~(sv/sp) is the temper-
ature-dependent I'~z optical-phonon frequency. In
deriving Eq. (9) we have calculated the derivatives
of the sublattice displacements making use of the
equilibrium conditions SF/Sd, = 0, which define the
sublattice displacernents as implicit functions of
a and q. We have also used the fact that only the
rga optical mode is coupled to the shear wave. '

We calculate the second-harmonic strain ampli-
tude for Nb~Sn, since at present the parameters
for this crystal are known more accurately than
for V&Si. There should not be any significant dif-
ference in the second-harmonic generation for the
two crystals, since both have similar temperature-
dependent properties, and transform to a tetragonal
state at low temperatures. Using Eqs. (V)-(9) and

the constant-density-of-states model for Nb~Sn, '

with T=1.5T =70 K, we get )=0.05, where we
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have used x = 1 cm for the path length and X = 0. 025
cm for a 5-MHz driving signal in NbGSn at T =70 K.
The strain amplitude of the fundamental wave is
between 10~ and 10 ', ' and we have used Sz =5~10
Including the attenuation of the fundamental does
not significantly alter the estimate of the conversion
efficiency because the assumed temperature is
well above T, and the path length is relatively
short. Testardi has estimated that the maxi-
mum energy ratio of the second harmonic to
the fundamental at the receiving transducer was
about 20gp for the highest drive levels. The cal-
culated value of 57' is in satisfactory agreement,
considering the uncertainties in the experiment
and the theoretical interpretation. The present
theory assumes that the slope of the received sig-
nal amplitude to the drive level is 2, and we are
unable to explain why the experimental result is
greater than this value. It remains to be seen
whether a more complete perturbation treatment of
the free energy and the nonlinear wave equation can
explain this deviation, as well as the linear depen-
dence of the received signal amplitude on the drive
level at the highest drive levels.

If the crystal is assumed to deviate from cubic
symmetry because of a homogeneous static strain
of order 10 4, then the fourth-order term in the
free energy corresponding to Fig. 1(c) contributes
to the second-harmonic generation. For this case
the anharmonic coefficient y in Eq. (6) can be cal-
culated as before by differentiating the free energy
with respect to the strains, with &E/ed, = 0, and the
corresponding fourth-order contribution, Fig. 1(c),
is found to be several orders of magnitude smaller
than the third-order contribution, Fig. 1(b), with
a dynamic strain, and hence can be neglected. The
third-order diagram gives no contribution to the
second-harmonic amplitude for the case of a
homogeneous static strain.

It would be interesting to measure the amount of
second-harmonic generation in nontransforming
crystals of VSSi and Nb&Sn, and in the other non-
transforming A15 compounds, since the present
theory predicts that the second-harmonic ampli-
tude would be less in these crystals.

It is a pleasure to acknowledge many stimulating
discussions with L. R. Testardi and several help-
ful discussions with R. N. Thurston.
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