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W'e consider the generation of binary disordered linear chains with short-range order by using the

theory of Markov processes. We generate second-order Markov chains in which specific correlations are
introduced to first- and second-nearest neighbors. We find the density of vibrational states for several

second-order chains in which one of the two kinds of atoms is twice as heavy as the other, but the

nearest-neighbor force constants are unchanged. Properties of these spectra can be related to the chain

structures, but pair correlation functions do not provide an adequate measure of structure to specify
details of the spectra. We derive an expression for the integrated density of states at special frequencies

for second-order chains and find that chains with quite different structures may have identical

integrated spectra at all special frequencies.

I. INTRODUCTION

This paper is the first of three papers on the vi-
brations of a disordered harmonic linear cha.in.
In this paper we discuss computer experiments for
the vibrational density of states of chains with ar-
bitrary concentrations of two kinds of atoms. In
the second paper we present a cluster self-con-
sistent-field theory, analogous to the coherent-po-
tential approximation, and compare theoretical
densities of states for disordered chai. ns with those
determined by computer experiments. In the third
paper we discuss the localization of the eigenstates
of such a disordered system.

In this paper we present the results of computer
experiments for the densities of states for long
(10000 atoms) chains. The experimental method
follows the pioneering work of Dea.n' and co-work-
ers„and of Payton and Visscher. 2 The significant
new aspect of our experiments for the density of
states is the systematic inclusion of short-range
order (Sec. II} among the constituents, by means
of the theory of Markov chains. The Markov the-
ory (Sec. III) permits the introduction of specific
correlations to any number of neighbors, and pro-
vides a statistical framework for the construction
and identification of "good chains. " In practice,
we confine our attention to first- and second-order
Markov chains, in which specific correlations are
introduced between, respectively, the first- and
the first-two-nearest neighbors. The short-range
order introduced by other authors has correspond-
ed to that of a first-order Markov chain. Although
the later papers in the series will contain spectra
and localization lengths for first-order chains,
this paper includes spectra only for second-order
chains (Sec. IV). In particular we show that two

chains with identical pair correlation functions may
have completely different vibrational spectra. We
also derive a formula for the second-order chain
to determine the exact integrated density of states
to special frequencies. Here we find that second-
order chains with different structure and different
spectra may yet have identical integrated densi-
ties of states to the special frequencies (Sec. V).

For all our calculations we use the following
model: a linear chain with equal nearest-neighbor
force constants between all atoms, . and arbitrary
concentrations of two kinds of atoms, heavy host
atoms of mass m„and lighter atoms, which we
call defects, of mass m„. Because other authors
have thoroughly investigated the effect of different
mass ratios we always take m„/m, = 2. This mod-
el is the simplest possible model for a vibrating
disordered system.

For the harmonic vibrations of a chain with
nearest-neighbor force constants, the equation of
motion governing the displacement u, of the atom
at site l with mass m, is

(SZ~(0 5~~ ~ 4g~ ~ )Mg ~ = 02

where the force-constant matrix 4„, is transla-
tionally invariant,

4'i&'= 4'i-i ~
= &(2&r, & dt, r "s &r, &'-&) ~

II. SHORT-RANGE ORDER

Whereas most previous work on disordered sys-
tems has been for random systems, we wish to
investigate the effects of short-range order among
the constituents of a binary system in some detail.
A study of short-range order in three dimensions
usually begins with pair correlation functions such
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as p", '", , defined as the probability that, if there is
a defect (d) at site f, then there is a defect at site

For a homogeneous system, pd'", , = pd'd(R, —R, ,),
where R, is the position of atom l. Similarly one
may define higher-order correlation functions such
as p$ $ 7, the probability that if there is a def ect
at site l, then there are defects both at site l and
at site l

For real systems, the pair correlation function,
for example, is

c p '"(L)=X +8",8",.5fi, ,g,„-,
ttd

(2. 1)

where c„ is the concentration of defects; 8", =1 if
there is a defect at site l; and 8, =0 if there is a
host atom at site l . The sum on l and l runs over
all the X lattice sites of a real system. Theo-
retically, one typically assumes that because of
homogeneity, the correct pair correlation func-
tions are equal to the ensemble average (configura-
tion average ( ~ ~ ~ )) of the occupancies for any two
sites,

pd, d (L) (8d 8d ) (2. 2)

f„,(k) - cde„((f') —(f )')n(u),

n(k) = Q nd,
e'~' .

(2. 4)

Because of the short-range order, the incoherent
scattering is not independent of the wave vector k.

Short-range order is said to exist if either of these
expressions (2. l) or (2. 2) differs from the random
value of c', (Le 0), or if any other correlation func-
tion of any order differs from its random value.
Furthermore, the term "short-range order" is
typically reserved for situations in which long-
range order, in the Bragg-Williams sense, is not
present.

Experimentally, short-range order may be iden-
tified by x-ray or neutron-diffraction measure-
ments. ' Because these scattering cross sections
are analyzed in the Born approximation, in which
the scattering potentials on individual sites occur
only in pairs, the scattering experiments provide
information only about the correlation between
pairs of atoms. A convenient notation for the
analysis of such experiments is provided by the
Warren-Cowley' short-range order parameters
a~, defined by

p""(L)= c, +(1 —ed)nL. (2. 3)

The scattered intensity then consists of the sum of
a coherent scattering term, in which the Bragg
peaks occur at the superlattice reflection points,
with amplitude proportional to the configuration-
averaged scattering length (c„f„+cd fd)—= (f), plus
an incoherent term

It is now interesting to ask how short-range or-
der can be included in calculations of such dynami-
cal aspects of disordered systems as phonon or
electron scattering from disorder. So long as one
treats the disordered scattering only by second-
order perturbation theory (adequate for x-ray or
neutron scattering), the pair correlation functions
provide an adequate representation of the short-
range order. 7 More generally, however, one must
include in some approximate way all orders of
scattering, which then involve all orders of corre-
lation functions. One may begin by writing higher-
order correlation functions as simple functions of
pair correlation functions. For example, Hart-
mann considered the lattice dynamics of dilute
alloys with arbitrary pair correlations among
strong scatterers by writing all correlation func-
tions as simple products of pair correlation func-
tions. Kramer has used the same approximation
i.n his study of the optical properties of amorphous
semiconductors. The inadequacy of any approach
to the high-concentration strong-scattering prob-
lem which involves only pair correlation functions
will be demonstrated in Sec. IV.

In order to study the effects of short-range order
on lattice dynamics with computer experiments on
linear chains, we need to generate chains with
short-range order. To extend these experiments
beyond the simple chains in which only pa, ir corre-
lation functions are significant, we require a sys-
tematic means of introducing short-range order
into a binary chain. We therefore turn to the the-
ory of Markov processes; the remainder of this
paper is specialized to one-dimensional systems.

III. MARKOV CHAINS

The Markov theory'0 provides the mathematical
foundations which allow us to specify short;-range
order which depends on next-nearest neighbors,
as well as on nearest neighbors. Generalizations
to generate chai. ns with any number of constituents
specifying short-range order among any number
of neighbors are also possible.

Using Markov theory, we build a chain by start-
ing at some point and adding atoms only to one end
of the chain. This directionality is essential for
constructing Markov chains, but cannot be identi-
fied once the construction is complete. A sto-
chastic process is a Markov process if the prob-
ability that the system will be in a given state at a
particular position or time xz can be deduced from
the state of the system at a previous position or
time x, , and is independent of the state of the sys-
tem before x, . The Markov process is particular-
ly suitable for generating a chain in which the
position is associated with lattice sites, and the
state is the type of atom. To specify the prob-
ability relationships, we define the unconditional
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probability (row) vector

sf(l) for all states j,
and the transition probability matrix

Zd, h(l„ lh) for all states j and k

and l, & l» where

Jd h(l„ lh) & 0 (3. i)

equal to the concentrations of the constituents c„.
In addition to proving the above theorem, we have
proved that the converse is also true. "

Converse: If a Markov chain has a long-run
distribution ffh with ghffh= 1, ffh=vd fff jf», and
0 & mh & 1, then the chain is ergodic.

The simplest application of the above Markov
theory is to a binary chain with host atoms h and
defect atoms d mith only nearest-neighbor corre-
lations. The unconditional probability vector is

+Jf,h(4f 4) =1 . (3. 2)
and the transition probability matrix is

(3. 7)

The elements of the unconditional probability vec-
tor are the probabilities of each of the possible
states of the system at position l. The elements
of the transition probability matrix are the prob-
abilities of a transition to state k at position l»
given that state j occurs at position l, . For a
homogeneous chain, the transition probability ma-
trix will depend on l2 and l, only through their
difference, n= l~- l, . For convenience, we call
the one-step transition probability matrix J(1)
-=p. The transition probability matrix satisfies
the Chapman-Kolomogorov equation,

and

h+Cd =1,
~h, h ~hyd

~h gh Ph, d

1 dgh ~dpd

From Eq. (3.6) we have

[C„C ]= [C„C ]
jh'h /h'd

Pd, h Pd, d

mhere

(3. 8)

(3.9)

(3. ioa)

(3. 10b)

J(n)= J(m)J(n —m) where m &n .
From these definitions, me see that

s(l ) = s(0)J(l ) = s(0)p' .

(3. 3)

(3 4)

Pd, d+Pd „—1 .
It follows that

Cd Pd~h
—Ch Ph~d

(3. 10c)

(3. 10d)

lim Jd h(n) = ffh with ffh & 0 .
ffh de

The long-run distribution of an ergodic Markov
chain is the unique solution of

ffh=p fff jf», satisfying g ffh= 1 .
h

(3. 6)

Since the long-run distribution m„ is independent of
the starting state, the long-run di. stribution is

We require the chain me construct to be an
ergodic Markov chain. An ergodic Markov chain
has three fundamental properties:

(i) The chain must be homogeneous; J(l„ l, )
=J(n), where n= lh —l, . -

(ii) The chain is irreducible and all states are
recurrent; that is, it is possible to make a transi-
tion from any state of the system to all states of
the system. Clearly, if this were not true, some
of the constituents of a chain mould have a concen-
tration tending to zero mith increasing chain length.

(iii) The chain must be aperiodic; that is, there
must exist a value of n such that Jd h(n) & 0 for all
states j and k. Certain periodic chains which are
special limits of the aperiodic chain also satisfy
the folloming equations.

Theorem: An ergodic Markov chain has a unique
long-run distribution m.

h mhere

We are left with two independent specifications
which we take to be c, (the concentration of defects)
and pd d (the probability that if the present atom is
a defect, the next atom will be a defect). The
choice pd d

= cd will generate a random chain. For
a given c„we cannot allow all 0 - pd d

--. 1. De-
manding that 0 & jfh d

~ 1, we see that (2 —1/cd)
& p«& 1. By induction, me ca.n show that the n-
step transition probability matrix is

J(n) pfl d d(1 —c) c
(1 —Cd ) Cd

+ (Pd d
—Cd Cd —Cd

1 —cd (cd —1) (1 —cd )
(3. iS)

We call a Markov chain generated by nearest-
neighbor correlations a first-order Markov chain.
We can now find all pair correlation functions for
the binary ergodic first-order Markov chain. In
general me find that

(3. 12)

It is this convenient property of first-order
Markov chains which has allowed previous authors
to generate correct chains with short-range order
nonrigorously, by using the p'~. We demonstrate
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Eq. (3.12) for the particular case of p«'(n), the
conditional probability of having a defect In[ sites
away from another defect. The initialunconditional
probability vector would be

and

t
~ ~ h ~ ~ t =C ~ » ~ h» ~ » j» ~ ~

iPli& ~ ~ ~ l ~ ~ ~ l ~ ~ ~ » l iPl ~ ~ ~ l &
~ ~ ~ l ~ ~ ~

m P ff 1' p' w n

~ ~ ~ j ~ ~ ~ t ~ » ~ ~ i ~ ~ ~

CiPli ~ ~ ~ l . . ~ l Cj &1 li lit ftt n m& 1

s(i) =[0, 1]

pt4i =P'4(n)= ;(-Inl) =s(0)j'" I.=&dd(l nl)

In|
=e +(1—c )d 1

However, because of the first-order property,
every ordered unconditional higher-order corre-
lation function can be expressed as an ordered
product of pair correlation functions, i.e. ,

i,jh' ' st
i Pli, l2l3' ' ' l„ il„

or i~j +, h . . . s~t
i Pl 1, l2 ~l2gl 3 Pl~„i, l ~

(3.16)

p'"(n) = e„+(1—c,) n„= e, + (1 —e,)nI"i, (3.13)

where n= l —l. The Fourier transform of the
short-range order parameter ca,n be found analyti-
cally to be

1 —e
n(k) =

1 —2 n, cos(ka) + n«,
(3. 14)

where a is the lattice parameter. n(k) has a peak
at 0=0 for n, &0 (clustering), and a peak at k=s/a
for n, & 0 (anticlustering).

Previous computer experiments on the effects of
short-range order on dynamical properties have
corresponded to such a first-order Markov chain.
Yet the short-range order introduced by a first-
order chain is rather special. Not only are all
pair correlation functions strictly determined by

a single nearest-neighbor pair correlation parame-
ter pd d, but any correlation function of arbitrary
order is strictly determined by the pair correla-
tion functions, as we now demonstrate. First we
note that we ean express all higher-order corre-
lation functions in terms of the set of ordered un-
conditional correlation functions, defined as

i jh ~ » ~ st
i pl 1 ~ l2l3 ~ ~ ln-1l„y

~herei, j, 0 ~ ~ s, teanbehord, l, &l2 ~ ~ ~ &l„i
& f„, and we associate f with f„jwith f2, etc.
An arbitrary correlation function ean be written in

the ordered form because

Note that although the approximation of Ref. 8 is
one in which a higher-order correlation function is
given as a single product of pair correlation func-
tions, the approximation is still not correct for a
first-order Markov chain because the correlation
functions are not properly ordered in the approxi-
mation. Consider, for example, the correlation
function po gi The approximation of Ref. 8 sets
this equal to po'g pg'di, greatly different from the
first-order Markov value po'", p", '", .

Because the first-order Markov process gener-
ates such a special sort of short-range order, we
think it worthwhile to consider chains in which
correlations are specifically introduced between
an atom and both its first and second neighbors.
We call such a chain a second-order Markov chain.
For the second-order chain, the transition prob-
abilities are of the form p,j „, which we define as
the probability of a transition from a two-atom
state sj to a state k. Since we are going from a
state with two atoms to a state with one atom, the
second-order chain as stated cannot be a Markov
chain in the strict sense. We can make it a
Markov chain by the following transformation:

p,.& «=p,.&» and p,&
„„=0 for rcj . (3.16)

For the binary chain we now have four states in-
stead of two. The preceding theorem gives [Eq.
(3.6)]

~hh ~h

0

[ chh t c««i cd«i cdd ] [c««i c«d l cd«—7 dd ]
Pdh, h Pdh, d

1 hd «h ~hd «d

(3. 1V)

0 Pdd, h Pdd, d

and phh, h+phh, d=1, phd h+phd, d=1, pdh, d+pdh, h=1,
pdd, d + pdd „=1, and cd + cd„+ chd + chh = 1. We can
relate these pair concentrations to the constituent
concentrations by e, + e„=1 and c, = c«+ -,

' (c~+ e~«) .
From Eg. (3.17) we can easily prove the chain re-
versibility condition c„h = c„d.

For this system, we have four independent pa-
rameters which we take to be c, , p«, d, pdh, d, and

j«d, d ' Tak g Idd, d j«d, d n P««, d cd(1 f 4d, d)/
(1 —c«) generates a first-order Markov chain. For
a given cd, the three independent probabilities can-
not take on arbitrary values in the unit interval;
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]IE

Pdh, d, I.O

FIG. 1. Allowed values
of the three independent
parameters for a second-
order two-constituent
Markov chain occur in the
volume of the unit cube
which is above and in front
of the surface shown for a
defect concentration c„
=0.6.

.0
dd, d

only for c„&—,
' are they unrestricted. Figure 1

shows the allowed values of the probabilities for
c~ = 0.6. Only the volume above and in front of the
surface is allowed.

The pair correlation functions can now be com-
puted for the second-order Markov chain. For
example, for p'd(n), the initial unconditional
probability vector is

s(0) —[0~ cM ~ 0~ cdd]/cd

and the pair correlation function is

p" (n) = s«(lnl)+ s«(l nl )

=c«[&«,«(lnl)+&« ..(Inl)1/c,

+c.[&d,dd(lnl)+&dd, dd(lnl)]/c, . (3. is)
Higher-order correlation functions for the sec-

ond-order Markov chain are easy to describe but
often quite difficult to calculate. For example,
p~»™d,d, where l, &4& l„can be found by starting
with s(l&)=[0, c«, 0, cdd]/cd. Then, for the com-
plete probability vector at site E„ for a defect at
site l„we have s(l ) =s(l,)J(4- l, ). The prob-
ability that there is both a host atom at site 4 and
a defect on site E3 can be found by making the
transition to s(4) from a restricted vector s (l ),

s (4) —[sad(44 0~ sda(4) 01 ~

Then by calculating

s'(l, ) = s'(4)J(4 —l,)

we can find

Pl
'

~ I I
= shd (4) + sdd(4) i

because the transition to site E3 from vectors with
defect atoms at 12 has been excluded by setting
s«(4) and sd, (4) equal to zero.

We will examine two particularly interesting
second-order Markov chains.

Case 1: P« ~=P„„,, and p», , = p~, Therefore,
it follows that

Cd(i Pdd;)/(i —Cd) P«;—. - (3. io)

p ~ l l I

=p2l 2l+1
fl

(3.20)

The Fourier transform of the short-range order
parameter is

1 2

a(k) =
i —2a, cos(2ke)+ a,' '

For aI & 0, a(ak) is symmetric about —,'s, with
peaks at 0 and s. For ad & 0, a(ak) is symmetric
about —,

' ~ with the peak occurring at —,
'

m.

For this type of order the transition probability
matrix elements indicate that a given atom is not
correlated with its nearest neighbors, but is cor-

For this case, the short-range order parameter is
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related only with every second atom, counting
from the given atom. The resulting chain looks
like two mutually independent interpenetrating
correlated chains.

Case 2:

and

Pdd, d ~hh gd

Phd, d f dh, d Pdd ~d (3. 21)

The relationships of this case can only hold if ed

=0.5. The short-range order parameter is

+M ( 2Pdd, d)

+Sl+1

O'3i.2
= O

and its Fourier transform is

(3.22)

1-Q3
n(u) =

21 —2 Qg cos(3k') + ofg
(3.23)

IV. EXPERIMENTAL SPECTRA OF CHAINS

In this section we describe vibrational spectra
determined by computer experiments on finite
chains with various types of short-range order.

The short-rarrge order parameter is always great-
er than, orequalto, zero, and pdd d

=u and pdd „
=1 —u give identical pair correlation functions, but

quite different triple correlation functions. Also,
n(ak) always displays a peak at 0 and —,'w.

The densities of states D(&u~) which we present are
all normalized to 1, i.e. ,

J D((d ) dQJ = 1
0

(4. 1)

The computation is begun by generating a chain of
host and defect atoms with a random-number gen-
erator biased by the defect concentration and by
the first- or second-order Markov transition prob-
abilities discussed in Sec. DI. An error analysis
for these chains is discussed in Appendix A. Our
chain has fixed boundary conditions. Although the
boundary conditions have an effect on the eigen-
vectors of the vibrational states, as di.scussed in
the third paper of this series, the boundary condi-
tions have a negligible effect on the density of
states. As noted by Maradudin et a/. ,

"Leder-
mann's theorem guarantees that the various bound-

ary conditions (periodic, fixed, free, or mixed)
will not change the spectral distribution of modes
in any frequency interval by more than four modes
for a linear chain.

We find the vibrational density of states of these
chains by the Sturm sequence method. Rosenstock
and Mcoill'3 have shown that for a given value of
&', the u, 's in the equation of motion, Eqs. (1.1)
a,nd (1.2),

u„, = (2 - m, &u'/ y) u, - nr-,

(uo=0, u, =1) form a Sturm sequence. The number
of sign changes for consecutive u, is the number of

I.OO

0.75-

CV

3 0.50-
o

0.25-

0.25 0.50
ka/m

0.75 I.OO

FIG. 2. Vibrational
spectrum of a second-or-
der chain of 1 0 000 atoms,
v ith mhjmd = 2, with ed
= 0, 5, and the short-range
order of case I with pdd d
=

pdh d
= 0, 25 and phd d

= 0. 75. The Fourier trans-
form of the short-range
order parameter is shown
in the inset.

0 I

0.5
I

I.O l.5 2.0 2.5 3.0
L

3.5 4.0
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I .00

0.75-

Ol

3
0.50-

0.25—

0.25
I

0.50 0.75
ka/m

l.00

FIG. 3. Vibrational
spectrum of a second-or-
der Markov chain of 10 000
atoms with m&/m&=2, with
cz = 0. 5, and the short-
range order of case 1 with

&au, u =Pea, u
=

= 0.25. The Fourier trans-
form of the short-range or-
der parameter is shown in
the inset.

0.5 I.O !.5 2.5 3.0 3.5 g,0

eigenvalues strictly less than &~. By counting sign
changes we get an integrated density of states from
which a histogram for the density of states may be
derived with no loss of precision.

Figures 2 and 3 are second-order Markov chain
spectra for case 1, c~ = 0.5, with N = 10000 atoms
and P« ~ =0.25 and 0.75, respectively. The Four-
ier transform of the short-range order parameter
is shown in the inserts for each case. The spec-
trum for p« „=0.25 is not radically different from
that for a random chain. The major effects are a
reduction in the spectrum at the single-defect mode
frequency (m2=2. 66), because p„~ „=0.25; and a
corresponding increase in the nearest-neighbor-
pair defect mode strength (~2=2.24), because p„~,
=0.75. The spectrum for p« „=0.75 is, however,
quite different. The host band edge at &~ =2 is not
visible. Since p„„„=p~ „=0.75, the chain has a
structure rather like the ordered binary alternating
chain (with p„„~= p~ „=l), but because p~, , = p„„„
= 0.75, this structure includes some long clusters
of similar atoms.

Figures 4 and 5, with c„=0.5 and X=10000, are
for case 2 with p« ~=0.25 and 0.75, respectively.
These two figures show quite different density-of-
states plots, but identical pair correlation func-
tions. The major difference between the two
chains is that isolated defects are more probable
for p« ~

= 0.75, and nearest-neighbor defect pairs
are considerably more probable for p« ~

= 0.25.

Figure 6 shows the density of states for c„=0.2,
p«~=0, pN, ~=0.4, and p~ ~=0.8, along with the
Fourier transform of the short-range order pa-
rameter in the insert. The structure of this chain
is one in which there will be no defect clusters
longer than 2 atoms (p«, = 0), with defects gener-
ally coming in pairs ( p~ ~ =0.8) or separated by a
single host ( p~„~ = 0.4), and with few isolated de-
fects. The density of states shows the large de-
fect-pair peak ~~ = 3.26, with a small single-defect
peak (d~=2.66. The short-range order parameter
shows a local maximum between 0 & 0 &s/a.

(u'(s, f ) = (u' cos'(ws/2t) (5. l)
where ~~ is the maximum frequency of a perfect
chain of light atoms (in our case, uP ~= 4), and s
and t are integers prime to each other. The in-
tegers s and & must satisfy the condition'~

m„/m, - l + cot(w/2f ) tan(s1T/2t) . (5.2)

For a mass ratio m„/m~ =2, only s = l is allowed.
Matsuda and Teramoto' generalized a result of

Borland'7 to find the integrated density of states to

V. INTEGRATED DENSITY OF STATES

Matsuda' proved that there are special frequen-
cies at which the density of states of a binary dis-
ordered chain is zero, so long as the ratio of the
two masses exceeds a certain value. These spe-
cial frequencies are given by
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1.00

0.75-

0.50-3
Cl

0.25 "

'0 0.25 0.75 I.OO

FIG. 4. Vibrational
spectrum of a second-or-
der Markov chain of 10 000
atoms with mPmz = 2 aad
the short-range order of
case 2 with cz = 0. 5, p~ z
= 0.25 and ptfg g

=ppg g
= 0.75. The Fourier trans-
form of the short-range
order parameter is shown
in the inset, and is identical
with that of Fig. 5.

(i f
0

1.0 l.5 2.0 2.5 3.0 4.0

these special frequencies, and they presented a
specific formula for a first-order Markov chain.
In this section me find a similar formula for a
second-order Markov Chain.

The integrated density of states to special fre-
quencies is found by first noting that, since the
normal mode frequencies are smooth monotone
functions of the heavy host mass m„, no modes

1.00

0.75-

ohio- i

0.25-

0 0.75 I.OO

FIG. 5. Vibrational
spectrum of a second-or-
der Markov chain of 10 000
atoms with mz/m&=2, and
the short-range order of
case 2 with c&=0. 5, P~&
= 0, 75& and Pgp g =P~ g
=0.25. The Fourier trans-
form of the short-range or-
der parameter is shown in
the inset, and is identical
with that of Fig. 4.

0.5 I.O 1.5 2.0 2.5 3.0 3.5 4.0
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FIG. 6. Vibrational
spectrum of a second-or-
der Markov chain of 10000
stoms with tel h/1IEa = 2, cd
=0, 2 Pdd d=0~ P~ d=0, 8
and p~ d=0. 4.
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D(l t) —1 cd(1 Pa.a) Pa, a/(1 Pa, a) ~ (5. 4)

We may find the values of P(Z) for a second-
order Markov chain from the correlation functions
of Sec. III. With the simplified notation

Pdd, d

we find

P'm, d= ~ y (5. 5)

c„P(0)= c„„=1 —c, [w+2(1 —u)]/(1+u -u),
ch P(1) chd phd, h

= c,(1 —u)(l —u)/(1+ w- u), (5. 5)

will cross a gap at a special frequency if m„ is
increased. In the limit m„- ~, the chain becomes
a series of light defect chain segments with fixed
boundary conditions. For such a chain, the inte-
grated density of states D(s, t) to special frequen-
cies ~h(s, t) can be calculated and, by thepreced-
ing argument, it must be equal to the integrated
density of states, for the same s and t values, for
the original disordered chain. Matsuda and Tera-
moto find

Z,",f (s(v+1)/t ) P(Z)

Z, , (~+1)P(8
where P(J) is the probability that a chain segment
of J atoms contains only light defect atoms. The
function f(x) is equal to the largest integer not
greater than x. For a first-order Markov chain

Q r[P(tr-1)+P(tr)+ ~ ~ P(tr+ t —2)].
r=O

Summing this series, and treating the case t= 2
separately, we find in general

D(1, t) =1—
(1 + u —u)(1 —u')

x[w+5, p(1 —u )(u —w)] . (5. 7)

Because we have taken s=1, Eq. (5. 7) is valid
only for m„/ma & 3. For a, second-order Markov
chain which is equivalent to a first-order chain,
the parameters u and gg are equal. In that case
Eq, (5. 7) reduces to the Matsuda-Teramoto result
of Eq. (5. 4).

An interesting point to note is that whereas the
structure of a second-order Markov chain is de-
termined by four parameters, cd, u, v, and gg,

the integrated density of states to special frequen-
cies depends upon only t."d, u, and se. Because the
probabilities P(J) are independent of v, the inte-
grated density of states D(s, t) is independent of

Ch P(J) Chf phd, d(l dd, d) fad, h

= c,(1 —u)'wu '/(1+w- u), (J&1) .
The denominator of Eq. (5. 3) is the mean length

of a, defect string, and is equal to (1 —c, ) ', inde-
pendent of short-range order. We evaluate the
numerator by rewriting it, for s = 1, as
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ps„, for any ratio m„/m, . Therefore, chains with
quite different structure and quite different spec-
tra have the same values of the D(s, t) for all s
and t.

In Table I we compare the predictions of the
analytic expression Eq. (5, 7) with numerical re-
sults from the computer experiments on the 10000-
atom chains of Figs. 2 and 4. The values of the
special frequencies ~s(l, t) are functions only of
m„/ms, and are the same for all chains con-
sidered in this paper. In Fig. 2, the first five
gaps can be clearly seen in the histogram. In
Table II we compare the predictions of Eq. (5.7)
with numerical results from the computer experi-
ments on the 10000-atom chains of Figs. 3 and 5.
Both tables illustrate the lack of dependence of
D(s, t) on the structure parameter p~„, . Although
the spectra of all four chains are clearly quite dif-
ferent, the numerical values of D(1, t) for the
chains compared are equal to within the experi-
mental accuracy,

VI. CONCLUSION

We have shown how general short-range order
may be systematically included in a disordered
chain by means of Markov theory. Physically
reasonable chains are required to be ergodic
Markov chains, and this requirement leads to the
conditions for the Markov transition probabilities
p&, . The most significant condition is Eq. (3. 5)

where j and k are states of the chain. These
states may be single-site occupancies, or pair
occupancies, etc. We showed how the Markov
transition probabilities can be related to pair and
higher-order correlation functions, but we found

TABI E II. Integrated densities of states to special
frequencies. For the chain of Fig. 2, ms/m~=2, cs=0.0

II}dd d=pd& d=0. 75, p~ „=0.25; and for the chain of Fig. 5.
~yl~d = 2, &d = 0, 5 pdd, d 0 75 pdh, d p%,d 0.25. The
analytic result is determined from Eq. (5. 7), and the
numerical results are determined by computer experi-
ments on 10000-atom chains. To within experimental
error, the three numbers in each row are equal.

{Analytic)

0. 642 86
0. 891 89
0. 93143
0. 953 91
0. 967 92
0.977 18

D(1, t)
Numerical

(Fig. 3)

0. 6382
0.8912
0.9327
0. 9531
0. 9691
0.9770

Numerical
(Fig. 5}

0. 6421
0. 8875
0. 9295
0. 9530
0. 9689
0. 9765

that simple closed-form expressions could be ob-
tained only for the pair correlation functions. We
examined the density of vibrational states for sev-
eral second-order Markov chains, and showed that
features of these spectra can be related to the
probabilities of various atomic clusters as deter-
mined by the short-range order parameters. We
noted that pair correlation functions do not provide
an adequate measure of short-range order to de-
termine the spectra, except for first-order Markov
chains, for which all possible correlation functions
are completely determined by only two parameters.
This unsurprising observation casts some doubt
on the validity of strong-scattering theories in
which short-range order is included only by means
of pair correlation functions. " However, higher-
order correlation functions can be included in self-
consistent theories for strong-scattering systems
which we discuss in the second paper of this series.

APPENDIX A: CHAIN STATISTICS

2. 000
3.000
3.414
3.618
3.732
3.802

Analytic

0.700 00
0. 809 52
0. 952 94
0.988 27
0.997 07

D(1, t)
Numerical

(Fig. 2)

0. 6980
0. 8114
0. 9545
0. 9890
0. 9973

Nume rical
(Fig. 4)

0. 6913
0. 8096
0. 9517
0. 9890
0. 9971

TABLE I. Integrated densities of states to special fre-
quencies aP(l, t}. For the chain of Fig. 2, mz/ms=2,
cd = 0. 5, p~, d

=pdz d
= 0.25, p& d

= 0.75; and for the chain
of Fig. 4, mg/md —2, cd —0, 5, p~ d

—0.25, pdg d
—p~ d

=0.75. The analytic result is determined from Eq. (5. 7)
and the numerical results are determined by the compu-
ter experiments on. 10000-atom chains. To within ex-
perimental error, the three values of D(1, t) in each row
are equal.

For the first-order two-constituent Markov
chain, a simple error analysis can be performed
to indicate the likelihood that the actual correla-
tions in a finite chain of N atoms will equal those
of the corresponding infinite chain. The pair cor-
relation function p'~(n) = J', ,(In)) is a binomial
statistic with a mean number of occurances of
constituents i and j separated by n-1 sites given
by

p = NJ;, &( I n I )

and a variance of

O'= NZ, ,(~n[) [I—Zg ~([n[)],

(Al)

(A2)

where N is the chain length. For a confidence lev-
el C, expressed as a certain number of standard
deviations C=aa, the maximum relative error is
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Z = =a[tV-'Z-' (ini)j'" (A3)

We briefly examine the second-order three-
constituent Markov chain to show how it can be re-
duced to a first-order saltlike chain. GeneraQy,
the transition probability matrix is 32&&32 mith 81
elements, of mhich 27 can be nonzero. The govern-
ing equations for the ergodic chain are

From this expression we can determine the cor-
rectness of a finite chain. For example, for cd
=0.5 and pd d =0.1, me note that since pd d &cd, the
smallest J~ d and largest relative errors occur for
the smallest values of n. Table III gives the exact
values of J~,$(l nl) as well as the observed values
for specific chains of 10000 and 100000 atoms.
The errors in the statistical relationships are
quite small in each case.

Solving Etl. (A3) for X, we can calculate the
chain length required j.n the above example to be
99/p confident of generating a chain with no rela-
tive error greater than 1%;. Then a=2.58, and
the chain length is 600000 atoms. The c„=0.5
random chain mill always give the best over-all
relative errors for any given chain length.

APPENDIX 8: SECOND-ORDER THREE-CONSTITUENT
MARKOV CHAIN

centr ation.
We nom examine the special case in which near-

est-neighbor atoms may not be of the same type.
Then

c;;=0; p;~, ~
=0 ~ (a5)

Cl2 P'12 1+ C82P82 1
—C2

CySP18$1+ C28P28$g —C81

C?1 ~21$2+ C81P81$2 —C12

(a6)

For this case, we also find that p,8, and p» 2 are
proportional to f28, and p» 2, respectively, giving
a total of 15 equations among 21 unknowns, leaving
six parameters to specify the chain, cg c2 /f2 ],
P'82 ~ g y ~18,1 P2& 2 ~

For the further special case in which atoms 2
and 3 cannot be nearest neighbors, me have a salt-
like chain 1 2, „3„,in mhich one of tmo sublattices
conta. ins only atoms of type 1, and the other sub-
lattice is occupied only by atoms of types 2 and 3.
Then c, =0.5, and the set of equations is reduced
to 11 equations, 7 of which are trivial, in 13 un-
knowns. We then have

This condition reduces the number of equations,
and reduces the number of variables from 39 to 21.
For example, Eq. (a2) reduces to

CO=1 ~

j,j"-1,2, S

+Cent pJi, $= Ci$ q

(al)

(a2)

C?+ C8=0.5,

P21$2+ &21,S

&81,2+081 8 1

C2 P21$8 = CSP81$2

Pg, &=1 (a3)

and

1 I
Ci Cli + 2 (C1$ + C$1 + C$1 + C1$) y

1I
C$ C2$+ 2(C1$+ C$1+ C$2+ C$$) q

cg+ c2+ cS= 1
q

(a4)

where j, j, and A indicate the states, or atom
types, (fi,j, k) =(1,2, 3)), and c&; is the pair con-

four equations j.n six unknowns, leaving tmo pa, -
rameters to be specified. We can nom show that,
for the special case of a saltlike chain, the second-
order Markov chain on an atomic basis can. be re-
duced to a first-order Markov chain on a diatomic
basis. Let the two states of the diatomic molecu-
lar chain be the ordered pairs (21) and (31). We
may write the first-order transition probabilities
for the molecular chain in terms of second-order
atomic transition probabilities, in general

TABLE III. Exact correlation Jd d(I n I ) for an infinite first-order Markov chain. with f."d

= 0.5 and Pd d =0.1, compared to the numerically determined values for these correlations
pd'd(n) for such chains of 10 000 and 100000 atoms. The experimental relative errors (expt. )

are compared with the maximum relative error acceptable at the 99/o confidence limit (acc. )

determined from Eq. (A3).

Zd „(n) pd'd{n)
100 000 atoms

Er {acc.) Er(expt. ) pd, d (n)

10000 atoms
Ei (acc. ) Er{expt. )

0. 100 00
0. 820 00
0. 244 00
0.704 SQ

0.336 16

0. 098 18
0.822 78
Q. 241 44
0.707 87
0.333 37

0, 0245
Q. 0038
Q. 0144
0. 0053
0.0115

0. 0182
0. 0034
Q. 0105
Q. 0044
0. 0083

0, 101 12
Q. 814 18
0.249 55
0. 696 78
0. 344 15

0. 0774
Q. 0121
0. 0454
0. 0167
0. Q366

0. 0112
0. 0071
0. 0227
0. 0114
0. 0238
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0'(tl)d($1) 1 jig i~it ~ 1 y (B8)

where i and j can be 2 or 3. But for the saltlike
chain ply 1

= 1 and

dr =2y/mr,

frr ~ =h(&rdr') (&r r'+r+&r r'-r) ~
1/a

(C2)

P(il) &(jl) ~jig i (Bo)

Now we substitute Eq. (B9) into the last three
equations of (BV). If we let h stand for molecule
(21), and d stand for molecule (31), then c„=2ch
and cd = 2c» and Eq. (B7) becomes identical with
the four equations (3. 10) for the first-order
Markov chain.

APPENDIX C: CORRESPONDENCE WITH THE ONE-
ELECTRON PROBLEM

It is interesting to compare the equation of mo-
tion, Eq. (1.1) with diagonal disorder, to the one-
band Anderson model' frequently used in the study
of the one-electron properties of disordered sys-
tems, ~o

(Cl)

a, =~m, u, ,

where a, is the amplitude of the one-electron wave
function on site l with a local energy &, and trans-
fer matrix element t», , usually conside-red to be
translationally invariant. The lattice-dynamics
problem and the electron problem, each with di-
agonal disorder, are similar, and similar Green's-
function methods may be used for approximate so-
lutions of both. But because the disordered vari-
able in the lattice-dynamics equation of motion,

m, ~~, involves the eigenvalues, the two problems
are not identical. We may recast the equation of
motion [Eq. (1.1)] into the form of Eq. (Cl) with
the substitutions

Therefore, the lattice-dynamics equation of motion
with diagonal disorder corresponds to the one-band
Anderson equation with a very particular sort of
off-diagonal disorder. The transfer matrix ele-
ments are related to the diagonal energies, and
for atoms of types h and d,

fhd fdh (fhh fdd) (C3)

Equation (C3) is a common approximation in the
treatment of off-diagonal disorder. ' In the sim-
plest treatments of overlap effects, it is assumed
that the localized states I f) are both solutions of
an atomic Hamiltonian, and are orthogonal on
different sites. These mutually exclusive sim-
plifications can be retained in the disordered
problem, while leaving the Hamiltonian Hermitian,
by writing the hopping terms lrr f as (LID'/2m I l ).
Let us assume that Gaussian wave functions will
characterize the essential decay of (r I f) with de-
cay length (fh or fd). Let us also assume that the
overlap terms are small compared to the diagonal
terms, i..e. , the narrow-band limit. Then in one
dimension, if the decay lengths differ greatly, then

AM is dominated by the slower decay, as is the
arithmetic mean —,'(t»+ tdd). The geometric mean,
however, is dominated by the faster decay. If the
decay lengths differ only slightly, I l„—l„'I—= 5
«a 2, where a is the interatomic separation, then
the relative error in the arithmetic mean is
O(ga ), but the relative error in the geometric
mean is only O(Aha lhh). Therefore, as a simple
approximation to t„~, we expect the arithmetic
mean to be better for gross disorder, and the
geometric mean to be better for weak disorder.
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