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AuGa, has been studied extensively in recent years because of its rather surprising

temperature-dependent Knight shift and magnetic susceptibility. To gain some information on its

vibrational properties we have measured the temperature dependence of the integrated x-ray intensities

of various Bragg reflections from 300 to 625'K. We have detected the anharmonic anisotropic Ga atom

vibration. The ratio of the anharmonic to harmonic potential coefficients for the Ga atom is about half
that of other ionic fluorite compounds. The vibrational mean-square amplitudes of Au and Ga are

found to be equal to within experimental error, while in other fluorite compounds these relative

amplitudes diA'er by 50%. The temperature dependence of the x-ray intensities was found to be

anomalously large. To fit the data a conventional quasiharmonic treatment would require a Gruneisen

parameter y'= 4.6 which is more than twice the value expected from measured expansion coeflicients,

specific heat, and bulk modulus. We show that this large value of y' is most likely associated with the

C I I C 12 shear modulus which appears to be both volume and temperature dependent. This
temperature dependence is shown to be consistent with the thermal depopulation of the high density of
states just below (F and is consistent with the high-temperature Knight-shift behavior,

I. INTRODUCTION

In the past few years, much attention has been
given to the isomorphous compounds AuAl„
AuQa„and AuIn, . The principal reason for this
interest comes from the fact that the Qa" Knight
shift and the bulk magnetic susceptibility of AuQa,
both display a marked temperature dependence
(in fact the Knight shift changes sign at about
65 'K), whereas the corresponding quantities in

AuAl, and Auin, are almost temperature indepen-
dent. ' ' To further complicate matters, in con-
trast with these striking dissimilarities, many of
the electronic properties (electronic specific
heats, ~' Hall coefficients, e resistivities, '~ mag-
netoresistivities, ' and Fermi-surface topologies' ")
contain only slight differences across the series.

AuAl„AuQa„and AuIn, all are of the fluorite
structure. In the past few years, neutron and

x-ray diffraction studies of this structure have
shown that certain structure factors behave in an
unexpected fashion. Willis, "using neutron diffrac-
tion techniques to study CaF„ first observed an
unexpected temperature dependence for the inte-
grated intensities of certain Bragg reflections. .

His investigations dealt with the CaF, [(755), (771),
(933)] reflections, all of which occur at the same
(sins)/A. . He showed that the Debye-Wailer factors
of these three reflections were different, and this
result was inconsistent with thermal vibration
models which assumed both the Ca and F atoms
to vibrate in a centrosymmetric fashion about
their equilibrium positions. Simply put, aniso-
tropic Debye-Wailer factors are inconsistent with
a cubic harmonic crystal. %'illis" and Dawson"

were able to explain these observations quantita-
tively by recognizing the fact that the local site
symmetry of the F atom was noncentrosymmetric,
and, accordingly, by treating the problem of
thermal vibrations with a phenomenological model
which included anharmonic cubic and quartic
terms. Since then, this approach as been used
successfully to explain the results of similar in-
vestigations made with both neutrons and x-rays
on different compounds with the fluorite structure.
BaF„"UO„" and SrF, (Ref. 17) have been studied
with neutrons, and CaF, (Refs. 18, 19) and Mg, Si
(Ref. 20} with x-rays.

In the present experimental study of AuQa„we
employ Wil1.is's model to examine quantitatively
the temperature dependences of the x-ray inte-
grated intensities for various Bragg reflections.
Our goal was to see if the anharmonic anisotropic
effects, which were expected to arise on account
of the tetrahedral site symmetry of the Qa atom,
might in some way be correlated to the unexpected
behavior of the Qa~' Knight shift and bulk suscep-
tibility of AuGa, .

II. THEORY

AuGa, has the fluorite structure (see Fig. 1).
The lattice is constructed from three interpene-
trating face-centered-cubic sublattices; one is
associated with the Au atom and two with the Ga
atoms. The coordinates of the atoms are Au (X
site): 000; Ga (F site}: —,'«,. and Ga (Y'site):
~~~, all plus fcc translations. There are three
atoms per primitive cell.

Using symmetric Bragg geometry, the total
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(A}

vector; fA„, fo, are atomic scattering factors
corrected for dispersion; ( ); signifies an en-
semble average evaluated at sites i=X, Y, Y', u
is the time-dependent displacement of the atom
from equilibrium. The problem now is to calcu-
late the ensemble averages appearing in Eil. (1).

We adopt the formulation as developed by Willis"
and Damson, '4 and treat the problem classically.
The motion of each atom is assumed to be deter-
mined by a local potential, and the ensemble
averages are calculated using classical statistical
mechanics. We deal with the Au atom first, since
this case is algebraically the easiest.

The local site symmetry of the Au atom is
cubic (OA}, and according to Ref. 14, we assume
a local potential of the form

yA. = 1'0+ o'A.(~2') —~A,~'

(B}
FIG. 1. Schematic representation of the Guorite

structure. (a) shows all the atoms of the cubic cell.
The filled circles are Au atoms and the open circles Ga
in AuGa2; (b) primitive cell, showing the environment of
the two Ga-atom sites F and F'.

measured x-ray integrated intensity, designated
as E, can be written as"

& 2 A'(E)(E*)(1+q) (1+cos'28)
&2p, u, 2 sin26}

where Pp is the incident power, r, is the classical
electron radius, ~ is the crystal rotation rate,
X is the x-ray wavelength (0.71 A}, li is the linear
adsorption coefficient, v, is the volume of the
unit cell, q is the thermal diffuse scattering
(TDS) correction, and (E) is the structure factor.
The terms ii, , v„and (1+cos'28)/2 sin28 depend
somewhat on temperature because of thermal ex-
pansion, and the symbol ( ) denotes an ensemble
average.

The structure factor (E) can be written

(E) 4(f (ejH'8) f elH fi (eiH 'U)

(2)

where r„r, are basis vectors (&, 4, A') and (&, f, ~),
respectively; H is 2n times a reciprocal lattice

1+2okT

where

1+20kT, —, (1+2y'XrAT), (6)
1

&p, Au p Au-

y' = y+10~(~/&'), A.(1+2yXT, )/X, , .

where r'=x'+y'+s'; x, y, z are the displace-
ment coordinates; and Vp, aA„, and ~A„are the
constants of the potential. The integrals are
evaluated in Ref. 13, and, neglecting high-order
terms, we end up with the Debye-Wailer (DW)

factor

NAz (eiH u )—
Au

= exp(-H ' ,'kT((1/viA„-[1+20kT(5/a')A„]} ),
(4)

where & is Boltzmann's constant.
The constants in the potential are assumed to be

a function of the equilibrium volume of the crystal,
and the iluasiharmonic (Gruneisen) approximation"
is made in order to account for the fact that these
constants soften as the crystal expands. We thus

have, at the temperature 7.' Tp+&T where T,
=298 'K,

(An/u)A„= (A5/6)A„= —2ygAT,

where y is the Gruneisen constant and X the volume
coefficient of expansion. We now let ap A„and ~p

be the values of &A„and ~A„at temperature Tp and

substitute Eil. (5) into Eq. (4). For the tempera-
ture range in this experiment 2yX4T is small
compared to unity and with this approximation
and some algebraic manipulation we can express
the bracketed ( ) term in the exponential of Eq.
(4) as
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and we can write for MA„

M„„=(EpkT/2+0, „„)

x [1+20kT (5/a0) „„](I+2y'ya T) . (8)

We can put these results in a form similar to
Paskin's" reduced temperature formulation since
(I +2y'g&T) = (a/a0)0", such that now

H~AT
M„„= [1+20kT, (o/u')0 „„](a/a0)0", (9)

0 ~ Au

where a and ao are the lattice parameters at T
and T„respectively. Note that in Eq. (9} the ex-
ponent contains the modified Qruneisen parameter,
and if we consider the bracketed term involving
6 together with &o A as a modified quadratic po-
tential coefficient, Eq. (9) is in the form of the
usual reduced temperature DW factor. The modi-
fied Gruneisen parameter is defined in Eq. (7)
and differs from the usual value of y because of
the expression involving the quartic term (o) in
the potential.

We can perhaps get a better insight into the sig-
nificance of the quartic potential term by expres-
sing the potential in a quasiharmonic form:

VA„= V +gaA„r

where O'.A„ is both temperature and volume depen-
dent. The DW factor becomes from Eq. (4)

exp(-M~„) = exp(-H0kT/2a„'„) . (11)

Assuming e'A„ to be weakly temperature and volume
dependent we have

Thus we see that the fourth-order term in the po-
tential accounts for the temperature dependence
of the quasiharmonic force constant n'„„[Eq. (14b)],
while the Qruneisen parameter y accounts for its
volume dependence. From Eq. (14a) it is clear
that we can simply include the fourth-order term
in the anharmonic potential in the quasiharmonic
quadratic term u„'„. Eqs. (14) will be important
in our discussion of results.

Our model thus has Eq. (10) for the quasihar-
monic local one-atom potential, along with the
relationship (ha'/a)„„= —2y'ga. T [see Eq. (7)].
The potential parameter e' is thus considered
to be both temperature and volume dependent.

Our notation can be simplified if we define some
new quantities. Due to thermal expansion, H'
=H', (a,/a)' (where the subscript zero refers to
room-temperature values) and we can write

T, = (a0/a)'(a/a0}0" T,
where j refers to either Au or Ga and Qh' =h', +h',
+h', . Combining Eqs. (9), (15), and (16) we have

MA„= 8'A„T2 .

We next treat the Qa atom in a similar fashion.
The local site symmetry of the Qa atom is tetra-
hedral (T,), and we note that the local environ-
ment of one of the Qa atoms situated at the F
position is related to that of the other Qa atom
situated at the 1" position by inversion. The po-
tential associated with the two Qa atoms is

+A +o A + +T+ (12)
Vo, = V + ,'u ro' +—P',(xyz), (IS)

If we insert Eq. (12) into Eq. (11) and treat the
differentia1 terms as small, we have for the ex-
ponent in the Debye-Wailer factor

with + for the F and P' sites, respectively. The
ensemble averages are evaluated in Ref. 13, and
the result is

e "&~= exp(- IV T,o) [I+ i[kT(a/a0)0~ ]'(20/a)'

Au (13)

1
1+204To

~O Au O'O, Au- O, Au (14a)

1 &eA'„6
&T = —20k —

0 (I +2ygT0)nT,
00Au O OI Au

If we now compare the corresponding terms in
Eq. (13) with Eq. (8) we have, using Eq. (7),

x (p' /n 0)(0h,h,h, )] (19)

where h„&„h,are the Miller indices, and + re-
fers to Y and l" sites, respectively. The poten-
tial parameters are assumed to be both volume
and temperature dependent, and the approxima-
tion (&o.'/o. '), = (4P'/P')c, = —2y'y&T; Eq. (7) is
used here as with the Au terms.

The structure factors can now be written by
substituting Eqs. (19) and (17) into Eq. (2). The
structure factors for the even reflections are

(E}=4[f„„exp(-@~„T,)+2fc, exp(- , IVc)]T(20}

1 &a„'u &T = —2yg4T .
&o.A. ~~ o

(14b)

(14c)

For Qh=4n or 4n+2, where Qh =h, +h +h =4n
or 4&+2 and require the + or —sign, respective1y.
Note that the third-order term involving P' does
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not contribute to these even reflections. For odd
reflections, i.e., g&=4&+1, we have

&+)=4[f~.exp(- ll'.T,}

+2fo, exp(- W~, T,)[kT(a/a, )"]'
x (2v!a)'(P'/c. ") o, (h,h, h, )j . (21

III. EXPERIMENTAL

Symmetric Bragg geometry and ~-scan motion
(moving crystal, stationary detector) were used
to measure the x-ray integrated intensities. The
incident zirconium-filtered Mo K radiation had
a divergence of 0.3', and the diffracted beam was
detected with a scintillation counter coupled to a
single-channel analyzer. The sample w'as located
in a furnace which was very similar to one which
has been described previously, " and He gas
was used to ensure even heating. The sample
temperature was monitored with two thermo-
couples, and the variation in temperature dur-
ing a measurement did not exceed +0.5 'C.
Because of thermal expansion, the position of
the Bragg reflection changed slightly with in-
creasing temperature, and it was necessary to
check to make sure that all diffracted radiation
was accepted by the counter aperture as the tem-
perature increased.

The lattice parameters from various sections of
the AuGa, crystal were checked, and the results
confirmed that the crystal w'as homogeneous and
of a single phase. Separate sample platelets of
about 10&5 x 2 mm were prepared for each
(h, h,h, } reflection measured. After each platelet
was carefully oriented, it was polished so that
the (hP2h, ) planes in question were paraHel to the
sample surface. Final. polishing was done on a
Syntron polishing machine, and Beuhler micro-
clothes, water, and aluminum oxide powders
ranging from 1 to 0.3 pm were used. The single-
crystal platelet was not etched. Surface strain
was partially removed by annealing the sample in
a helium environment at 300'C for about three
hours.

Multiple-reflection effects (Umweganregung)
were checked by measuring the room-temperature
integrated intensity of each sample at 90' azimuths
(i.e., rotation of the crystal about a normal to the
diffracting planes). The average of the 0' and
180' intensities agreed to within 2% of that corre-
sponding to 90'-270' azimuths. In addition, the
temperature dependence of the integrated intensity
was compared for a given crystal at different
azimuths. These results agreed to within the
statistical uncertainty. We concluded that
Umweganregung effects were not present.

The linear absorption coefficient p for AuQa,

is about 1000 cm '. Using the atomic scattering
factors and dispersion corrections given in Ref.
24 and a Debye temperature of ex -195 K,"one
finds that the calculated difference between the
dynamic (see Ref. 26) and kinematic integrated
intensities for the AuGa, [9V5] reflection is about
5 je. The polishing process left a strained surface,
and since all gh =4~*1 reflections examined in
the present work occurred at (sin8)/& 1, these
reflections were assumed to be free from extinc-
tion effects. The difference between the dynamic
and kinematic integrated intensities for reflections
like the (1222) was calculated to be l(P%%d to 15%|,
and the crystal for each Qh =4n reflection was
purposely strained after it had been polished in
order to make sure that it would behave in a kine-
matic fashion. Extinction errors were thus absent
from all measurements.

The uncertainty due to counting statistics was
less than 1.5% of the net measured integrated in-
tensity for each data point. The incident intensity
was monitored before and after each measurement,
and all measurements for a given reflection were
normalized to a common incident intensity. After
a high-temperature run, many and sometimes
all measurements were retaken; they usually
agreed with the first set to within 1.5%.

The thermal expansion coefficient was needed
in order to reduce the data numerically, and the
Bond technique" was employed to measure the
lattice constant as a function of temperature.
A AuGa, [553] single crystal was placed inside
the previously described high-temperature fur-
nace and located at the center of a Siemens Count-
er Tube Goniometer. Copper E radiation, fil-
tered with Ni, was used. The principal errors
which occur in this experiment, as described in
Ref. 27, were taken into consideration. The lat-
tice parameter at room temperature (25'C) was
6.0757 + 0.002 A and at 350 'C, 6.1115+ 0.002 A.
The average linear expansion coefficient was
(18+2)X10 6 over the range 25-350'C. The lat-
tice parameter at 25 and 350 'C agrees very well
with values currently in the literature, e.g. ,
6 075 A'-and 6.078 A' for 25 'C and 6 .117 A'9
for 350 'C.

IV. DATA ANALYSIS

Equation (20) shows that (+) for the Qh =4+
and Qlg =4n+2 reflections is a function of Q&',
whereas for the odd reflections [Eq. (21)] (E)
depends on Qh' and (h,h,h,}. We consider those
reflections with a common value for Qh' but with
different values of the product (h,k,h, ) as belong-
ing to a family —e.g. , the reflections (971), (955),
and (1131) form one family. The present model
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suggests that reflections belonging to a family of
odd-index reflections will have different structure
factors since the product (hP,h, ) will be different
for each member. All reflections belonging to an
even-index family (Qh =4n), on the other hand,
are expected to have the same structure factor,
i.e., the even reflections will have an isotropic
Debye-Wailer factor.

Defining U as follows and using Eg. (1) for the
experimental integrated intensity E,

U =E/A(T) =(E)(E*)

where

(22)

(I064); (I 222)0~-

-0.2-
-0.4—

-0 6-
-0.8-

-l.6— ~l
-2.0- ~t

Error ( dot size l

—1.0—
0

c -I.4-

-2.2—

-2 4-
I I I I I I I I I I I I I I

300 350 400 450 500 550 600 650
T( K)

FIG. 2. Log of parameter U, proportional to inte-
grated intensities vs absolute temperature for the (10,
6, 4) and (12, 2, 2) reflections. The points for the two
separately measured intensities are coincident.

A(T) =(1+@)(1+cos'28)/2sin(28) .
We see that a plot of U vs T should reveal whether
this expected difference is there or not.

We must first calculate g, the first order TDS
correction, in order to compute U. Cooper and
Rouse, ' assuming the first order TDS correction
to be isotropic about each reciprocal lattice point,
have shown how to evaluate this correction numeri-
cally. This correction depends only on (sin8)/&,
the AuQa, elastic constants, the experimental
scan range, and the temperature. The elastic
constants and their temperature dependences
were taken from Ref. 25, and the Cooper-Rouse
FORTRAN IV program was used to perform the
necessary calculation. The isotropic approxima-
tion was assumed tobe sufficient (see Ref. 18, and
their comments concerning the anisotropic calcu-
lation performed by Dr. C. B.Walker). For the
(QVS} (1153)family, the scan range was 1.9', the
receiving slit range was 2.4' by 2.6', and the cor-
rection rl ranged from 15.7% at T = 25 'C to 31.5%

5.2
5.0

c 4, 8

o 44
2

o 4.o
3.8
3.6

3.2

{975);{I l53)

I I I I I I I I I I I I I I I I I I

300 340 380 420 460 500 540 580 620 660
r( K)

5.6
5.4
5.2

tII 5.0
c 48

4.6
4.4
4.2
4.0
3.8
3.6

c 3.4
3.2

I I I I I I I I I I I I I I I I I I

300 340 3SO 420 460 500 540 580 620 660
w( K)

FIG. 3. Plots sixnilar to that of Fig. 2 for two odd-
reflection f~m~lies. Note that the curves for each re-
flection within a family are different.

at T =300 'C. For the (1133) (973) family and
similar conditions, q was 15.9/q at room tempera-
ture and 36.7% at 350 'C.

Figure 2 is a plot of ln(U/U, ) vs T for the (1064)
(1222) pair, and is typical of a family belonging
to the Qh=4s class. The temperature dependences
of the two reflections are indistinguishable. Fig-
ure 3 shows a similar plot for two odd-reflection
families, and it can be seen that members of the
same family have different temperature depen-
dences. Equation (21}preducts that (E) (and
hence U) for the Qh =4n+1 reflections should be
greater than (F) for the 4n —1 reflections, and
this is confirmed qualitatively in these graphs.
The other odd-family reflections behaved simi-
larLy. The data are now interpreted in terms of
Eels. (20) and (21) in order to obtain, in a consis-
tent fashion, the four parameters ~p g„p +0
Po G„and y'.

The procedure used to obtain these parameters
involves successive approximations using one or
more parameters to fit data sets for different
classes of reflections. We outline this method
in a general way.

For a first estimate of the Au DW factor
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exp(- M„„)= exp(- W„„T,), we deal with the follow-
ing odd families: (9V5) (1153), (VVV) (1151),
(1133) (9V3), and (9'll) (1131)(955). From Eq.
(21) one can show that the anharmonic term con-
tributes little to the structure factor. For a first
approximation we set P'= 0 and form the expres-
sion

P = in[(U~U2)~ 2/f„„]

From Eq. (21), with P'=0, we see that P=C,
-2Wg&T2; i.e., me expect P to be linear in T,.
Uy and U, are related to the two integrated inten-
sities of two different reflections from the same
family [Eq. (22)] at a given temperature, C, is a
constant, and T, involves y' [see Eqs. (V) and (8)].
Fitting P to a line linear in T, (using a least-
squares procedure) yields W„„. Consecutive values
for y' mere tried until one which minimized the
rms error associated with the fit was found. All
odd families were analyzed in this fashion, each
family producing optimum values for WA„and y .

Now we try to improve the estimates made in
the previous section. We deal directly with the
two integrated intensities E, and E„measured
at temperature T (from which the numbers U,
and U, were calculated in the previous section)
and form

ln(E, /E, ) = ln[(const) [(E,) ~
'/~ (E,) ['] . (23)

Since the two reflections belong to the same family,
we see that Eq. (23) is independent of the TDS cor-
rection as well as the polarization term. Further-
more, referring to Eq. (21), we see that to a good
approximation it is proportional to the cubic an-
harmonic term P'. We are dealing directly mith

the ratio of two experimentally measured numbers.
The constant term accounts for the fact that the
two data sets were taken under slightly different
experimental conditions. For example, the orien-
tation of one surface with respect to the diffract-
ing plane was not the same as that for the other,
or the surface roughness of the two specimens
was not the same. The receiving slit dimensions
and scan range were kept the same for both sam-
ples in order to ensure thai both had identical
TDS corrections. Referring to Eqs. (23) and (21)
we first set W„„—Wc, =0 (i.e., assume that the Au
and Ga DW factors are the same) and do a least-
squares fit on ln(E, /E, ) for P'. Using this value
of P' we recalculate P, keeping (to first-order)
terms proportional to P', and get nem values for
WA„and y'. All the odd-order families were in-
vestigated in this way and the values obtained lay
in the ranges

WA„g h' = (1.98+ 0.04) x10-' 'K-' y'-4. 55 ' 0.35

The next step in the data refinement is to obtain
an independent value for the Ga DW factor, in
particular 8~, . The even reflections, as can be
seen from Eq. (20), depend strongly on the Ga
DW factor and we consider the Qh =4n re.'lections
(1200) (884); (862) (1020); (1064) (1222); and

(12 40). With the data from a given reflection,
using Eq. (20}, we formed the ratio U/Uo

U (j') 2 f cMgg122'f c M('~1'2 2

(Q)R (f e~ggrg 2f cMc 2'2}

(25)

The subscript 0 refers io room temperature.
U«ng a p»r of values within the range of Eq.
(24) for WA„and y, we minimize (Qr[U/Uo
—((E)/(E),)']')'" by varying Wo, . U/U, is calcu-
lated from the data, and ((P)/(E)o)' from Eqs.
(20) and (24). The resulting value for Wo, together
miih WA„and y' was then used io calculate each
data point. Experiment and calculation agreed to
within 2% for all data points of a given reflection.
This process was repeated for different pairs of
values for W„„and y' within the range of Eq. (24).
All gh =4n reflections were analyzed in this way,
and an interpolation table was set up.

Now that we have a value for Sz„we return to
the beginning, or the odd reflections. From the
first part, each reflection had values for &A„, y,
and P'. We can now calculate the corresponding
value for WG, from the table of the previous para-
graph, and hence get &W= WA„- S~,. This final
correction, which mas formerly omitted, is now

included in the analysis, and we arrive at im-
proved values for WA„, y', and p'. This process
was repeated for all odd reflections. Table I
shows the refined values for each odd-reflection
family. With each set of the four parameters
shown in the table, y', P', Wo„and W„„, the ex-
perimental data points were calculated using Eqs.
(20) and (21). The calculated points of the recon-
structed data, as a function of temperature,
agreed with the experimental values to within 1%,
and the resulting plots (experiment versus calcu-
lation) were indistinguishable from one another.

The success of the interactive procedure out-
lined above depended to some extent on the fact
that large changes in p' had little effect on WA„and
y'.

The temperature-dependent data from 1'7 reflec-
tions could be reconstructed to within 2% for all
temperatures from the average parameters given
below:
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TABLE I, Refined values of various parameters for odd-reflection families.

Reflection
10 {'K )pa'

Interpolated

105 ~" (K-&)ga~ 6 H/= KA„—KGa (oK
I

10' —,,
' u'(AP/'K')

0

(975); (1153)
(777); (1151)
(1133); (973)

(971); (9SS)
(1131); (9SS)

4.6+24
4.5

4.25
4.85
4.8

2.017 + 1.5 k
2.007
2.014
1.946
1.947

1.913 + 2'lo

1.953
2.004
1.967
1.955

(+)0.16x 10
(+ ) 0.8 x 10
{+)0.14 x 10
(—)0.26x10 ~

(-)0.1x10 ~

0.550 +3lo
0.580
0.560
0.547
0.585

Average 4.6 + 0.4 1.986 + 0.04 1.958 + 0.05 0.565 + 0.028

y'=4. 6~ 0.4,

Po= (1.56+.21) &&10'2 erg/cm3,

W g h'=(1 99~.04) x10-&'K-

W Q &'=(1 96 +.05)&&10 ''K ',
(P'/a'), o, =0.42s0.04 A ' .

In the usual notation we have

Mq = WqT 2'[( ins8)/&)',

B, = 8n~k/n, = Sa (u20),
(27)

where u~ is the projection of the displacement of
the j'" atom on the scattering vector. Thus

BA„=0.88+ 0.02 A~,

BG, =0.867+0.02 A2 .
An example of the reconstructed data from these

parameters giving the poorest agreement between
calculation and experiment is shown in Fig. 4.
For all the other 16 reflections the agreement is
even better.

For AuGa„ the TDS correction was quite large;
for example, g [Eq. (1)] was -40% at 350'C for
the (VVV) (1151)family. If the value for tt was
used in the determination of any of the four param-
eters no~, a'0~, p', and y', in general it had to
be known fairly accurately. This would have been
especially true for the cubic anharmonic term
P', since contributions to the intensity from terms
involving P' are small. However, the method
employed to obtain P' involved the ratio of the in-
tegrated intensities between two members of an
odd-reflection family, and hence the TDS correc-
tion was divided out. Thus, uncertainties involved
in calculating P' were minimized, and we feel
that the quoted accuracy of +139g for p' is realis-
tic. This method of data analysis appears to be

more accurate than that used in dealing with Cap,
(see Ref. 16), where the quoted error in P was
~33%.

The uncertainty in ~', „„and n,' G„on the other
hand, is determined principally by the error pres-
ent in calculating the TDS correction. The numer-
ical analysis showed that a 10/0 change in the value
for q produced a -1% cha, nge in both parameters.
We estimate that the present approach used to
calculate g should be accurate to 10/0.

The x-ray Debye temperature O„can be calcu-
lated from B in Eq. (27). In the Debye model4O

B= (Sh2T/m&e, ) [Fj. {FJ is the Debye function
which is unity above 300'K, and ~n is the average
mass of an atom in the unit cell. Comparing 8
with WT, [Eq. (17)] we can easily show that

n' = 4 Ãm 0'0'//3h' (26)

((2 2 2)

c 2.5 oints t.

JD

o 20

l. 5

~Ca oculo ted

I,O-

300 , 340 3SO 420 460 500 540 580 620
T( K)

I"IG. 4. Reconstruction of data for the (3.2, 2, 2) re-
flection. The solid curve is calculated using the param-
eters in Eq. (26) derived from the data analysis. The
plus signs are the data points. This reflection is the
poorest fit between calculation and experiment.

and we arrive at a Debye temperature 0„=(167+ 4) K.
This agrees well with (192+ 5) 'K (Ref. 5) and
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V. DISCUSSION OF RESULTS

Prom the experimental viewpoint, the tempera-
ture dependence of the integrated intensities of
the Bragg reflections in AuQa, are quite anoma-
lous. The most striking aspect is that the reduc-
tion in intensity with increasing temperature is
much larger than one would expect Wing the usual
quasiharmonic Qruneisen approximation. The
data can be fitted with this approximation, but
only if one uses an apparent Qruneisen parame-
ter more than twice as large as one calculates
from the measured expansion coefficient, specific
heat, and bulk modulus.

Two other unexpected results are obtained when

one compares AuQa, to other fluorite compounds.
One is that the vibrational amplitude of Au and Qa
are identical within experimental error, while
for O F 18,19 Mg Si 20 PaF 15 and SrF v the
mean-squared amplitudes are roughly 50% differ-
ent. The other peculiarity is the fact that the
third-order anharmonic potential term P', rela-
tive to the second-order term ~', is half as large
in AuQa, as in the other fluorite structures men-
tioned.

In this discussion we will attempt to relate in a
semiquantitative fashion the anomalous tempera-
ture dependence to a structured electronic density
of states near the Fermi energy and, further, to
show that this is consistent with the observed
temperature dependence of the Knight shift and
elastic constants in AuQa, .

First we discuss average sound velocities.
From Testardi's" ultrasonic measurements at
400 'K, we obtain an average sound velocity v
from the bulk modulus of =2.9 X10' cm/sec. More
exactly, the sound velocities for the longitudinal
modes are about 3.3X10' cm/sec. Those for the
transverse modes are approximately 1.4X 105

cm/sec, the C« —C„shear mode being the soft-
est at 1.2 x 10' cm/sec. The Debye model pre-
dicts 2

v = &u~/[6v'(N„)]" ', (29)

where &u~ is the Debye fre|luency (htu~ = 46, ) and

N„ the number of atoms per unit volume. Using
8„=187'K, we get v -1.7x 10' cm/sec, a value
quite close to that of the transverse modes.

196 'K (Ref. 4) obtained from specific heat mea-
surements and e, =200'K from Testardi's" elas-
tic constant measurements.

Finally, using our thermal expansion coefficient,
data from Ref. 25, and the usual expression for
the Qruneisen parameter given in B,ef. 41, we
also calculate that y =2.0. This is less than half
of what we find from our data analysis.

where (Aj& is the ionic plasma frequency and ~0 is
the Thomas-Fermi screening length. %e have

+~2 = 4w(N/V)(Ze)'/m,

where N/V is the number density of ions, Ze is
the average valence charge, m is the average ion
mass, and

8
g2 Qg
—= 4ve2 ——g(e) de

0
(32)

where f (&) is the Fermi function and g(e} the den-
sity of states per unit volume. Thus

Bf -Z/2
u = u& 4ve' ——g(e) de

Ii' (33)

In the usual case when the density of states is
slowly varying near the Fermi surface, the inte-
gral in Eq. (33) is just g(e~), the density of states
at the Fermi surface. For the moment we con-
sider this to be the case and treat the integral,
and therefore g(&z), as being temperature inde-
pendent. Following Rayne' we use 7 el.ectrons/
molecule as the valence charge contribution (one
from Au and three from each Ga). Using Rayne's
low-temperature electronic specific heat' we can
get an approximate value for g(&~). Putting ap-
propriate values in Eg. (33) we get orF= (2-3) &&10'

cm/sec, and this will depend somewhat on the
strength of the electron-phonon interaction. This
value is in reasonable agreement with the values
obtained from the x-ray Debye temperature and
the actually measured sound velocities.

Our point in these calculations is to show that
an average sound velocity calculated from our
experimental value of u0' „„isabout the same as
that calculated from an electron gas in the Thomas-
Fermi limit. %e therefore consider e0 „„propor-
tional to [ I —(Bf/Be)g(e)de J

' In the f. ollowing
discussion we treat this integral as temperature
dependent. From E|I. (14b) we see that the tem-
perature dependence of this integral is related to
the temperature (not volume) dependence of the
quasiharmonic force constant.

Switendick and Narath'~ presented detailed band-
structure calculations for AuAl„AuQa„and
AuIn, . In AuGa, the entire second band (I;), ly-
ing close to but =0.012 eV below the Fermi sur-
face, describes the s-like valence electron anti-
bonding states between nearest-neighbor Qa atoms.
It is very flat between the X and I' points and
hence represents a rather high density of states.
This band is quite different in the other two iso-

Vfe now calculate the long wavelength velocity
u in the Thomas-Fermi limit. Using the Thomas-
Fermi approximation, it can be shown that

(30}
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TABLE II. Logarithmic derivatives of the elastic
constant for CaF&, BaF&, and AuG@ from Refs. (35} and

(25), together with corresponding values of the Grunei-
sen parameter y and the thermal expansion coefficient x

CaF) BaF& Aug@

1 dCg(
C„dT'

1 dCgp

C&& dT
1

Cg( Cg~

1 dC44

C44 dV'

1
Cgg +2Cig

d (C)) —C)~}

dT

3.5

2.1

2 ' 2

3.2

1.5

2.9

2.7

4.4

1.6-2.1 4.6'

{10 'K ) 56.4 54.g 54.0

27g{10 4'K ') 2.1 5.0'
1.8-2.3

'See Ref. 13.
From data analysis.

'Calculated.

structural compounds AuIn, and AuA1, . Schirber, "'9
on the basis of experiments on the effect of pres-
sure on the superconducting temperature and
other Fermi-surface properties, concluded that
these states become thermally uncovered as the
temperature increases. Hence there is strong
indication that the integral in Eq. (33) is tempera-
ture dependent.

We turn our attention to the anomalously large
value of the Qruneisen parameter y'. The square
of the sound velocity is, in general, proportional
to the corresponding elastic modulus C. From
Eqs. (28) and (29) we see, then, that the quantity
e' appearing in the DW exponent is proportional
to the elastic moduli. It then follows that the
logarithmic derivative of C and u are equal, and
from the Gruneisen approximation as stated in
Eq. (5)

(I/~')(«'/& T) = (1/C)(«/& T') = —2r'X (34)

To provide a basis for comparison let us consider
the logarithmic derivatives in CaF, and BaF,.
From the work of Wong and Schuele" we obtain
the values shown in Table II. From the values of
y and g in Table II we see that -2' is of the or-
der of -2.1&&10 "K ' and -(1.8-2.3)&&10 «'K '
for CaF, and BaF„respectively. We note there
is reasonably good agreement between the loga-
rithmic temperature derivative of the elastic
moduli and the value for -2yg. The situation is

different for AuGa„as can be seen in column 3
of the table. The logarthmic derivative for

Cyg ranges from two to four times the values
for the other AuGa~ moduli. We have shown ear-
lier [Eq. (14)] that the total derivative of o. ' with
temperature can be separated into explicit volume-
and temperature-dependent terms:

0 dT Qo aV OBT Q'0 BT 0

(35)

NumericaUy this is = —(5.0+ 0.4) x10 "K ' and
is close to the value for the logarthmic derivative
of C„—C». The first term in Eq. (35) is the ex-
plicit volume dependence of the quasiharmonic
force constant, and this is -2yg= —2.2~10 ''K '
(note that r, not r', is involved). This compares
favorably to the values for the other moduli shown
in Table II. The difference between 5.0&10 ' and
2.2&10 ', i.e., 2.8&10 ', is the contribution
from the exPlicit temperature dependence of the
elastic modulus in question. Also remember that
the sound velocity calculated with the Debye model
(recall that ~~o is proportional to o". ) was shown
to be quite close to that of the C« —C» shear
mode, and that this is the softest mode. We would
thus like to associate the unexpectedly high va'lue

for the apparent Gruneisen parameter with the
temperature dependence of the C„-C„shear
modulus. We also note recent work (see, for
example, Sham" or Rehwaid e& a&.")dealing
with compounds which have a sharp peak in the
electronic density of states just below the Fermi
energy. Sham has shown that this peculiarity pro-
duces a situation in which some of the elastic
moduli are both volume and temperature depen-
dent (the moduli are usually only volume depen-
dent). In the present case, since we have attrib-
uted the large value of y' to the C» —C» elastic
modulus, and since y' contains a term which de-
scribes the temperature dependence of this modu-
lus, it appears as if yg Cyp is both volume and
temperature dependent, and hence probably most
sensitive to the thermal depopulation of the high
density of states region just beneath &~. The
numerical work of the last paragraph suggests
that the remaining moduli, on the other hand, are
principally volume dependent and relatively in-
sensitive to this thermal effect. We now speculate
on the relationship between the foregoing argu-
ments and the Ga~' Knight shift in the 300-600'K
range. From the Jaccarirm et al. ' and Warren
et al. measurements, the Knight shift is positive
in this range. From Fig. 1 of Ref. 1, we find that
the logarithmic derivative K„'(r K„/n T) = (2.4 + 0.5)
&10 ' K ' and from Table I of Ref. 26, the same



10 X-RAY STUDY OF ANHARMONICITY IN AuQa2 2157

derivative is (1.7+0.5)x10 ~'K '. The Knight
shift behavior in this range is s contact in nature,
and is thus proportional to" f —(&f/&&)g(&) &e.
We have suggested that the temperature depen-
dence of the quasiharmonic farce constant is pro-
portional to the inverse of this integral. [From
Eqs. (28) and (29), 5 is proportional to o.", which
is inversely proportional to the integral. ] It fol-
lows readily that

1 ~n,' 1 4K„
a~ BT E„AT

where the logarithmic derivative of a~ refers to
the explicit temperature dependence, which, from
Eq. (35), is

2(y' y))f- (2.8+0.5) x10-''K-' .

This is in surprisingly goad agreement with the
measuredKnightshiftvalueof (2.0s0.5)x10 ~'K '.
Admittedly the argument is not very rigorous, but
it does support the contention that the large value
of y' needed to explain the strong temperature
dependence of the x-ray integrated intensities in

AuGa, is due to the thermal uncovering of the
density of states just below the Fermi energy.

The explicit anharmonic parameter Po„ the
third-order term in the one-atom potential, is
not as easily discussed in a semiquantitative
fashion. The ratio Po,/oto, is a measure of the
degree of anisotropic motion relative to the quasi-
harmonic vibration. For the XF, ionic fluorite
compounds such as CaF» Mg, Si, BaF» SrF»
(P/n)„= 1 A ' while for (g/n'), we have = 0.4 A '.
On the other hand the relative mean-square ampli-
tude of the X to F atoms in the ionic compounds
is =1.5, while the Au and Qa amplitudes are the
same in AuGa, . Thus, in AuGa„ there seems to
be a greater tendency for the Au and Ga vibrations
to be coupled. It appears that the noncentrosym-
metric nature of the Qa atomic motion is much
weaker in AuQa, than in the other compounds
mentioned above. The rather weak noncentro-
symmetric Qa motion also suggests that the optic
modes contribute very little to the DW factor.

VI. SUMMARY AND CONCLUSIONS

The present experimental study of AuGa, has
dealt with the temperature dependence, in the
range 300-625 'K, of the x-ray integrated inten-
sities for various Bragg reflections. This com-
pound has the fluorite (Xy, ) structure, and the
local environment of the Qa atom is tetrahedral
in nature. If one treats the problem of thermal
vibrations with an Einstein single-atom potential
model which includes this tetrahedral symmetry,

one expects the odd-index reflections (i.e., those
for which 8+ k+I =4n+ I) to have structure factors
which are not isotropic. Willis, "while studying
CaF„was the first to notice this anisotropy, and
Dawson" and Willis" developed a local potential
model to quantitatively explain these observations.
This approach has since been used successfully
to explain similar effects in other ionic fluorite
crystals. " ' In the present study, the odd-index
reflections were observed to behave in the expected
anisotropic fashion, and the temperature depen-
dence of all integrated intensities was success-
fully accounted for with the Dawson-Willis model.

Using this approach, one finds that the atomic
mean-square vibrational amplitude is inversely
proportional to the quasiharmonic (quadratic)
force constant a'. The anisotropic nature of the
odd-index reflections is expressible in terms of
a parameter (Po/no) „where P' is the coefficient
of the third-order term in the Ga local potential.
We considered the potential parameters to be both
volume and temperature dependent, since this
allows one to neglect possible fourth-order terms.

The experimental results turned out to be quite
anomalous, particularly when compared with those
of other fluorite structures. The mean-square
vibrational amplitudes for Au and Qa were found
to be equal to within experimental error. In the
other fluorite compounds studied, these ampli-
tudes differed by about 50. In addition, the ani-
sotropic parameter (g/u')o, was one-half as large
in AuGa, as in the other compounds mentioned
above. We interpret this to indicate that the mo-
tion of the Qa atom is coupled to that of the Au
atom to a much greater extent than is the motion
of the Y atom to that of the &atom in the other
examples. The noncentrosymmetric nature of the
Qa atomic motion is much weaker here.

In addition, the rate at which all integrated in-
tensities decreased with increasing temperature
was much greater than expected. An apparent
Gruneisen parameter y' of 4.6 was needed in or-
der to fit the data, using the conventional quasi-
harmonic treatment. This is more than twice the
value one calculates from the measured expansion
coefficient, specific heat, and bulk modulus. To
attempt to explain this we first noted that recent
work (see Refs. 34-36) has shown that one can
expect compounds which have a sharp peak in the
electronic density of states just below the Fermi
energy (AuGa, is such a compound) to have some
elastic moduli which are both volume and temper-
ature dependent. Within the present model, y'

was used to describe the explicit volume and tem-
perature dependence of n'. We also showed that
the logarithmic derivative of a', (1/o. ')(&a'/b T),
was approximately that of the C» —C» shear mod-
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ulus. The high value for y' was associated with
the temperature dependence of this modulus, and
we conclude that it appears likely that this modu-
lus is both volume and temperature dependent. It

is probably most sensitive to the thermal depopu-
lation of the high density of states region just be-
neath &~. The remaining moduli seem to be in-
sensitive to this thermal effect.
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