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Interpretation of low-temperature Mossbauer spectra in the presence of Kondo deviations.
I. General considerations
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In this paper, we first derive the general expression for the Mossbauer line shape of a powder source
when cascade efFects come into play. Then we consider the case of a paramagnetic impurity —in a
metal —which exhibits an incipient Kondo effect, and we examine the problems which arise when the
relaxation of this impurity by the conduction electrons is studied by Mossbauer spectroscopy, i.e., in
the presence of hyperfine coupling. %'e extend conventional relaxation theory up to third order in

XI = —2 J,fnS s and investigate under what conditions the third-order damping terms can be
expressed as products of first- and second-order transition amplitudes. We find that this occurs when

either "extreme narrowing" or "secular" approximations are valid; in these two cases, the Kondo
correction to the relaxation matrix reduces to the standard computation of the second-order transition
amplitude. In the following paper, these results are applied to the study of relaxation effects of the
hyperfine populations at low temperatures, in the Mossbauer cascade of an Au ' Yb source.

I. INTRODUCTION

The effects of electronic relaxation on the Moss-
bauer spectra of '70Yb in gold mere considered in
a previous publication. ' Let us recall that the &4-
keV Mfissbauer transition of '~ Yb takes place be-
tween two nuclear levels: I=2 (excited, inverse
nuclear lifetime I' = 2v&& 69.4 MHz) and I, = 0 (funda-
mental). In cubic gold the lowest electronic level
of the Yb~ ion is the doublet l'7 with effective spin
$ =-,', which is separated from the next electronic
levels by about 80 K. The electronic relaxation is
due to the exchange coupli. ng -2~4& S ~ s of the
localized spin S with the conduction electrons. In
the experiments the Agg'~ Yb sample is used as a
powder source.

Under the influence of the hyperfine coupling
XQf A I ~ S inside I'„ the excited nuclear level
splits into two hyperfine levels F =I+3 with F=2
a,nd F=&, separated by an interval 6= —,'A where
A/k = 910 MHz. In Ref. 1, it was assumed that the
temperature was much higher than 4/ks -0.11 K.
Then the Mossbauer line shape is given by the sim-
ple formula

f(~) He 1, e ~'d~vr(M'(0)M( ~)}, -(1)
where p = I'/2 —f&o (ur is the distance to the center
of the Mossbauer spectrum), and M is the nuclear
electromagnetic moment responsible for the M5ss-
bauer transition.

In Ref. 1a, relaxation effects were calculated only

up to second order in J&,. in that case, when T
» &/ks it is possible to make the "extreme-nar-
roming" assumption. Then taking account of the
"spherical" symmetry of the problem, the relaxa-
tion matrix 8 takes a very simple form and can be
expressed as a function of a single parameter 1/
T„where T, can be identified with the longitudinal

relaxation time T«which would characterize the
electronic spin in the absence of hyperfine struc-
ture. As a function of temperature T» is given
by the Korringa law:

I/T, ~
= CrT= (4w/ff) o. J,~n (Er)ks T . (2)

Interpretation of experimental data' a.ccording to
the theory of Ref. 1a is indeed in agreement with

such a law. But very careful measurements3 indi-
cate that below 5 K, 1/T, as deduced from MPiss-
bauer spectra deviates slightly from linearity.
This deviation has been attributed by Gonzalez and
Imberts to the onset of Kondo effect at low tem-
peratures. Homever, the standard Kondo correc-
tion to 1/T, ~ is of third order in J,z, while the
theory of Ref. 1 is only valid up to second order
in J&. Before interpreting the experimental data
according to formula (15.2) of Kondo's review pa-
per, it is therefore necessary to be sure that this
is legitimate when 1/T, is extracted from a Mfiss-
bauer spectrum in the presence of hyperfine struc-
ture.

Finally, as mentioned in Ref. 1a, it has been ob-
served by Gonzalez and Imbert that at very low

temperatures, T-d/ks, additional information on
the electronic relaxation can be obtained using the
fact that the ratio of the two residual Mossbauer
lines tends to depart from its high-temperature
value, -'„owing to unequal populations of the hy-
perfine sublevels of the 84-keg state I. In a
source, this state is populated by the radioactive
decay of an upper state, with a population ratio
which differs from the Boltzmann value. Then if
electronic relaxation times at temperatures T- &/ks happen to be comparable to the nuclear life-
time of the 84-keV state, partial redistribution of
the population mill occur before the emission of
the Mossbauer y ray, which mill alter the line in-
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tensities. The study of these intensities will there-
fore give information on electronic relaxation in a
temperature range where alteration of the line
shape can no longer be used for such a purpose. '
Qn the other hand, at such low temperature, it may
be expected that the Kondo correction to relaxation
rates will saturate and change from a form
in [Its T/D I to a form in~ I)/Dl.

For all these reasons, in the present paper, we
will first give the general expression of the Moss-
bauer line shape of a powder source at arbitrary
temperature. We shall also reca11. the form of the
second-order relaxation equations at low tempera-
tures. Then, we will formally extend relaxation
equations to third order and investigate in what
eases the third-order terms can be reduced to
products of first- and second-order transition
amplitudes A& and Az, since the standard Kondo
correction to the electronic relaxation time is
derived from cross terms of type A&Az. We will
find that this reduction does occur in two cases:
(a) "extreme narrowing" (which is realized at
temperatures k~T» b, ; it is then possible to jus-
tify &t Posteriori the interpretation of Ref. 3) and
(b) "secular approximation" (which, in the case
of Ag Yb, is realized in the low-temperature
range k~T-b, , where population effects come into
play).

As an application of these general considerations,
in the following paper, hereafter referred to as II,
we will first derive the relaxation equations of the
populations at low temperatures up to second order
in J,&. Then we shall compute the Kondo correc-
tion to the transition probabilities and examine how

it behaves when k~ 7- h. Finally, we will indicate
how electronic relaxation rates ean be obtained
from the Mossbauer line intensities. These re-
sults will be applied to the interpretation of the
low-temperature Mossbauer spectra of Au Yb.

Unless otherwise stated the notation will be the
same as in Ref. 1.

electronic Zeeman effect so that Xo =X~) acting
inside each nuclear state. o t„(t ) is the density
matrix of state I just after feeding by radioactive
decay of an upper state I, at time t; in practice
it does not depend on t;

o '(t, t') v=-(t', t')o' v'(t', t") (4)

represents what this matrix has become at t . M
is the nuclear electric or magnetic multipole mo-
ment which induces the Mossbauer transition. In
the Heisenberg representation

M'(t, t') = v'(t, t')M'v(t, t') .
Then

I(&o)~Ref' dt' f' dt'e&t" "'"""
xe ' Tr{M(t t) o(t, t )M).

One notices that if the Hamiltonian X is a station-
ary (no rf), the double time integral factorizes.
Let us define

(8)

At high temperatures (ks T» d ), o'(1/I') as well
as cr,„are proportioval to the unit matrix and this
formula reduces to E&l. (1) as it should.

Using the Liouville formalism, it is interesting
to see how the explicit expression of the line shape
derived from E&i. (8) compares with the high-
temperature case, E&ls. (15) and (18) of Ref. la.
After rearrangement of the matrix elements of the
evolution operator U, and denoting by I f) and [g)
some arbitrary basis sets for the excited and
fundamental states of the radiative atom, it turns
out that

o (1/I') =I' f e ' U(r )ot„v (r )dr (7)

(average density matrix of level I in the presence
of radiative feeding and deexcitation and of relaxa-
tion). We find that

I(~)~ Re f, dr Tr{M'(O)o'(I/r)M(-r))
x «.

II. GENERAL EXPRESSION FOR THE MOSSBAUER LINE
SHAPE OF A MOSSBAUER POP(DER SOURCE ~ifaf3~4~5 ~i~a

From E&ls. (Al) and (A2) of Ref. 7, the Mf)ss-
bauer intensity I(o)) emitted by a source is pro-
portional to

I( )~Re f dt' f 'dt»e&t» r(2)&t t')e-r&-t'-t-")

x Tr{Mvt(t, t )Mt V(t, t )U(t', t )o,'„(t )

(x v'(t', t )),
where V(t, t ) is the evolution operator, between

times t and t, of the radioactive atom under the
effect of the Hamiltonian X =Xo+X) +Xs (as de-
fined in Ref. 1: K, is the relaxation Hamiltonian,

X~ is the lattice Hamiltonian, and we assume no

g)f3 I i r/2 ( /8-)@., R g2ft

in which the relaxation supermatrices R andri S
associated with 3C& are defined in Ref. 1b and the
second parenthesis represents (fs lo(l/r) I f) ).
Let us recall that R is the transposed matrix of
S: R =S~, and that at high temperatures: R =5~=-S.

It appears that the general expression for I(&d)
involves two Liouville matrices instead of one at
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high T (where ( f, icr(1/I') ) fh) cc f&/ / ). For Att&vhpb,

I =2, I =0, $ = —,', the first matrix is 20&&20 and the
second one is 100&&100. Since 0,1„ is due to radia-
tive feeding, with respect to a basis OFF, ) it is
diagonal: E4=E„n&~ = m~, . As we shall see be-
low (Sec. V) in the presence of relaxation due to
the conduction electrons, we must for symmetry
reasons have m„, = m~, but unless the secular ap-
proximation is valid F, may differ from F, (i.e. ,
even if the initia, l density matrix is diagonal, cr

may temporarily acquire off-diagonal elements be-
fore reaching Boltzmann equilibrium; see Sec.
III). Therefore, with respect to a basis i FF, ) the
second Liouville matrix reduces to (18 —1) without
the secular approximation and to (10 —l)h with the
secular approximation.

The first Liouville matrix was considered in
Ref. la, where the high-temperature expression of
g was calculated up to second order in J,&. In
that case, Gonzalez found that with respect to
eigenvectors of (Ih, I,) and (8, S,) it could be re-
duced to matrices of dimension 4&4 or less. A

similar reduction occurs where the matrix is re-
ferred to a basis OFF ) in the excited state and
a basis I SS, ) in the ground state (I =0): Indeed a
matrix element (F, mr [M i S,—,

' ) is only coupled by
relaxation to elements of type (F, mr AMIS, —,')
and (F, mr —1iMi S, ——,'). The arguments of
Sec. VB of the present paper show that these
conclusions remain va'id when R is computed up
to third order in J',

&
at arbitrary temperature.

In conclusion, we have two simple situations:
high T, i.e. , 4~7»4, where the second parenthe-
ses in Etl. (9) may be replaced by t&/ / and where
the computation of 8 is greatly simplified by the
extreme-narrowing assumption (see Sec. V Bl);
very low T, for which R«X0, where we may use
the secular approximation for calculating the
Liouville matrices. In that case where or remains
diagonal (in the basis I FF, )) we may drop Rh in
the denominator of the reduced form of the second
Liouville matrix. On the contrary, K0 plays a
predominant role in the first one, which determines
the line profile of the spectrum. If we neglect R
in this matrix, it gives rise to a spectrum com-
posed of two lines with separation ~ and width I'.
If we now assume that g is nonzero but small com-
pared with Xi&, it is possible to demonstrate (Sec.
VB3) that B may alter the profile of the two hyper-
fine lines, but not their integrated intensities. The
respective weights of these lines are therefore
determined by a '(1/I'); i.e. , we have one line at
A with weight P(1/I') and one line at —h A with
weight Q(1/~), where P(l/I') and Q(1/I') are the
average populations of states 5'=-,' and I' = a. No-
tice, however, that from an experimental point of
view this temperature range, where 9«X0, is
interesting only if simultaneously B- 1 and kaT

Indeed these are necessary conditions in or-
der to be able to extra. ct useful information on the
relaxation from the experimental values of P(l/I')
and Q(1/I'). As will be seen in paper II, these
conditions happen to be fulfilled for Ag' Yb.

The intermediate region, where ke T/b, is not
big enough so that one can use the extreme-nar-
rowing approximation, and R is not small enough
so that one can use the secular approximation, is
complicated and we shall not consider it in detail
in what follows.

III. FORMAL SECOND-ORDER RELAXATION THEORY

A. Nondiagonal evolution of a diagonal density matrix not in
thermal equ&bbr&um

In the presence of coupling 3C& =g, Z'F' with the
lattice described by a. Hamiltonian X~ and a Boltz-
mann density matrix p, the equation of motion of
the density matrix cr of the radioactive atom is,
in the interaction representation,

Trlatt +1 t y +l f 1
y

Po'+
0

(1o)

After standard manipulation of the correlat. on
functions of the lattice, and assuming that for
symmetry reasons only averages E 'E' are dif-
ferent from zero, it also takes the form, with
respect to eigenstates of 3Ch (unperturbed radio-
a,ctive atom),

ei(+crt-&oqh&t etc (t )fC q ff-a g (& T) ]
(11)

where we have defined o*(t)= e '/" &&ttre tt/h &ttot

Ft8(t) etxBt / h Fa e t t/thct&
7

lg (~ Z') =— dT etrcchc

with

(12')

In this section, we shall first examine a minor
point concerning the diagonal or nondiagonal char-
acter of the density matrix g ~, which was men-
tioned in Sec. II. Then, with a view toward sub-
sequent comparison between second- and third-
order terms, we shall give a general formulation
of relaxation equations of a density matrix in terms
of the evolution operator U', and study the form of
the different terms which appear.
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Let us recall that by definition (Ref. lb) of the re-
laxation supermatrix 8, Eti. (11) may also be writ-
ten as

&r+(t) =Q exp[t(co~- &d„)t]S„,„&r,',(t) . (13)
bc

Equations (ll) and (13) were first given in the
present form in Ref, 1b. The only new point
which we want to emphasize here is that when cr is
the density matrix o of the excited nuclear state
and when or is diagonal at time zero, but not in
thermal equilibrium, it may temporarily acquire
nondiagonal matrix elements before reaching
equilibrium. Indeed, assuming atd we have that

dt &r,'~(t) = -Q
3

e'"'~' (z, r K&'e[&r,*,(0)J,( „&d, T )
qb

- &r&»&(0) J', (&dM, T)]
+Z:,Z;;[a.*.(0)d,(~.„T)

a~~-(0)d.(~~ T)]] . (14)

Taking account of E&l. (12'), it appears that in the
general case, the right-hand side of this equation only
vanishes when thermal equilibrium is reached.
However, one should not forget that when the ener-
gy levels of the atom are nondegenerate, d&r~Jdt
also vanishes, even in the absence of thermal
equilibrium, as soon as the secular approximation
can be made (&d,~ =0- a=dinthat case). Allthese
conclusions, which were derived for a simple ex-
ample are clearly valid for arbitrary X, .
8. Formulation of relaxation equations in terms of evolution

operators

We go back to the general relaxation equations
of the density matrix of the radioactive atom in the
presence of an unspecified X, . Instead of hand-
ling double (and in third order triple) commutators,
we may write

do* dU+
= Tr, «p&r" (t)U + U" p&r~(t)

dU*~

dt

(13)

where the evolution operator U* in the interaction
representation is given by

U" =1+ U*, (t)+ U"(t) + U~(t)

tg=1- — X", (t, )dt, ——, dt, dt X,(t,)X, (t )
~00 a ocr m &&O

t tj.
+ gS dtl dt2 dt3+1 (tl1 (t2P 1 (tS)

% oe a &sr

+ ~ 0 &&

Then, denoting by greek letters the eigenstates of
the lattice (3Ce) and setting V= U*, we have in
second order

~&dr i Vi'It a&+&aai &ii cr)p„

&«r„*(t) & dr i „'i t &r &

+ &ac&i 1
1 cr)p rr',*(t)&drl

dt I tro&&

It appears that contrary to standard transition-
probability calculations, which only involve the
square of the first-order transition amplitude
(fair &r- &rn Id'~/dt In)(nl V, Irn)+c. c. ), some
terms here involve the second-order transition
amplitude V2. These are terms for which the
matrix elements of g~ in the left-hand side and in
the right-hand side have one common atomic index
(c=a or d=tr) .

Explicit evaluation of E&l. (1V) under the assump-
tion of adiabatic switching of the perturbation X,
leads to

dv r, (t) 1=—Q e"'""" ~ "'4"p~a„'(t) &aai30ricr&&dri30rit&a& . 1
dt k,~ t[(E, +E„)—(E, +E„)]+x

+&aal30rlcr&&drl30rlta& ~ E E E E -t)„t'.rg (drl&rl«&&«13&-'alta&

1= —t&r&—+ rr5(E) .g

In these expressions x is infinitesimally small and
positive so that

1
iE+x

In standard relaxation theory, one notices that the
terms which contain 5 functions correspond to
damping, while terms containing principal parts 6
correspond to frequency shifts. Although they
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have some importance as light shifts in optical-
pumping experiments, frequency-shift terms are
usually dropped because of their assumed small-
ness. Then, one gets again an e&luation of type (11).

It appears that there are two kinds of prinicpal-
part terms. Two of them involve a summation
over an intermediate virtual state I ee& and can
more or less be interpreted as classical second-
order perturbation terms. On the contrary, the
other two which we shall call "spurious" do not
involve any intermediate state and have no very
obvious simple physical interpretation. However,
since we retain their real counterparts in E&l. (11),
there is no reason why we should omit them. These
two terms have the interesting property that they
cancel out in two cases: First, in the "secular ap-
proximation, " i.e. , in E&l. (18), one only keeps
the terms for which E, -E,—E,+E„=O or+E„

-E~=E,-E„' second, in the "extreme narrowing"
approximation, i.e. in the denominators of Eq.
(18), one can neglect all atomic energy terms
[e.g. , (Z„-Z,), (Z, -Z,), . . . ].

Up to now, all relaxation treatments were based
on the secular approximation so that these spurious
terms did not appear. %e shall see below that the
same kind of trouble arises in third order, even in
the damping terms.

IV. FORMAL THIRD-ORDER RELAXATION THEORY

This section arose from a question by Imbert
asking whether the results of the second-order
transition-probability calculation of paper II
could also be derived by third-order relaxation
theory.

According to E&ls. (16) and (17), the third-order
contribution to do~~/dt is

cfa'~y
dV( de dV2„,.„., = g p„„o,'.(t) &«I d,

'
I c»&drlv,'lf ~&+&«I V, I c»&d~ I „;I»&+&«I „,' I c»&d~ lvll f ~&

cd, eY

& al &',
I r&&avl z&'I& n&+&a~I&I ~&&&a&I z,

' l»n&+&a~I z,
'

1~v&&A I&l»a&I .d~3 dV3

Let us first consider the first three terms. Omitting the factor

(1/8) Q O+ (t) &&/&&&&E -s&,-K sg&t

ey, t.d

they are equal to

&
I" '

I&& lvll&= t Z&«l~~lc»&d~l&ile~&&«l~ilho&

(20)

X
1- t[(Z, + Z, ) - (Z, Z„)] x '

1
X -f[(z,+z, ) —(z, +z„))+x '

&I"d '
I&&l vol&=-tZ&«l&, l«&&«l&xln&&d~l&ilf~& . E E (Edt &gS

1
X -t[(Z, +Z.) -(Z, +E„)]+x '

Damping terms in this case must clearly contain
one 5 function and one principal part. Here too,
we have "mell behaved" principal parts containing
a summation over an intermediate state ) ea & and
"spurious" principal parts which do not (and could

perhaps be interpreted as indirect damping). How-

ever, here too we observe that in the two cases of
secular approximation and extreme narrowing the
spurious terms cancel out: This can be seen by
comparing the first and second line above: (dV, /
dt)V2 and V, (dV&~/dt), and is also true for (dV~/
dt)V~~ and Vz(dV~~/dt). Terms in dVS/dt are not
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spurious in this respect.
Assuming that we have eliminated the spurious

terms, let us now combine (d V, /df) V2 and (d V /
df) V,. We have that

ze&l
"

I&& Ir1& ', &&=((z. z,.& „(z-z,.»& .air.rlr , P&zrlrr, l«&r «&I rrl rr)&,2 d y 5 o
iIf 8 (E,+E„—E, +E,

(22)

Rr&l', * l&&lrll&= »((z. z&-(z. ~ z.»Z&rzlz, lrr&a' z z &«lz, lrr&)&zrlz, lrr&.
E,+E„}—E, +E,

In terms of first- and second-order transition amplitudes A, and Az, this can also be written as

'
I&& I V,'I&+& I" '

I&& I V,'I&= v6(«. +E ) -(Ez+E.))[&«IA(lc»«ylA21 f ~&+&«IAal c»«yl»'I»&],
(23)

so that this contribution can be associated with the first line of Eq. (18) which contains

& I"„,'I&&
I

V('I &
= «((E, + E,) —«, +E.))&«I Ail cr &«r IA',

I
h~ & (24)

More precisely terms 1 and 3 of Eq. (20) correspond to term 1 of Eq. (18); terms 2 and 4 of Eq. (20) cor-
respond to term 2 of Eq. (18). Consequently, we have reduced these third-order terms to products of the
form A,A~ and established a correspondence with second-order terms. We must now investigate whether
this remains true for terms of type Ve (in which V~ is a third order tra-nsition amplitude). With the same
multiplicative factor as in Eq. (21) we have that

&I&&l-„,
' I&=- i6., ~ «~136(lf@&&f@l&il«&&«l&,l»&

—i[(E&+Ez}—(Ez+E )]+x i[(E,+E,) -—(Ez+Eo)]+x '

and we must extract contributions of the type 6'5 and 56'. Although these contributions have nothing spurious
it appears that they cannot be reduced to products of the form A,A~ except if, in the second principal part, E
can be replaced by E~. One more, we meet the condition of the secular approximation or extreme narrow-
ing. If one of these is fulfilled, it is easy to show that (I)(l dV, /dtl & may be cast into the form

& I&& I", ' l&=Z [&«IA, I«&&«IA2lf ~&+«~IA, I«&&«IA', l»&]v«(E. +E,) -(E,+E.)) .
This contribution clearly corresponds to the third term of Eq. (18).

(26)

In conclusion, we have shown that under the con-
ditions of the secular approximation or extreme
narrowing, the third-order terms of the relaxation
equation of 0~ can be reproduced to products of first-
and second-order transition amplitudes A„A2.
Moreover, with each second-order term of the
type &m IA, In&&l IA, I p& we may associate two third-
order terms &mIA, In&&f IAt2Ip& and (mIA2In&
x&l IA, li». In other words, in the second-order
equation, we can replace A, by A, +A, and then
extract second- and third-order terms.

We must now look at the implications of these
results in the study of Kondo corrections to the
electronic relaxation rate as deduced from Mbss-
bauer spectra.

V. STUDY OF THE ONSET OF KONDO EFFECT BY
MOSSBAUER SPECTROSCOPY IN THE CASE b»kg T~

Before looking at the study by the Mossbauer
technique of a spin 8 with hyperfine structure, we

shall first recall some simple results relative to
a "bare" electronic spin.

A. Properties of a "bare" electronic spin

In Kondo's review paper, the relaxation rate
1/T, s of an electronic spin S in the presence of the
onset of a. Kondo effect (T» Tr) is calculated by a
transition-probability method. It contains a term
IA, I~ responsible for the usual Korringa law, 1/T,
= Cr Tr and terms At(Az and At2A, which give rise to
the Kondo deviation. The second-order transition
amplitude Az associated with the Kondo coupling
2J,&nS ~ s involves an intermediate state. If the
energy of the localized spin in the corresponding
energy denominator is zero or can be neglected,
it turns out that all the matrix elements of A~ are
proportional to those of A, with a unique propor-
tionality factor, i.e. , with respect to the eigen-

Istates m~, mz of S, :
&ms k o IAal ~s ko& =&~s, k'o'I Ail ~., ko&
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&[I+2nJ~g(~, )], (27)

where [k l
= )kl (elastic scattering, imposed by

the energy-conservation condition) and g(»~) is
given by Eq. (14.6) of Ref. 4. Using these results
a standard transition-probability calculation leads
to [Eq. (15.2) of Ref. 4]

= C»T I +4J,ten(E») ln
1 k T
1S K I

(28)

(30)

On the contrary, when pBHo&437, these simple
results are no longer true. First, even in the
absence of Kondo effect a complication arises when

9 0 —,'; in that case, if we define tensor operators
T,'(S), relaxations of operators with different q' s
are still decoupled by virtue of the symmetry of the
relaxation (this being equivalent to the secular ap-
proximation) but there is a coupling between T;,

Although the relaxation constants in this
case can still be expressed in terms of quantities
1/T, s, I/T2s similar to their high-temperatures
counterparts, the computation of the rf signal be-
comes complicated - Second, in the evaluation of
the Kondo corrections to relaxation, the appearance
of electronic energies g p~Ho in the energy denomi-
nator of Aa or in the energy-conservation condition
wQI quench the Kondo correction, Inlks T/Dl being
replaced by Inl gpsHO/Dl. Also the simple pro-
portionality relationship, Eq. (27), between A, and

One might wonder whether the same results could
be derived using the third-order relaxation theory
of the preceding paragraph. The answer is yes,
because the neglect of the localized spin energy in
the energy denominators amounts to the extreme-
narrowing approximation. In addition, the symme-
try of the relaxation leads to a decoupling of (S'),
(S ), (S'), which is the same as would result
from the secular approximation in the presence of
a magnetic field. These conclusions remain valid
when S is actually submitted to dc magnetic fields
Ho such that ggsHo «ksT. In this ease (S+), (S ),
(S') each exhibits simple exponential relaxation
characterized by the classical relaxation rates 1/
T,s, I/Tzs, which by virtue of Eq. (28) are given
by

= C»T 1+4J,tc»n(E») In
c

1 1 A~T

Tip K TPg
(29)

In an EPR experiment S is also submitted to an
rf field w'ith frequency h&-gp~&0. Then, assum-
ing that there is no trouble with bottleneck effects
(go2, for example), (S'), (S ), (S') obey Bloch
equations and the peak-to-peak linewidth of the
derivative of the absorption curve is given by

A2 irrespective of mz and m~ will probably not hold
any longer. However, these prob1. ems are not of
current interest, since most EPR experiments are
performed at temperature k~7» gpaHo, and we
will not consider them in more detail here.

B. Mossbauer study of an electronic spin with hyperfine
structure

In this section, we will be particularly interested
in the case of Au' Yb for which b» k~ gK and 6
-0.11 K. Taking account of the experimental
data, we can distinguish three temperature re-
gions: (i) T & 1 K, important relaxation broadening
but no population effects; (ii) 1 K & T & 0.6 K, re-
laxation broadening and incipient population effects;
(iii} 0.6 K & T, small relaxation broadening but
appreciable population effects.

First, in region (i) we can make the extreme-
narrowing approximation. Also we only have to
consider the first Liouville matrix in Eq. (9}. The
matrix elements (g&f& tRI g2fz) of R up to second
order in J,t have been computed in Ref. Ia, Eq. (34),
and it has been shown that with respect to a basis
of eigenvectors of I„ I„, and $„
(Im Sv, I»m» S tj.

I
R

I
Im Sv, I m S g )

1
SWI St ~ Sfg

—2S(S + l)6„,, 6~

(31)

where 1/T, is the relaxation rate which would
characterize the "bare" electronic spin without
hyperfine coupling. This second-order relaxation
matrix is derived from products of transition
amplitudes A„A~i which are linear functions of 9„
$„S . Since, in this temperature region, the
ratio of the matrix elements of A~ and A, does not
depend on the localized-spin quantum numbers
[Eq. (27)], it follows that the relaxation matrix R
up to third order is given by Eq. (31), in which
(1/T, ), Eq. (2), is replaced by (I/T, s}», Eq. (28).
Thus justifies the interpretation of the spectra in
Ref. 3. One could also say that in the presence of
Kondo effect, it is sufficient in second-order terms
to replace J',t by J,'&[1+4J,t on(E») inl ks T/DI ].

Second, region (ii) is the intermediate region
discussed in Sec. II where no simplifying assump-
tion can be made, and we shall not consider it here.

Third, in region (iii) we can make the secular
approximation. We have already mentioned that
with these conditions residual relaxation effects
in the first Liouville matnx in Eq. (9) do not af-
fect the integrated intensities of the two hyperfine
lines. The demonstration is as follows: Let us
use asbasis states, [ FF, ) for the hyperfine state
F=2, IF F, ) for the hyperfine sta.te F = —, , and
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) SS,& for the ground state. With respect to this
basis, the matrix R entering the first Liouville
matrix in Eq. (9), which describes the relaxation
of the transition operator M [Eq. (8)], has the
form

FS FS
FS R~ R

FS*R

Two matr ix elements
which correspond to different values of P oscillate
at circular frequencies differ'ing by 6/jf. If If
«4/jf, the relaxation of two such elements are
decoupled by virtue of the secular approximation;
therefore, in the Liouville matrix of R, we may
replace R and R by zero. In other words, this
matrix factorizes into two matrices R~ and R~
corresponding to subspaces FS and F S.

Having noticed that the matrix of 3CO factorizes
in the same way, let us now go back to Eq. (9) and
consider the operator associated with the first
Liouville matrix:

-1 r zX,"
-r/2 . "/jf It '"

2
'

jf+t &0 + 0

Since R and &0 factorize, it may also be written
as

jXO
zs dt exP iv —

2
+ +Re t PFs

0 2

~ I SXO+P„.s dt P -2 +
@

+R ~ t P~.s,
0

where P» and P~. s are projection operators cor-
responding to subspaces FS and F $. It is clear
that if we insert this expression back into Eq. (9),
terms in P~s will correspond to the first hyperfine
line and terms in P~. s to the second hyperfine line:

I((u) = Ir((o)+I~. ((o) .
Now the integrated intensity corresponding, say,
to I~(&u) will involve

1~ + ~Pcs

r
&&exp ——+ — +R t Pp ps

Co r=P» 2v5(t)dt exp ——+ —3C" +I' I P a
0

F
g

PS

zs,
mhich does not depend any longer on the relaxation
term Rr (Q. E.D. ).

Let us now consider the second Lioueille matrix
in Eq. (9) which describes the evolution of the

density matrix o' of state I. We have already men-
tioned that the initial value of this matrix just after ra-
diative feeding is diagonal with respect to I EE,&.

We will now show that, owing both to the symmetry
of the relaxation process and to the secular ap-
proximation, it remains diagonal, which is an im-
portant simplification. In what folloms, the eigen-
values of F, will be denoted by m. Also, using
tensor-operator formalism, we will write the
relaxation Hamiltonian as:

3C, = —2Z,&n8 ~ so-g(-1)'S's '

with S'= —S'/M2, So= S, , S '= S /W2, and with
corresponding identification. for s'.

Second-order contributions to the relaxation ma-
trix involve terms of the form X,X,o (or o3C,3C,)
and X,crK„and there is a, summation over the con-
duction-electron variables mhich appear in K, .
Products of two X, are of the form

(32)

and it is clear that averaging over the conduction-
electron variables will give a nonzero result only
if q+ q = 0 (conduction-electron spin conservation).
This results in conservation of the localized spin.
Accordingly, with respect to the atomic variables,
do„,/dt will contain only terms of the form

&Pml s'S 'olP'm'&, &Pmlos'S 'IP'm'&

or

&Pml S'oS-'l P 'm'& .
At this stage, we may use either the Wigner-Eckart
theorem or the matrix elements of Lamb and
Feld, which show that

& Pm
l S'le 'm') = a „„„&r, m" + ql S'lP 'm'& .

(33)
Consequently contributions X,X,O couple c~~, with
0 s and contributions K,03.', couple cr~, with

only coupled with o~ r (n = m, m+ l).
It is easy to check that all these conclusions are

also valid in third order.
We shall now restrict ourselves to terms of

type cr~~ and investigate the consequences of the
secular approximation. For Au' Yb, F= ~ or F

The ten diagonal matrix elements cr 3

and 0 ~ oscillate at zero frequency. Pn the
other hand, the sets cr '3 and cr

3 ' oscillate
at -6/ji and + h/k. When the electronic relaxa-
tion rates between F= ~ and F = ~ are small com-
pared to 6/ji, the secular approximation is valid,
and the three above sets are decoupled from one
another. Then, if cr is initially diagonal, it re-
mains diagonal, populations are only coupled with
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populations and relaxation can be studied by means
of transition-probability methods, as will be done
in the following paper, II. These conclusions would

remain valid for higher electronic spin $ W-, .
On the other hand, we have already mentioned

that in this temperature range, the integrated in-
tensities of the hyperfine Mossbauer lines only de-
pend on the total populations of the hyperfine levels
Pz =Z P~. Within the secular approximation, these
populations obey general rate equations of the type

Z W - ~ = W independent of m

g W~. ~ = W~ ~ independent of m .
(35)

P—= — W P +Q W (36)

In that case, relaxation equations take the very
simple form

gvps p ptep gs
mst ~, g s

(34)
where the W are transition probabilities. In the
presence of such equation it is always interesting
to investigate whether the 9' obey simple sum
rules. We shall see in paper II that when relaxa-
tion is due to the conduction electrons, this is in-
deed the case:

in which the transition probabilities 5 must satis-
fy the Boltzmann equilibrium condition

@gal

+l (z -z )s~ r (3~)2m+1 '
F

In the presence of the Kondo effect, we shall have
to check that in our calculations, relations (35)
and (3V), are satisfied both in second and in third
order.
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