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The zero-field critical behavior of ferromagnets above T„with both isotropic exchange coupling and

dipolar interactions, is studied by renormalization-group techniques in d = 4 —e dimensions with n

( = d) component spins. The critical exponents are calculated to order e', and are found to be
numerically very close to their nondipolar analogs. In particular the correlation length exponent is given

by 2v = 1 + (9/34)e + (7013/58 956)e + O(e ). The value of the specific-heat exponent 0., (= 2 —dv) seems
inconsistent with experimental data (at d = 3, e = 1). The critical scattering function is shown to have

the form I" ~(q) =Ct fD($ q )(5 P
—q q~/q ) to all orders in e. The exponents related to the leading

correction to scaling, to crossovers to anisotropic exchange behavior, and to cubic dipolar behavior, are
also calculated, and are found to differ significantly from their nondipolar counterparts.

I. INTRODUCTION

According to the universality hypothesis, the
critical behavior of a system depends only on the
spatial dimensionality d, on the number of "spin"
components n, on the symmetry of the Hamiltonian,
and on the range of the interactions in the system.
This hypothesis has recently been beautifully vin-
dicated within the framework of Wilson's theory of
the renormalization group. ' '

Magnetic dipole-dipole interactions have both a
long-range and a reduced symmetry, relative to
isotropic short-range exchange interactions.
Moreover, the standard techniques of studying
critical behavior through high-temperature-series
expansions become very tedious for long-range in-
teractions. However, such interactions are rela-
tively important for many magnetic materials with
a low transition temperature. ~ For these reasons,
a theoretical study of magnets with dipole-dipole
interactions has been of great interest for a long
time. Such a study became possible only recently,
with the development of the methods of the renor-
malization group and the & expansion. ' In a se-
ries of recent papers, Fisher and Aharony, ~'~ and
Aharony' ' studied the critical behavior of mag-
nets with dipolar interactions. It was shown that,
close to the critical temperature, a crossover oc-
curs to a characteristic dipolar behavior which has
new critical exponents and exhibits a special angu-
lar dependence of the correlation function. Due to
the complicated nature of the integrals involved,
all exponents (with the exception of q) were calcu-
lated only to leading order in & (=—4 —d).

A surprising feature of the results was that the
deviation of most of the exponents from their clas-
sical (mean-field) values was found to be la~ex
than for the short-range exchange case. Numeri-
cally, however, with the exception of the specific-
heat exponent, the two sets of exponents turned out

to be so similar to this order (even at e = 1) that
no experiment could distinguish between them.

In the case of the specific-heat exponent n„re-
cent experiments on Euo'3'4 have shown that this
ferromagnet exhibits a critical behavior quite dis-
tinct from that of nondipolar ferromagnets or anti-
ferromagnets. Explicitly, the experiments indi-
cate that n, = —0. 04+ 0. 02, compared with nondi-
polar values of n =—0. 1 to —0. 2. Salamon' has
also observed the crossover from the nondipolar
regime to dipolar behavior. The experimental val-
ues just quoted seemed to be in reasonable agree-
ment with those calculated, to order & in the di-
polar case and to order &~ in the nondipolar case, ~

with n = d = 4 —E, at & = 1. Since the second-order
contribution to n, is quite important in the nondi-
polar case, it is clear that its value for the dipolar
case is of great interest. Indeed, experience with
the & expansion for the short-range interactions
suggests" that the results truncated at order &2

are, for & = 1, in quite good agreement with both
experiments and high-temperature-series expan-
sions. It is the purpose of this paper to describe
a calculation of the dipolar exponents to second
order.

Within the general framework of renormalization-
group theory, critical exponents can be calculated
in three ways: with the aid of the Callan-Symanzik
equation, ' through direct diagrammatic expan-
sions, and through an analysis of recursion rela-
tions. ' Most of the published calculations that go
beyond the first order use either the first or the
second of these techniques. In the present work
we prefer to adopt Aharony's9'~ modified use of
recursion relations, employed successfully in the
analogous short-range problem. This approach,
in our opinion, gives greater insight into questions
of stability and crossover behavior.

In Sec. II we present the Hamiltonian adopted,
and develop the recursion relations for the isotro-
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10 CRITICAL EXPONENTS OF FERROMAGNETS WITH DIPOLAR

The isotropic dipolar behavior, of principal in-
terest in this work, results from a Hamiltonian of
the forms 1~

+SR +DD

The short-range exchange part is taken to be

(2. I)

&ss= 2J QSa'S% o (2. 2)
%,5

where S-„ is a classical spin vector of unit length,
located at the site R in a d-dimensional lattice of
cubic symmetry and coordination number c. The
vectors f) of length a (the lattice spacing, which we
shall hereafter choose as unity) run over the c
nearest-neighbor sites of the origin site. The di-
yole-dipole part of the interaction is then

88
Qn 2( gPs)sZ I

a,8 a 8

x(iII —R
i )Sfig. (2. 3)

Due to the combination of spin and space variables

in Eq. (2. 3), we must take the number of spin com-

ponents g =d=4- &.

We now follow closely the steps of Sec. II in I:
we move to a continuous-spin model with the usual

weighting factor, Fourier transform the spin vari-

ables, and rescale them. The system is finally

described by a partition function of the form

Z=fdae o,
with

(2. 4)

R() = —
2 ~ I('2' s(q)a;a;1 0 a8.8 -,

where

o;a;,a'„o' - -, ;„, (2. 5)
a8 "q" a' q"

Uss' '(q) = (r()+q')f') 2+g()(q q'/q') —h()q'q', (2. 6)

while r0 is linear in the temperature and g0 and Q0

are of order (gsps)2/L f; stands for (2w) s f d'q,

over the range iqi &1.

pic dipolar system. Possible fixed points and the
crossover between them are then discussed. Sec-
tion III is devoted to a detailed study of the isotro-
pic dipolar fixed point and its critical exponents,
together with a discussion of the form of the cor-
relation function and the susceptibility. Section IV
contains a separate study of the recursion relations
appropriate for anisotropic cubic systems, ' and
for systems with anisotropic exchange interac-
tions. ' ' ' A discussion of the results is pre-
sented in Sec. V. Finally, in the Appendices, we

gi.ve some details of the calculations of the inte-
grals occurring in the recursion relations.

11. HAMILTONIAN AND RECURSION RELATIONS

In writing Eq. (2. 5), we have ignored terms of

only cubic symmetry. As discussed at length in

I, such terms can lead to an instability of the di-
yolar fixed point; we shall discuss this instability
separately in Sec. IV.

We adopt the usual form for the renormalization
group transformation, ' in which "spins" cr; with

wave vectors in the range b '&lqI &1 are integrated
out of the partition function (2. 4). The wave-vec-
tor space is rescaled by a factor b, and the spin
variables are rescaled through the relation

I0'e ~ ggq
(2 'f)

[G (q)G (q )
8, 6 "q"a'- q"

&«2('(q") + 2G("(q)G s(q ')G('(q")]

"&(I f 0 ) 0(,)) . (2. 8)

Here we have adopted the notation of I, in which

while the propagator for the system is given by

1 q q
(q) + 2 (MS 2

By repeated application of this transformation, we

generate a sequence of effective Hamiltonians of
the form (2. 5), but with the parameters (rs, g(), h(),

us) replaced by new parameters (r, , g, , h» u, ), re-
lated to the starting values by a set of recursion.
relations.

We may remark that in performing this trans-
formation we also generate terms not contained in

the sta. rting Hamiltonian (2. 5)—for example, a
six-spin term. Within the framework of the re-
cursion relations, such "irrelevant" variables may
not, in general, be neglected, since they may have
fixed-point values of order E~. ~ Following Ahar-

ony, ' however, we adopt a modified recursion
relations approach, close in spirit to the Feynman.

graph method, in which we choose a large-wave-
vector cutoff factor b and ignore all irrelevant
variables. This procedure has been examined ex-
tensively elsewhere, ~ and has been shown to yield
the correct exponents.

The recursion relations for the parameters (r, ,

g„h, , u, ) are obtained in the usual way, with the

aid of a perturbation expansion of the partition

function (2. 4). The terms contributing to the equa-

tion for y, are represented graphically in Fig. 1

(we ignore mass renormalization terms, since we

require only the linearized y equation. , and do not

need rs explicitlyss). They yield
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q q'
'rg +gg +(1 /lg)g q

(2. 9)

$2b cg Q8 f)fg (2. 11)

We shall see in Sec. III that the distinctive be-
havior of the parameter g, (in the case of ferro-
magnets ) under the renormalization group trans-
formation obviates the necessity of a detailed ex-
amination of the recursion relation for h„2; it is
sufficient to note that h remains finite. We are
then left with the task of deriving the equation for
Qf 2 We find a relation of the form

i=2

where the X'" are defined by the coefficients of the
four-spin terms in the four diagrams shown in. Fig.
2. The detailed expressions, which are rather
complex, are given in Appendix A.

As discussed in I, the form of critical behavior
of the system described by Eq. (2. 5) depends pri-

(b)

FIG. 1. Set of graphs for the recursion. relation for
r, {or r~, ).

The scale factor f, is determined by imposing the
usual condition~'7 that the coefficient of q3 in R„2
should remain equal to unity. As pointed out in
Ref. 11, one may also choose f, so that the coeffi-
cient of q™q~/q', which is the term that grows most
rapidly under iteration of the recursion relations,
will remain constant. This results in a clearer
picture of the dipolar fixed-point Hamiltonian, but
makes little practical difference to the calculation.
We therefore choose to adopt the usual definition,
namely,

g2 yd+2 f))

where the exponent g, is determined, as in I, from
an examination of the q-dependent contributions of
the graph shown in Fig. 1(b), and is hence of order

2
us ~

As argued in I, the recursion relation for g„2 is
easily derived once one notes that, because of the
restricted range of q-space integration involved in
the evaluation of the perturbation expansion of the
partition function, all the terms in this expansion
are analytic in q, and thus make no contribution to
g, . We then simply have

(c)
FIG. 2. Set of graphs for the recursion relation for

u, {and v, ).

marily upon the initial value go. For go = 0 (and
ho=0) the propagator (2. 9) reduces to that for the
isotropic short-range problem, and the recursion
relations (2. 8) and (2. 12) assume the form given in
Ref. 17. The corresponding fixed points are the
Gaussian and Heisenberg fixed points, with the
usual critical exponents. ' For go v 0, Eq. (2. 11)
ensures that, since q, in Eq. (2. 10) is of order u, ,
g, will grow large so that the system will eventual-
ly cross over (from Gaussian-like or Heisenberg-
like behavior) to a characteristic dipolar behavior.
The cross-over exponent '

PD is simply the expo-
nent y appropriate to the fixed point from which the
cross over occurs. ' It should be emphasized
here that the exponent v~, related to the g instabil-
ity, is exactly equal to 1/(2 —q), to all orders in
the diagrammatic expansion, and therefore PD
= v/vo = v(2 —q) = p is also exact to all orders.

III. ISOTROPIC DIPOLAR BEHAVIOR

With the divergence of g, for large l, the propa-
gator (2. 9) assumes the simpler form

Gl"(q) = (I/(rr +0')](~.8- q q'/q'), (2 1)

so that, as remarked above, the detailed behavior
of the parameter h, becomes unimportant. (It re-
mains important, however, for antiferromagnets,
when go= 0. ) In this limit, the integrals implicit
in the recursion relation (2. 12), and given explicit-
ly in Appendix A, may be evaluated. As usual in
& expansions, ~' we assume that &=4 —4 is small,
and that u, and r, are of order &. To obtain re-
sults to order &~, we may thus calculate the inte-
grals which multiply u, for n = d = 4. This calcula-
tion is outlined in Appendix B. The integrals
which multiply u2, were calculated in I (e. g. , Eqs.
(31) and (44) of I). The resulting recursion rela-
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where (3 2)

tion for u„, is

u...= b' '"'(u, —4Kdu', [7+d-12/d+12/d(d+2}]
x (b' —1)/&+Kssu~s(533~o+1156lnb) lnb+ 0(u~s)],

gus(q) bf(2-o&gas(blq)

= b "s "'[G, s(b'q) + "diagrams "] . (3.11)

The general structure of the terms which result
from the diagrams is of the form

K-1 2d-1'/sg( jd} (3. 3) gG, "(b'q) G", (- b'q)A"'(b'q), (3. i2)

while, from Refs. 8 and 9, we have

T/g
=

s Ksui + 0(ug) . (3. 4)

[See especially the discussion following Eq. (59) in
Ref. 9. ]

The relation (3.2) leads to a dipolar Gaussian
fixed point u* =0, and to an isotropic dipolar non-
trivial fixed point

Kdu* =
($s e) (1 + dodos e) + O(e ) . (3. 6)

132Ksus Q —[G"(q)Js's'(q)

+2G f'(q) Js s'(q) +2G, '(q)J""(q)

+ 4G, '(q) Js sss(q)]nr, , (3. 6)

where Js "s(q) is defined in Eq. (A6). On substitut-
ing Eq. (B18) for Jss"s(q), and performing the inte-
grations, the linearized r equation finally becomes

2-n+~t;,q
=—r), ) - r*—b " 4r)

&& [1 —4Kduo(d+ 2)(l —d ')(b' —1)/s:

+126K'du~ lnb], (3. '7)

where we have retained only those terms which are
proportional to lnb, 3 and where '9

To determine the critical exponent v, we must
linearize Eq. (2. 8) about the corresponding non-
trivial fixed-point value for r, namely, r*. Again,
the order-u terms were calculated in I, and the
formulas of Appendix B must be used to obtain the
four-dimensional integrals related to the order-u
terms. The linearized second-order terms are

where A"'(q) is a sum of integrals over internal
lines of the appropriate diagrams. By rotational
invariance, A"'(q) must be of the form

A"s(q) = a(q)6„s+ b(q)q "qs . (3.13)

1/D(x ) = 1+x + O(e x )

for small x. It was shown in II that

D(x') -1/x' "

(3. iS)

(3. 18)

for large x.
The susceptibiltiy was discussed in Sec. VII of I,

and in II. The result,

X ~ 6~s/(C t "+go~ ), (3. i9)

Explicit examples for A"s(q) to order u, were given
in I. The order u~ terms may also be checked ex-
plicitly, using the formulas in Appendix B. Sub-
stituting Eq. (3. 13) into Eq. (3.12), and using the
projection property of G ", we find

a(b'q) q'qs
diagrams =

bog s,s 5~s — s, (3. 14)
&ri+ b

and hence

b1 (2- vf) Ot g

r"(q)= „. . . , 6., -9 9 . (3. i6)
r&+b q —a~b q~ q

Since we choose b' to be equal to $, the correlation
length, this finally gives

I' (q) =(C/t")D (( q )(6„-q q /q ), (3. 16)

where y= (2 —g)v, and where 5 is a scaling func-
tion, which may be determined as in Ref. 23. As
discussed in I,

'l7 = fKsu =soot +O(s )

Using the relation~'

Ar), ( = b "b,r),

(3.8)

(3. 9)

where X) is a demagnetization sum, remains true
to all orders in &.

IU. CORRECTIONS TO SCALING: CROSSOUERS

we find from Eqs. (3.7} a.nd (3.9)

v = o[1+~s s+ssoss& +O(s )1 ~ (3.10)

A discussion of this result will be presented in Sec.
V, where we will also tabulate the values of all the
other critical exponents, which follow (within scal-
ing theory) directly from Eqs. (3. 8} and (3. 10).

We now turn to discuss the q dependence of the
correlation function. As explained at length in
Sec. VII of I, the correlation function may be writ-
ten

The Hamiltonian (2. 5) is idealized; most real
systems do not have the high isotropy, both in
space and in spin space, which Eq. (2. 5) has. The
possible symmetry-breaking terms which may ap-
pear in a Hamiltonian for magnetic systems are
reviewed in Ref. 12. Most of the conclusions in
this reference are independent of the expansion in
s (e. g. , regarding the crossovers due to long-
range interactions or to changeddimensions, which
depend only on the exponents y and v). We shall
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concentrate here on those additional interactions
which do lead to exponents that have independent &

expansions. In particular, we shall discuss the
leading correction to scaling, and the instabilities
due to spin anisotropy'P' '9 and to cubic anisot-
rOpy 7 ~ 17& 18

The general structure of corrections to scaling
has been discussed byWegner. 2 If the Hamilto-
nian can be written in the form

for u [Eq. (3.2)] near u*, we find

d u„, = b' ~" [du, —8@in f)(l + (—', &) lnf))

&& ( z
—

+z
E)u*hu + K u* in') (

+ 3468 lnf))Au, + ] —2u* 1nf)aq, ) (4. 4)

with 4g, coming from the linearization of Eq.
(3.4). This can readily be written in the form

ur+1
—b flu, y

with

K =SC*+ p O ~ (4. 1) t +2()OI C + O(6 ) (4. 6)

where K* is the fixed-point Hamiltonain, and 0,. are
eigenoperators of the linearized recursion rela-
tions near the fixed point, so that after l iterations
p, - p, ,b" &', the free energy per unit volume can be
written in the scaling form

(4. 2)
F(t) = f' '+ a(u, —u~)t' "'"+

where

(4. 6)

Therefore, u is irrelevant; however, the exponent
associated with it is quite small, and hence its ef-
fect may be felt even quite close to T,. Expanding

f in Eq. (4. 3) about u = uo„and ignoring all other
variables, we find

where t=(T- T )/T, . Substituting f)'= $-t " and

using 1=1/v [see Eq. (3.9)], we then find ~ = —v&„=-2&(1 —~~",z e)+ O(e') . (4. 7)

F(f, [p,})= t' 'f(( p, ,f "'(}) . (4. 3)

The leading variable j(L, is the field conjugate to
the order parameter. This leads to the usual scal-
ing form of I'. The additional variables lead to
corrections to this scaling form near the appro-
priate fixed point. If one or more of these vari-
ables is relevant (i.e. , X( &0, for some i), then the
system eventually crosses over to a new type of
behavior, and the exponent P = vA, is called a
"crossover exponent. ""' ' ' To find these expo-
nents, we thus have to consider the linearized re-
cursion relations for the additional parameters
near the fixed point.

Consider first the parameter up. In the discus-
sion of the Sec. III we have assumed that up = up,
= u*, 25 so that we did not allow for a transient vari-
ation in u. If we linearize the recursion relation

We now turn to discuss two relevant operators.
First, we replace the exchange interaction (2. 2)
by an anisotropic one,

KsR=- —~ ~ J.SyS2I, ,8 e
(4 8)

In the dipolar limit, g- ~, the anisotropic di-
polar propagator becomes'

Ga()(q) 6
'0 91 1

+q2 a8 q2~ + 2

with

(4. 9)

Here, r is the parameter associated with the ex-
change parameter J . A simple generalization of
Eq. (2. 8) now gives

—32+u' „u', [G ™(q()G",'(q }G",'(q+q )+2G, "(q)G",'(q )G', (q+q )]+0(u') (4. 11)

where u'z now replaces u, as the coefficient of ooao o i'n Eq. (2. 5). The second-order integrals are com-

plicated for the propagator (4. 9). They are quite difficult, even near the anisotropic dipolar fixed point

found in Ref. 10. We therefore limit ourselves to the behavior near the isotropic dipolar fixed point, at

which r —= ra and u ~=ua. Linearizing Eq. (4. 11) about this fixed point gives
P

Ar „,=5 " br +4u" g I nG""(q)+2 bG (q) —32K~u* p[BG (q)Jz'"'(q)
Q q q y5

+2sG"'(q)J; "'(q)+26G"'(q)J"" '(q)+44G "(q)J,"" (q)]+O(u* ) (4. 12)

where Jz~"'(q) is defined in Eq. (A6) and is given explicitly by Eq. (818), while, from Eq. (4. 9},
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(4. 13)

The integrals in Eq. (4. 12) can now be calculated explicitly, a.nd Eq. (4. 12) becomes

d. .., =(' *('—4)(, ') 8 ('-, —Sr)a, +(f-4a)ga „,)
1402 500 ~

+Z4u~ Inb &r, (+ 7 ~&r), +0(& )
7'

where we have again ignored the (Inb) terms.
Equation (4. 14) has two eigenvalues. The first
eigenvalue is simply b' ", with the eigenvector
br—=.Ar. The second eigenvalue is (d —I)-fold
degenerate, with the eigenvectors satisfying
g„a4.„=—0, and is 5 ~, with

40a& assaoa& +O(& } ~
5158 2 3

Thus, the crossover exponent is

= vy = 1 +Ac+ 10798 K2+ O(e8)

(4. 15)

(4. 16)

We now turn to the question of instabilities as-
sociated with cubic perturbations of the Hamilto-
nian (2. 5). As discussed in I, such perturbing
terms a.rise when the Fourier transform of the di-
polar interactions is calculated over a cubic lat-
tice. The perturbation is characterized by two
parameters, namely, f, the coefficient of

and v, the coefficient of the four-spin term

X„=Pvc + 4~gvP + O(e )

and a crossover exponent

&~=s4e+As~ass& +O(& } ~

(4. 17)

(4. 18}

A full analysis of the effects of these parameters is
complicated by the fact that they generate one an-
other under the renormalization-group transforma-
tion, so that such an analysis must use the compli-
cated propagator [Eq. (23) of I] appropriate for
nonzero f. Since the basic instability seems to be
that associated with the parameter v, we shall re-
strict ourselves here to an examination of the be-
havior of this parameter (with f= 0) close to the
isotroyic dipolar fixed point ~ We thus require the
recursion relation for g, linearized about this
fixed point; this requires consideration of all the
configurations associated with the graphs in Fig. 2,
in which one vertex ucr 0 080 is replaced by

vv o cr o'. Collecting all such tems and using the
integrals evaluated in Appendix 8, one finds the
result ap. ..= b'"ap„with

The instability with respect to v predicted by the
first-order analysis of I is therefore confirmed in
second order, and the system must eventually
cross over and exhibit a cubic dipolar behavior,
the n.ature of which must still be elucidated. We
shall discuss this further in Sec. V.

V. DISCUSSION

Having calculated the two exponents q and v to
second order in &, we can now use scaling rela-
tions to obtain all the other critical exponents.
In fact we have actually demonstrated one of these
relations, na. mely, y= (2 —)))v, in Eq. (3.16). We
shall report such checks of other relations in fu-
ture work. The results for all the exponents, in-
cluding the crossover and leading correction ex-
ponents, are summarized in Table I.

We first note that at & = 1, the exponents g, v, y,
n„and P a,re still farther away from their clas-
sical values than the corresponding short-range
exponents. The changes in P and in 5 are so sma, ll,
however, that the direction of the changes is rather
meaningless. The changes in 2v and in y are of
the order of 0. 01, and even these are beyond the
accuracy of most present experiments. We may
mention again, in this context, the apparent ex-
perimental discrepancy in the values of y for EuO,
when measured statically ' or by neutron scatter-
ing. However, there are several remarks tp be
made. First, the temperature range of both ex-
periments is about 0. 01 & t& 0. 5. It is not clear
that the leading corrections to scaling [see, e. g. ,
the relation Eq. (4. 6}]or merely analytic terms in

t are really negligible in this region. The relative
magnitude of these corrections could be quite dif-
ferent in the two experiments, since in the neutron
scattering case the coefficients are functiors of
the wave-vector transfer q. Second, the value of

g0 for EuO is approximately 0. 017.6 Taking the
crossover exponent as Q~ = y=1. 37, the crossover
temperature to dipolar behavior is of the order of
t" =g0 "=0.05. This is right in the middle of the
experimental range I Thus, the "constant" ampli-
tude of the susceptibility should actually be re-
placed by a scaling function C(g/t "}, and this might
well affect both experiments. (Again, in the neu-
tron scattering case, we have a function of both
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TABLE I. Critical exponents to order & (n=d=4 —&).

Exponent
Classical

{Gaussian)

Isotropic short range

& expansion

Isotropic dipolar

& expansion

1 2

48
—E

1+ 16+ M12

1+ &~ + ii ~2
96

2

3+ ~ + ii ~2

2
p —86+~
1+T&+—eii 2

144

1

24
—f

7 2

0. 0208

1.375

l. 365

—0. 125

4. 458

0. 380

1.243

0. 0417

0. 354

m'20 2

+ 58956
7013 2

9 2111 2+
19652

6223 2

34 58956

3+6+~ &

2 55 2
58956

]+-10m+ "793 e2
51 132651

3 q + 15887 g29 176868

785 ~2
I 0404

0. 0231

1.384

1.372

—0. 135

4. 454

0. 381

1.277

0. 178

0. 425

g/f" and, of $q. ) Unfortunately, we have no quanti-
tative estimates of such scaling functions as yet.
At present, the only way to eliminate their effects
is to work in the temperature range t« t"

I Final-
ly, the values of (q used in the experiments of Ref.
28 are in the range 0. 2& fq&5. For this range, it
is again not clear that one is justified in using the
Ornstein-Zernike form for the scaling function
D()q) in Eq. (3. 15), as is done in the analysis of
Ref. 28. The deviations from the Ornstein-Zernike
form could be quite large. 33 Again, no theoretical
calculation of 5()q) for the dipolar case ha. s yet
been carried out, so that we are unable to esti-
mate its effects quantitatively.

The values of the specific-heat exponent 0., are
very interesting. As we mentioned in Sec. I, the
experimental value for EuO seems to be o, = —0.04
+ 0.02. '3' The present theoretical value to sec-
ond order is, at & = 1, n, =-0.135. It is possible,
of course, that the asymptotic character of the &

expansion is such that the first-order result for the
dipolar case gives better estimates for n, than the
second-order expression. However, experience
with the short-range exchange systems suggests
that the latter is likely to be better.

It is interesting to note that the correction and
crossover exponents (d, Q, and P„all change quite
significantly. In general, these exponents are dif-
ficult to compare with experiments, since we have
insufficient theoretical knowledge about the scaling
functions in which they appear [see Eq. (4. 3)j.
Still, the exponent ~ has recently been estimated
experimentally for superfluid helium and for the
Heisenberg antiferromagnet RbMnF3. 3 The rela-
tively large difference between its values in the di-
polar and in the nondipolar cases gives at least
some hope for an experimental test of the theoreti-
cal prediction made here. Moreover, an inclusion
of a correction term in the analysis of the specific-
heat data may lead to new estimates of z, for EuO

which may be in better agreement with our new the-
oretical estimates.

Turning now to the question of instabilities as-
sociated with cubic perturbations, it is of interest
to note that the value of the crossover exponent Q„
is increased by the second-order term to one that
is significantly larger than that of its short-range
counterpart. Thus, the effects of such perturba-
tions may become evident experimentally some-
what further away from the critical point than esti-
mated in I. They should certainly be more easily
observed in dipolar systems than in systems (such
as the antiferromagnet ) where the dipolar pertur-
bation is absent (go =0) so that the asymptotic criti-
cal exponents are those of the short-range model.

However, in contrast to the short-range system,
where a cubic fixed point is known to exist, '~ the
nature of the cubic dipolar behavior, to which the
dipolar system must eventually cross over, is not
known. Should a cubic dipolar fixed point exist, it
must, of necessity, have a nonzero value of f*, so
analysis of this problem is not easy. It is possible,
however, as noted in I, that no such fixed point
exists, and that p and (probably) f grow to precipi-
tate a first-order phase transition. This possi-
bility is in line with the suggestion ' that critical
fluctuations may accentuate the strong anisotropy
observed in the soft-mode dispersion relations of
cubic ferroelectrics such as BaTiOS, ~ in which
the (ferroelectric) pha. se transitions tend to be of
first order.

Finally, we remark that the value of the cross-
over exponent P describing the effects resulting
from anisotropy in the exchange forces suggests
that, again, a crossover to a smaller effective
value of n' should occur at a larger value of T
—T, than in the equivalent short-range problem.
In the case of uniaxial anisotropy, this may be par-
ticularly important, because of the strong contrast
in the asymptotic dipolar behavior in that case. "
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APPENDIX A: RECURSION RELATION FOR u

The recursion relation for u„, is determined by

the coefficients X"' introduced in Eq. (2. 12), which

are themselves defined in terms of the diagrams of
Fig. 2. The contribution of Fig. 2(a) is trivially
X"' =u, . X' ' is determined by identifying the co-
effici.ent of the four-spin term in the graph of Fig.
2(b), which gives

4';-P*, Pz;-~.,z„.zgz;-o...zz;- f J
o8y& p v

where

d av85 y(.-1 f Gap(q)G85( q)

Similarly, X'3' is determined from the contribution made by the graph of Fig. 2(c), namely

2

16g2u8 ~ ~ Jgv/iv +2~ JvK@PJvKvP g Q + 4 ~ Jgvgv ~ JQP6P
1 1 a8 y6 ~ 1 ~ 1

&8~6 ff V gV p

(Al)

(A2)

o 8
3 V juvup j svvp5 + 4 ~ dausu ~ dvvsv+3 ~ dausvdvusv „g g. g. g. .. .„(A3)

gV V gP

Finally, the contribution of Fig. 2(d), which determines X' ', can be written as

54A 3 3 ~ ~ (I uvu supp+v2f u vu pv psv + 4f up up vp5p + 2f u vu p6pvv)5
pug 4 ~x + a8

agy5 V Vp

a 8
+ 2 p(fs Yasvu vu +2f8 au usv + 4fsvavvu6u + 2f avBu5I v

) Q'» (T O' O' 8 s 8
a a c q, a a

ff V a a

(A4)

where

Iasvs ~ puv A--1 f Gas(q)gvs( q)dppuv(q)

with

(A5)

r&
6 p uPvAv1

J Q Guv(q)gus(q) Qd vvvv( )
ff VP a VP

6

=K ' —
4 5 —

3 (-31nq+-,')
d 4 y5 2

&,- (q) =& J.
'

G, (q+p)G;"(-p) . (AS)

The various integrals can now be calculated us-
ing the appropriate propagators. Near the isotro-
pic Heisenberg fixed point, one must use G, (q)
=5 8/(r, +qs), whereas near the dipolar isotropic
fixed point, one must use Eq. (3.1). In practice,
we shall repla, ce y, in the propagator by zero and

ignore mass-renormalization graphs. '~'

Near the Heisenberg fixed point (gI = 0), this re-
produces the recursion relations of Ref. 1V. For
gI —~, the integral d1 "86(q) was given in Eq. (44)
of I, and is

Z1" (q) = [ba„585(1—2/d) + (ba„585+ hasbvs

+5 55„8)[d(d+2)] 'j(b' —I)/5 . (A I)

=
~qq lnb (1 + 2 1 nb) 5„5 .

A similar calculation of the other sums in (A4) fi-
nally lea.ds to Eq. (3.2).

APPENDIX B: CALCULATION OF INTEGRAL J2~ yb(q)

Using the definition (A6), and ignoring the mass
terms in the propagators [putting r, = 0 in Eq.
(3.1)"' '3], 43 ~5(q) for the dipolar propagator
may be written

ass~~(q)

= ds(q)5. 85,6 —d 4'(q)5, 5

—J"46(q)5, + d 6'"6(q)

where

The integral Zspu"(q) is evaluated, for these con-
ditions, at d=4, in Appendix B. The result, to
order qs, is given in Eq. (818). Substituting in

Eq. (A5) then gives a general expression for
In practice, we need only sums over

such expressions, and this leads to some simplifi-
cation. For example, the first term in (A4) in-
volves

-1 1

J, p'I—.. I'

Z4 (q) =KB 4 (- -)3e8 -1 'O'P'

and

., &(f +q') (f'+q')fp"l
daszzs

q f1 p+q

(B2)

(B3)
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The first two integrals, J3 and J4 were calculated
in Ref. 9 with a, sharp cutoff and a range b '&

I pI & 1,
and in Ref. 8, with a smooth cutoff and a range
0& jpl & . It turns out that the leading terms, 1nq
and q'q /q are the same in the two cases, The
constant terms can be obtained as described in
Ref. 9, following Eq. (31). The results are, for
d=4,

Z, (q) = —lnq+ —,'+ O(q')

and

Z, '(q) = —,'[- (lnq - —,'}5„+q'q'/q'+ O(q') ] .
(as)

In these results, we have also ignored terms of
order 1/5 q, since these will finally lead to terms
of the form b 2lnb, and we assume b»1.

To calculate Zfz"~(q), we can adopt several
methods. One method is to write the most general
form allowed by rotational invariance, namely,

J~ +(q}=A(q)6~z5~+8(q) (5~586+6 ~5z )

+C(q) (q q'6„,+q"q'6, )/q'

+D(q) (q q"5«+q q'5z. +q'q"5~

+ q'q'5 „)/q'+E(q)q q'q"q'/q', (B7)

&B)0( ) ff -1),
&g s 1/b2 (P + t)

0 P'(P" + q") (P'+q')
«~~ (P'+ t')' (P+(1}'

Using the identity
(ao)

120 d da'5'c', , y [a+ (f)- a) z+(c- s)y]'
(B10)

and changing variables according to

of the 1 axis, using formulas (33) and (34) of Ref.
9. These yield the functions A, 8, C, D, and E.
Since this approach has already been used in Ref.
9, we choose to present here an alternative method,
leading to the same results.

%'e start with the substitution
1 "' dt

(as)
- i /( 2 (P' + t}

and extend the P integration to cover all space. %e
can expect that this method will enable us to pick
up the correct q-dependent terms (to the order re-
quired). The substitution (BS) will, however,
change the terms of order unity. These will be
determined separately, using any of the integrals
mentioned following Eq. (BV). We thus have

and then calculate explicitly J J25~ J 22

J', zz, and g„J',z~= J4, where q is in the direction

k=p+yq

we have

(all)

~ "'=120m

(k —yq ) (kz —yqz) [k"—(y —1)q"] [k' —(y —1)q']
1/(2 )(/y2 0 0 (k'+ z)

(B12)
where

z = t+ x(t' —t) + y(q' —t) —y'q' (B13)
The integrals over k, t, and t are now straightforward. Using the identities of Appendix 8 of I, we find

f 1 ( lm
J, "(q)= dx '~ dy —eylnz (5 ()6~+5 55()„+5 „5«)+ y q'q 5~+, y(y —l)~q"q'5 8

0 ~ 0
lg 4z 4z

~ 4;.)"() - () (~ e"()~ ~ s z'(); ~ s'q'() ~ e's"().,) ~ 2...)"(~—))'e "e'q'e'}, (B14)

where z =(1—y) (b ~+yqz), and where we have dropped those terms arising from the upper limits in the t
and t integrations, since they do not make significant contributions to the final result. Finally, perform-
ing the integrations over the Feynman parameters we obtain from Eq. (814)

J;+6(q)= —&4lnq(6, z6„6+5 „5zn+5 65)+(1/12q2) (q q85~+q"q 5 z} —(1/24q2)

x (q ' q'5~+ q q "586 + q
8

q "5,+ q~q65 „)+ (1/12q 4) q q8q~q' + const. + O(q', 1/b'q 2)

The constant is determined from the identity

(815)

Q z; (q) = z (q) (Bls)



10 CRITICA L EXPONENTS OF FERROMAGNETS WITH DIPOLAR 2087

to be

(const. ) ——,—, (6 yb„, +5 5 +6„5g„)
Combining Eqs. (81), (85), (86), (815), and (817), we finally find

Zz "'(q) =- ~~lnq(136, &6„,+6,„6~,+6,5&„)—(1/6q') (q'q 5„,+ q "q'6 ~)

(817)

—(1/24q~) (q q"6@, +q q'6&+ q~q"6, +q~q'6~)

+ (1/12q ') q
'

q ~q "q ' + +38(1075,~6~ - 6 „6~ —6,6 ~) + O(q ', 1/b' q ') (818)
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