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%e calculate the Fourier transform of the spin-spin correlation function of a metamagnet (a
simple-cubic array of Ising spins 1/2 with ferromagnetic planes coupled antiferromagnetically) in the
Ornstein-Zernike (QZ) approximation. %e evaluate this expression near X points and at the tricritical
point. The divergence of the staggered susceptibility is found to have the usual OZ form near X and
tricritical points. The uniform susceptibihty diverges as the tricritical point is approached from the
ordered phase, but the nature of the divergence differs radically from the usual OZ form. We also
present and compare the correlation functions of the Blume-Emery-Griffiths (BEG) model with those of
the metamagnet to find a complete isomorphism between them.

I. INTRODUCTION

Mean-field calculations have provided a useful
qualitative understanding of thermodynamic proper-
ties of systems with tricritical points, ' ' and also
a guide for the understanding of more ambitious
approximations. ' In this paper we extend the
mean-field calculations to the evaluation of correla-
tion functions in the Ornstein-Zernike (OZ) approxi-
mation. In pa, rticular, we study two models which
have tricritical points: the Ising spin-~ metarnag-
net, and a spin-1 Ising model in a crystalline field.
We calculate the Fourier transform of the spin-spin
correlation function of the metamagnet in the OZ

approximation, and present the results of a, similar
calculation for the spin-1 model in the Appendix.
In Sec. II we introduce our notation for the meta-
magnet, and consider general features of the ther-
modynamics which constrain by fluctuation Qeorems
the behavior of the correla, tion functions. In Sec.
III we calculate the correlation function in terms of
the equilibrium sublattice ma, gnetizations of the
metamagnet. In Sec. IV we develop the mean-field
thermodynamics of the metamagnet in a form use-
ful for the evaluation of the OZ correlation function.
We then. present expressions for the correlation
function near lines of second-order phase transi-
tions, and near the tricritical point, In Sec. V we

summarize the formulas we have developed. We

also discuss the various exponents associated with

the correlation function, the application of the
Ginsburg criterion for the metamagnet, and Blume-
Emery-Griffiths (BEG) models and the OZ value
for the specific heat. The Appendix is devoted to
the correlation functions of the BEG model and a
comparison of these correlation functions with

those of the metamagnet.
For convenience we summarize our results. The

general form for the Fourier transform of the cor-

relation function (S~S ~ ~) [see Eqs. (5) and (2) for
definitions] in the OZ approximation is presented in

Eq. (23). This expression is shown to diverge in
the (p, q) = (v, 0) direction at X and tricritical points,
and also in the (0, 0) direction near the tricritical
point in the ordered phase. Equation (23) is then
specialized in the vicinity of X and tricritical points.
Figures 3 and 4 are a pictorial summary of the
cases we have considered. The correlation func-
tion in the (v, 0) direction is found to have the usual
OZ form near X and tricritical points. The corre-
lation function in the (0, 0) direction near the tri-
critical point differs radically from the usual OZ
form. While the scaling form Eq. (49) indicates
the assignment of g„= 1 for the divergence in the
(0, 0) direction near the tricritical point, the limits
(P, q) —(0, 0) and (T, H) —(T, , H, ) are not inte rchange-
able. The fluctuations in the sublattice magnetiza-
tion and total magnetization are shown in Eq. (52)
to be decoupled, allowing the successful application
of the Ginsburg criterion for the metamagnet near
the tricritical point. The OZ expression for the
specific heat gives o =

& for X and tricritical points.
Finally, a complete isornorphism is established be-
tween the correlation functions of the BEG and

metamagnet models in the OZ approximation.

II. MODEL

The model studied in this calcula, tion is a simple-
cubic Ising metamagnet of N spins -', . %'ith the co-
ordinate axes pa. rallel to the axes of the unit cell,
the spins within each plane para. llel to the xy plane
are ferromagnetically coupled, whereas spins in
adjacent xy planes are antiferromagnetically
coupled. The cylindrical coordinates used, and the
ordered phase in zero magnetic field, are displayed
in Fig. 1. The Ha, miltonian of this system is
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FIG. 1. Displayed are the cylindrical coordinates (z~)
used for the metamagnet and ground state at H=0. Mz
and Mz are the sublattice magnetizations.

and 8(r —r ) if we fix the temperature to be nonzero,
and raise the magnetic field. If this is true, then
somewhere in the 0-7'. phase diagram the transition
changes from first to second order. The point at
which this occurs is the tricritical point (T, , H, ).
This state of affairs is represented by the phase
diagram of Fig. 2. Four paths of interest are in-
dicated: (1) a path through the second-order line
from below; (2) through the second-order line from
above; (3) through the tricritical point from above;
and (4) through the tricritical point from below
The critical indices will be different for each of
these paths, and this will be reflected in the be-
havior of the spin-spin correlation function.

Two quantities of thermodynamic interest for this
system are the order parameter f, which is the
difference between the magnetizations of the two
sublattices, and M, which is the sum of the two
sublattice magnetizations;

E = M~ —M~, M = M~+ MB . (3)
1 I~l

3C= —— g(zr, z r )S,ps, p
grg'1'

- H P s,p
- H, P (- 1)'s„-,

' J'(r —r ) if z=z, J&0

gzr, z' r') = 8(r - r') if
~
z —z'

~

= 1, g & 0

otherwise .
Because of the anisotropy of this system, we intro-
duce separate Fourier transforms in the z and r
direction, e. g. ,

gag1
Sf 2

=
~q /3 ~ & Sgy,

In the H-T plane the ordered phase (z & 0) is
separated from the paramagnetic phase (e = 0) by a
X line (T, & T& T„) of second-order phase transi-
tions, terminating at the tricritical point, where
a first-order line originates. Along a (1), (2),
(3), or (4) path, (Bz/BHz)„0 diverges strongly.
Along a (1) or (2) path, BM/BH is thought to diverge
weakly, i.e. , like a specific heat. This is borne
out by the mean-field thermodynamics, which shows
that BM/BH has a jump discontinuity. At the tri-
critical point along a (4) path, BM/BH diverges,
although along a, (3) path mean-field gives the re-
sult that BM/BH is finite.

The correlation function, with (~ ~ ~ ) representing
a thermal average with respect to the Hamiltonian
of Eq. (1), is denoted by

~P
gQ g2/3 ~ gr (2) 1~f (z, r) = —

Z (S, p S„,„;p ),
gppp

(4)

This combination of antiferromagnetic and ferro-
magnetic couplings gives a ground state at H= 0
which is ferromagnetically ordered in each xy
plane, with the spin direction alternating from
plane to plane. At H= 0, as the temperature is in-
creased, the magnetizations on the alternate layers,
M„and M~, will decrease monotonically and vanish
at T~, where the system undergoes a second-order
phase transition. At T = 0, as the magnetic field is
increased, the magnetic field will eventually be
large enough so that it is energetically favorable
for the spins on the sublattice which point in a
direction opposite to H to flip in the direction of H.
This situation corresponds to a first-order phase
transition. %'hile not apparent, the first-order
transition persists (for a range of values of J(r- r )

Hc
=0

e&Q

FIG. 2. Phase diagram of the metamagnet. Dotted
lines are lines of first-order phase transitions and solid
'lines are lines of criticalpoints. The paths (1) and (2) ap-
proach A, points, and the paths (3) and (4) approach the
tricritical point.
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and the Fourier transform of f is denoted by

f (p, q) =(s„-s„;&.

By using the well-known connection between sus-
ceptibility and correlation functions, we have SM/
aH ~f (0, 0), while 8e/SHz ~f (w, 0). Therefore, in
an OZ calculation of f, we expect that f (w, 0) should
diverge and f(0, 0) should be finite along a (1) or
(2) path. Along a (4) path we expect that both

f(w, 0) and f(0, 0} should diverge. Hence, along a
(1) or (2) path, we expect only minor modifications
in the usual OZ form for the correlation function.
Along a (4) path the correlation function f will have
to diverge in the (p, q) = (w, 0) and (0, 0) directions.
Thus the simple single-pole divergence of the OZ
correlation function will change its analytic form
to show critical fluctuations of two types at the
tricritical point.

III. CALCULATION

To calculate the correlation function we add to
(1), with He = 0, an oscillating magnetic field to
form the new Hamiltonian

~t~'=X hge""~"S.,=z-hIVS, ,-, .

Then with (~ ~ }z and ( ~ ~ .}z denoting thermal
averages with density matrices proportional to e ~

and e ~", respectively, it is easily seen that

= PH(&S„=; S.p) —&S„w & &S -) } (7)
h 0

Equation (7) is exact. In order to obtain an approx-
imate expression for the correlation function on the
right-hand side, we evaluate &S,~)z in the mean-
field approximation. Linearization in h of the re-
sulting expression then yields the derivative on the
left-hand side of (7), and hence the correlation
function.

We derive the mean-field result by using the
variational principle"

I"(P, H, h) ~ gP, H, h) = TrpR + —Tr(p lnp) . (8)
1

E(P, H, h) is the true free energy of the system with
Hamiltonian K, and p is any density matrix, with
an equality of pcc &"~

Mean-field theory follows from a single-spin ap-
proximation for p,

p=g p,z, p-=-, (l+M, zsz) .
Performing the traces with this p, and using Eqs.
(6) and (9), we find

P(P, H, h, M~) = ——g 8(zr, z™r)M,&M, .&, —H P M, z
—hg e'~~ "W '~'M„-

zr
z,l Itll

(1 M,
p) (1 M,

p) (1
—

M~) i (1
—M,

y) (gp)

To find the lowest upper bound to F, we minimize
P with respect to M,&.

g(zr, z r )M,, ~,
gI' g

Mgp = M gp+ N) Mg-+ ~ ~ ~

where from Eq. (7)

|'M~ = PH(&s„, „,s„-)—(s, ,.) (s„-)),

(i2)

Substituting Eq. (12) in Eq. (11) and equating
factors of orders zero and one in h,

1 1+M~ I~I—ln, = 8(zr, z r )Mo&;, +H,
2P 1 —M',« (14}

(M', )2~
--Z g(zr, z'r )&M,.;.+e' '

M~ (i5)

—H he'~ ""'+ —-ln = 0 . (11)
2P 1-M„

The M,& are functions of h but, since we are in-
terested in the linear term, we expand in a series
in h,

+ J(r —r )nM, , „, + e'~ ""'.
(i6)

Taking a Four ier transform in r, we find

5M, -

oil —(M;)', z~
= J(q)6M, ,;+8(q)&M, q,z

+ gq)6M„, g+54Z. e'~ ', (17)

J(q}=Q e '~' J(r),

Equation (14) is the usual self-consistent relation
for the magnetization. When there is more than
one solution, we choose the one which gives the
smaller P. Equation (15) then yields a solution for
5M,~ and hence for the correlation function.

To solve Eq. (15), we note that M;-„ is indepen-
dent of r, and depends only on z, taking on the
values M'„or M~ depending on whether z is even
or odd, respectively. Equation (15) becomes

=g J(r —r )5M -.+g 8(r —r )5M„,,~.
pt
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8(q) =Q e "' 8(r) .
Clearly, the Fourier transform 5Mp~=Ep&+ Op~.
Summing Eq. (17) over z even or z odd,

Now we define even Ep~ and odd Op~ transforms in
the s direction:

j.

[ ( )p J
cl(qJEpji + 28(q)Ois77 cosp + , 54—4 5»s

(21)
-ip~

Ep~ —— g]g ~ e OMITS,
s even

-]piOpg- ~(3 ~ e BMOC~ .
s odd

(2o)

, )2J
= J(q) O~~+ 28(q}E~;cosp+-', 5+,5», .

(22)
Solving for E~I and O~- and using Eq. (7) we have,
finally,

c(p, q}-=2p((s, ~s„&-(s„-&&s,„&)

1 1 , , —Z(q) ~ 22(q)«22 + —
M,

—2(q)+22(q)«22)
1 1

P 1-M'„' P 1 —Mg

—Jq —44' q cos'p
(23)

As an immediate check, and to gain some in-
sight into Eq. (23), suppose 8(q) & 0, so that the
system is a ferromagnet. In this case M'„= M~ =5K,
so that the denominator of Eq. (23) factors, and

&(p, q)=2
(jq ) ~, —2(q) —22(q)s sp) . (24)

1 1
It1 — 8 0+& 0+

2P 4 M2
0

1
~ =

2P4-M,

(25)

(27)

J(q)+ 28(q) cosj)) is just the Fourier transform of the
total potential. Furthermore, since the Curie tem-
perature is given by KT, = J(0}+2$(0), and SR -0
from below, the denominator of Eq. (24) vanishes
in the forward direction at T,.

Note that in comparison with Eq. (24), Eq. (23)
may allow a double-pole structure in Fourier space,
with the numerator of (23) cancelling out the second
pole except for one point in the (H, T} plane. While
(23) may stand on its own as an interpolation
scheme for experimental data, it is useful to use
Eq. (14) to develop the mean-field thermodynamics,
find M'„and M s, and use these results in (23).

IV. THERMODYNAMICS

The solutions to Eq. (17) have been studied by
Bideaux, Carrara, and Vivet; for completeness
we shall rederive some of their results by methods
similar to those used by Blume, Emery, and
Griffiths. '3 As an alternative to solving Eq. (14)
directly, it is convenient to do a Taylor series ex-
pansion on Eq. (10) (with h= 0) in the order param-
eter E;

p(p, H, h= 0; e, M) = t0 t(~)4++a )4)2e+Q~+ ~ ~ ~

(25)

After a straightforward but tedious calculation, one
finds

Z, =Q Z(r), 8, =Q 8(r),
(29)

and for future reference

M=MO+M &~+M & + ~ ~ ~ (3o)

p 4-M, ™~~~~
p (4-M',)'. (31)

One can then conclude on the basis of Eq. (25), by
an argument of Landau, '~ that if

(0 $, =0, $, &0,

we have a critical (X) point; if

(ii) $, = 0, $, =0,
we have a tricritical point; and if

(iii) 44), (j)~=4)22,

we have a first order point. The phase diagram of
Fig. 2 was constructed in this way. For this par-
ticular model, py= ft}2=0 at a temperature T, :

(3M 5 4)+ (4+ 3M5)P(4 Jo+ ago)(4 —M o)

K((4 ~o+ a&0) p(4 —Mo) J —1)
(25)

where Mo= M'„+ M~ is determined by

1 2+ Mo 1lii = (4 qlo+ 2 q)p)Mp+ p H
0

(t) 0
= (- () Zp —4 8(&)M p

—g HM p T2 /T» = 1 + 2 qjo/qT() (32)
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when —-', & 4,/8, & 0.
The order parameter which we shall need for the

calculation of the correlation function is given, in
be ordered phase, by'

for q
- 0 and g —p -0, retaining the quadratic terms,

2'
;~,80, + q'[a"(0) - -' ~"(0)] p' [- &(0)j '

2TH 42 42
3$, g 3$, 3$~

(88)
where

e-(T- T„)' or e-[H-H(T„)]' (34)

as T T„, H- H„. Similarly, near the tricritical
point along a (4) path

e(T, H) vanishes as T- T~ and H-H„ in the case of
a (1) path. We introduce the exponent P by

q = ~q~, Z (0) = J(q), etc.
q 0

The quantity q'[8 (0) —2 8 (0)]+P [- 9(0)j fre-
quently occurs in our expressions for correlation
functions. We define

I p, q ~'= q'[a" (0) ——.'Z" (0)]+p'[- ~(0)];
e-(T- T, )~' or e-(H —H, )~' . (38) then

The essential point to recognize is that for a (1)
path, (&f&, -0, &f&, &0) and p =-, , while for a (4) path,

These results are found by expansion of

Eq. (33), and by noting from Eq. (27) that P, will
vanish linearly with its distance from a X or tri-
critical point, and that P2 will vanish linearly with
its distance from the tricritical point; the excep-
tion. to this general rule occurs if a X or tricritical
point is approached asymptotically close to the X

line. In this case, P, would vanish quadratically.
We shall not consider approaches to critical points
in this "weak" direction here. '3 With this thermo-
dynamic information, we turn to the evaluation of
Eq. (28} in some special cases.

A. Correlation function along a (2) path

In this case we are in the paramagnetic phase
(e =0), so that M'„=Ms = 2M', and the same can-
cellations that occurred in deriving Eq. (24) occur
here. Equation (23}becomes

cu, =el(p i- l~, ' W~ ' 4"'u} '

Using Eq. (2V), we can rewrite this as

Cp, q =
8&, —[J'(q) —J(0)+ 2@0)+28q cospl

' (SV)

C(x, 0) will diverge along a (2) path when += 0,
i.e. , when a X point is approached. Note that as
we approach a X point along a (2) path, C(0, 0) ap-
proaches the value —I/28(0). Expanding Eq, (37)

2C(v- p, q) ~
p~o 8$y+ IP, ql
$~0

Expanding Eq. (37) for q- 0 and p-0 gives

2"P q};..«„iP,qi -4~(0}
q~p

(38)

(38)

Equation (88) has the usual OZ form. With ( the
correlation length, the exponent v defined by

$-(T- T„) ",
and the exponent g def ined by

C(.—p, qq-I/I p, q I'-,
where T= T„, H=H(T„}, and ~P, ql -0, we find
p = 2 and r}= 0 for the divergence of C(w, 0) along a
(2) path.

B. Correlation function along a 43) path

This case is identical to that in Sec. IVA. As
far as the OZ expression for the correlation func-
tion is concerned, the tricritical point is not dis-
tinguished from a X point in the disordered phase.

C. Correlation function in the ordead phase

In the ordered phase, e 00, and Eq. (28) no

longer factors. It is convenient first to specialize
(23) when e -0, and then consider the behavior of
(23) along (1) and (4) paths.

Expressing Mz and M~ in terms of M and E, and
using Eqs. (26)-(31) in Eq. (23), we find to O(e )

2[4/P(4 —M(~)) —J(q)+ 21(q) cosP]+ Z6 + 0(e )
[4/p(4- M 0) —J(q)+ 24(q) cosp][4/p(4- M ~/} —Z(q) -28(q) cosp]+ e'f (p, q) + O(e') ' (40}

where

f(p, q) = 5[8(0) —J'(q)+ 28(0) —2$(q} cosp]

+ 8 [4/P(4 —M', ) —Z(q) + 28(q) cosP]+ 48', [4/P(4 —M', ) —J(0) —M(0) j (41)
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and

(42)6 = 48(f&o —16M(Mo/p(4 —M o)

The behavior of f (p, q) can be summarized as fol-
lows:

—48 && 4(pop(0) (1( point)
(0, 5) =

0 (tricritical point)

—48&&4$,8(0) (X point)

0 (tricritical point) .f(v, 5) =

Also, by expansion of Eq. (33) to leading order,

"(T,H) -- e(/2e,

a.long a (1) path near a 1( point, and

e'(T, H) -(- y, /3y, )'"

(43}

(44)

6
(45)

if~5

In contrasting the behavior of C((t —p, q) along (1)
and (2) paths [Eqs. (45) and (38)], we see that the
amplitude of the C(w, 0) divergence is different.
This change of amplitude is a usual feature of the
OZ correlation function above and below the criti-
cal temperature.

The behavior of C(0, 5) is a bit more subtle. Both
the numerator and denominator are vanishing, but
the ratio is finite. In the limit p-O, q-O, E3-0,
with eo/po and eo/q fixed, we find

2(8(P(+ IP, ql ) —6(t((/(Po
&-o —48(0)(8y, + Ip, qI')+2x48y, A(0)
$~0

along a (4) path near the tricritical point. Now we

specialize Eq. (40) for (1) and (4) paths.

D. Correlation function along a (1) path

Consider first C(tt, o). The numerator of (40) is
finite, whereas the denominator of (40) is vanishing

We can write (40} in the limit (t —p-o, q-0, e-0,
with e /p a,nd e /q finite as

If we set H=O, T-T„, then Mo=Q, and from
Eq. (42)

5 =48$q .
Using this in Eq. (46),

1
C(0 0)

Since from Sec. IVA, Eq. (39), C(0, 0) = —I/28(0)
for a (2) path at a 1( point, C(0, 0) is continuous at
T = T„, H = 0. Along other (2) paths, H 4 0 and (46)
no longer reduces to —I/2$(0). This jump discon-
tinuity of C(0, 0) upon crossing a 1( line grows a.s
ftI

' as the tricritical point is approached. At the
tricritical point the discontinuity becomes infinite.
On the other hand, if we consider I p, q)~IQ and
T = T„, H = H„, C(p, q) = —I/28(0) as I p, q I

'- 0, and

there is no discontinuity.

E. Correlation function along a {4)path

2C((t- p, q) ~
5

(47)

This is in the usual OZ form, and we note v, = 2,
tlt =0. C(0, 0) from Eq. (40) has a numerator which
vanishes as (- (P,)'~o to leading orderwh, ile the
denominator vanishes as (P(. C(0, 0) therefore
diverges along a (4) path. For q-o, p-o, e-o,
retaining terms of order q, p, and e but neglect-
ing terms of order q E, p e, we find

C((t, 0), from Eq. (40), have a finite numerator
and vanishing denominator on a (4) path as the tri-
critical point is approa. ched. For (p, q) = (tt, 0), the
order of the denominator terms are as follows:
The product term is of order (p„e'f((t, 0) is of or-
der (- (p()'~ (po, a,nd O(e') is of order (f(, , To lead-
ing order, therefore, the denominator vanishes as

If f(tt, 0) did not vanish at the tricritical point,
the divergence of C(tt, o) would be of order (- P() '~',
which mould not lead to the proper susceptibility.
For (t —p- 0, q- 0 and e /po, e'/qo fixed,

2(8(p(+ Ip, q I )+ [32/p(4 —Mo)]M(Mo( (p(/3(po)
C(p, q) —4g(0)(Ay, + I p, q I'} (48)

A is a constant determined from the nonordering
susceptibility. If we consider I p, qI ~0, T= T„
H=H„ then C(p, q) =I/-28(0). Therefore, if

I p, q I

o is small but not zero, C(p, q) is finite and

continuous across T = T„H=H, in going from a
(3) to a. (4) path. This behavior is not peculiar to
the tricritical point; Eq. (46) shows this same con-
tinuity behavior at a X point.

It is helpful to consider the scaling limit in Eq.
(48): e /q and e /p fixed; Ip, qlo-o, e-0. In

this limit

1 32 M(Mo
p-o I P, ql P(4 —Moo) I P, q I 3(P,

(49)
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Associating an exponent v„and 'g„with (49), v„= 2

and g„=1."
F. Correlation function along (4) path near the tricritical point

for arbitrary (p,g}

The last case we consider is Eq. (40) nea. r the
tricritical point along a (4) path but (p, q), not

(w, 0) or (0, 0). In this case, the behavior of C(p, q)
is dominated by the fact that f (p, q) is not small.
First we define K(p, q), the Fourier transform of
the potential:

K(p, q) = Z(~) + 2g(q) cosp . (50)

Expanding Eq. (40) to order z', we find

2[A(v, 0) —A(v - p, q)]+ 2o.e'+ O(z')
p' q

~ -o [A(v. 5) —A(v- p, q)][z(v, t)) —z(p, q)]+ 2o'e'[A(2v, 6) —A(zv, q)] ' (51)

where

a = —181',fVf,/P(4- 1'',)' .
Equation (51) in addition to (38), (39), (47), and

(48), serves as the OZ expression for the correla-
tion function near a tricritical point.

V. DISCUSSION

The critical behavior of a metamagnet is repre-
sented by the behavior of the approximate OZ cor-
relation function. At X points, the correlation
function diverges in the (w, 0) direction, whereas at
tricritical points it diverges additionally in the

(0, 0) direction along a (4) path. Equation (23) in-
terpolates these regimes by having a two-pole sin-
gle-zero structure, in distinction to the single-
pole structure of the OZ expression for a system
with only X points.

Equation (23} is the basic result, all other ex-
pressions being limiting cases of (23). Figures
(3) and (4) catalog the limits we have taken. The
numbers in parentheses correspond to the appro-
priate expression in the text for C(p, q). Addition-

ally (57) is an interpolation formula for C(p, q) for
(p, q}&(0,0) or (v, 0) near the tricritical point from
below.

We have noted that the expression for that C(p, q)
for p-m q-0 is of the usual OZ form near critical
points or tricritical points. Along a (4) path C(p, q)
shows critical fluctuations in the forward direction
(l p, ql -0). The expression for these critical
fluctuations [Eqs. (48) and (49)] is, however, not
the usual OZ form. In the scaling limit (49) we
find an p„= 1. Additionally, the limits I p, q~ —0
z -0 may not be interchanged on a (4) path. If e = 0
and l p, qlz-0, then C(p, q) is finite and continuous.
If I p, q l = 0 and z - 0, then C(p, q} diverges as
(-e) '"

The recent predictions that tricritical exponents
have mean-field values in three dimensions' have
been made plausible by an appeal to the Ginsburg
criterion. [It is pointed out in Ref. 5 that the
Ginsburg criterion, in addition to being satisfied
along a (4) path, is also valid along a path in the

ordered phase asymptotically close to the first-
order line terminating at the tricritical point. ]
The Ginsburg criterion involves the comparison of
the magnitude of the order parameter with the mag-
nitude of fluctuations over a correlation volume.
If the magnitude of the order parameter is large
compared with fluctuations of the order parameter,
it is argued that mean-field theory is consistent.
The tricritical point is characterized by critical
fluctuations of two order parameters, whereas the
Ginsburg criterion is usually envisaged to treat one
order parameter. In the case of the BEG model
(see Appendix) this is no problem, since fluctua. -
tions in the two order parameters are expressed
in terms of two distinct correlation functions. In
the BEG model, one merely applies the Ginsburg
criterion twice. One finds in this case that the
ordering and nonordering, fluctuations separately
satisfy the Ginsburg criterion. On the other hand,
in the case of the metamagnet there is the concern
that the relatively fast vanishing of the magnetiza-
tion (g = 2) may be coupled with the strong diver-
gence of ordering fluctuations. This does not

happen, because the critical fluctuations in the mag-
netization are effectively decoupled from those in

To see this, we define the local quantities

z(z, r) = Sg, g,p
—Sgp, M(z, r) = S, , p+ Sgp .

(p, q) ( ~,0)

(38)

(38)

Tt T

FIG. 3. Superimposed on the phase diagram of the
metamagnet are the paths for which limiting expressions
for C(p, q) for (p, q) - (&, 0) have been given. The
numbers in parentheses refer to relevant equations in the
text.
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(p, q) (00) morphism between the correlation functions of the
metamagnet with those of the BEG model.

VI. CONCLUSION

FIG. 4. Superimposed on the phase diagram of the
metamagnet are the paths for rvhich limiting expressions
for C(p, q) for (p, q) - (0, 0) have been given. &he
numbers in parentheses refer to relevant equations in
the text.

One can then express objects (e(z, ~)e(s, r )) in
terms of the (S,&S,.&.). Doing this, and taking a
Fourier transform, we find

(e(p, q)e(- p, —q)) = (2 —2 cosp)(Sp,-S p -),

(M(p, q)M(-p, —q))=(2+2cosp)(S„-S~ -) .
(52)

This shows in an explicit fashion that the fluctua-
tions (S,gS,O) are effectively absent from critical
fluctuations in the magnetization. This allows the
separate invocation of the Ginsburg criterion for
M and &, and the proof of the plausibility argument
proceeds as usual.

Mean-field theory predicts that specific heat
diverges as (- P, )

'~' along a (4) path, whereas it
is finite along a (3) path. This asymmetry of the
specific heat is presumably a consequence of the
neglect of short-range order in mean-field theory.
Since the energy may be expressed as

We have presented the Ornstein-Zernike expres-
sion for the Fourier transform of the correlation
function of the metamagnet and the correlation
function of the BEG model. That the correlation
function has a single divergence at g points and two
divergences at the tricritical point, is a fact con-
strained by the thermodynamics. Universality
along the g line implies that the usual OZ form
should obtain for the ordering fluctuation at g
points. In this context we mention that even along
a path through the tricritical point, the ordering
fluctuations assume the usual OZ form. An inter-
esting aspect of this calculation is the unusual ex-
pression for the nonordering fluctuations at the tri-
critical point. We have noted that g„= 1, and that
the limits (T, H) (T„H,) and I p, q ~

~- 0 are not
interchangeable for these nonordering fluctuations.
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APPENDIX

We present in this Appendix the correlation func-
tions of a spin-1 model with crystalline fieM, the
BEG model. The Hamiltonian of this model is

(Al)

where the spins are on a simple-cubic lattice, and
the spin 8;, at lattice site r, takes on the values
+1 or 0. The two order parameters of this model
are

m=(S, )

differentiation of 8 with respect to T yields the
specific heat. Using our results, we find that the
specific heat diverges along a (3) or (2) path as
(- P, ) '~'. This restores the symmetry of the spe-
cific heat along a (3) and (4) path, but as a result
of the inconsistency of the calculation, " the spe-
cific heat now diverges as (- P,) '~~ at X points.

In the Appendix we develop the correlation func-
tions for the BEG model. Both the metamagnet
and BEG models have tricritical points. In fact,
within mean field, the thermodynamics of the two
models are identical. Since in the metamagnet two
critical fluctuations are present in the same cor-
relation function, whereas in the BEG model two
separate correlation functions diverge, it is natu-
ral to ask if the BEG model and metamagnet differ
in the behavior of their correlation functions. We
show in the Appendix that there is a complete iso-

q = ((S&)')

Three correlation functions are of interest in this
model:

C,(r)= p[(S;, S;,;,)- ~f'],

C,(r) = P[((S-„.)'(S;,;,)')- Q'],

(A2)

(AS)

Utilizing the same approximations as were used

C,(r) = p[((S;.)'(S;,;,)) —~q] . (A4)

The Fourier-transform variable q [to be distin-
guished from the (p, q) transform variables of the
metamagnet] is a three-component vector and, for
example,
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for the metamagnet, we find the Fourier trans-
form of Eqs. (A2)-(A4),

C.(q) = P(1 —eo)eo

P(q M')
I - Pqa(q)+Pa(q)M' '

P(1 —q)(q[I —P~(q)q]+ PS(q)M']
1 —PQ4(q) + P8(q)M 2

(As)

which is finite. Along a (1) or (4) path

P(1 —Qo)[92(I —&(q)/&)+ p&(q)M'(I —
2 p&eo)]

1 —p(q)/g + PP(q)(I —-', Pp)M'+ o(M')

(Ae)

PM(1 —Q)1-Pq8(q)+ PA(q)M'
(AV)

A. Behavior of Ci(g)

Along a (2) or (3) path we find

C (q) = 0o/[I —P&(q)Q.],
which clearly diverges in the forward (q= 0) direc-
tion at a y or tricritical point. Along a (1) or (4)
path to order M

P[I/Pg+M2(&Py -1)]
1 —p(q)/g + pg(q)(I ——.

' Pa)M2+ O(M')
'

(AS)
The reader may readily convince himself that the
behavior of C, (q) is identical to the behavior of
C(p, q) of the metamagnet for (p, q) - (v, 0).

B. Behavior of C2(g)

Along a (2) or (3) path

The thermodynamic information needed to evaluate
these expressions is: M = 0 in the disordered phase
and M-0 as a ) or tricritical point is approached
from the ordered phase; PgQ = 1 at a g point and,
additionally, Q=+ at the tricritical point; Q
= M cothPPM = @0+M'Qg+ ~ ' ~ in the ordered phase;
and 4=)~/(r).

Along a (1) path for q=O, the numerator and de-
nominator are of order M so C2(q) is finite. For
a (4) path, the M2 term in the denominator of Eq.
(AQ) vanishes, and (Ae) diverges. Comparison
with Eq. (48) leads to the identification of C2(q)
with C(p, q) for (p, q)-(0, 0). Equation (As) may be
evaluated in the QT plane along the superfluid
branch of the first-order line near the tricritical
point. The resu1.t is

( ~ aq'+ 16(I —r/r, )
aq + 4 15(l —T/T, )2 '

where 8(q) = 8 (1 - aq2+ ~ ~ ~ ).
C. Behavior of C3(g)

This correlation function measures a crossed
susceptibility, the response of the ordering densi-
ty to the nonordering field, or the nonordering
density to the ordering field. From Eq. (AV),

C,(q) =0 for a (2) or (3) path. Along a (1) or (4)
path,

PM(I - q)
1 —P(q)/P +PP(q)(l —

2 Pp)M +O(M )
'

(A10)

If we take q=O along a (1) path, C, will diverge as
M, i.e. , with an exponent of 2. Taking q small,
we can write (A10) as

PM (1 —Q)

[ -g "(0)/2y]( 2)+(I &PA)(M2/q-, )+ O(q'M', M') ' ',All)

PM(1 —Q)
C2(q)

[~ rr(0)/2$) 2+0(M )
(A12)

C, (0) diverges at the tricritical point as M, i. e. ,

In the scaling limit q- 0, M - 0, with M /q fixed,
Eq. (All) gives us q = 1. This result is for a z
point.

Near the tricritical point, the M term in the
denominator of Eq. (A10) is of order M, so that
for a (4) path

with an exponent —,'. Taking the scaling limit on

Eq. (A12) (M /q fixed) yields q=-,'.
A crossed correlation function can also be de-

fined in the metamagnet. %e write

D(p, q) = Eg —Og,
where E& and O~ are determined from Eqs. (21)
and (22). D(p, q) measures for the metamagnet
the response of a to a magnetic field, or the re-
sponse of M to a staggered field —the analog of

C,(q). One readily finds

1 1 1 1 1 1 - 1 1 - 82(- 2

P 1-(M.)' P I-(M )' P 1-(M')' q P 1-(M:)' (A13)
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This expression can be analyzed as was C(p, q).
The behavior of both D(p- 0, q-0) and D(p- m,

q-0) is found to be identical with that of C~(q-O).
The isomorphism between the correlation func-

tions of the BEG model B.nd metamagnet is

c,(q -o)~c(p -~, q-o),
c,(q-o)~c(p-o, q-o),

D(p-o, q-o)
C3(q- 0)~

D p-w, q-o
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