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A Hartree-Fock treatment of the surface of ferromagnetic transition metals will often lead to three
self-consistent surface solutions. They correspond to different magnetic properties of the surface. 4'e
present here an energy comparison of these surface solutions. Two models, each having a different bulk
density of states, are considered in order to study how sensitive our findings are to the shape of the
bulk density of states. In many cases the solutions corresponding to a ferromagnetic and to an anti-
ferromagnetic coupling of the surface layer to the bulk are found to have almost equal energy. This
implies the possibility of low-energy magnetic surface excitations corresponding to a change of thy
surface layer from ferromagnetic to antiferromagnetic coupling or vice versa. For temperatures higher
than this low-lying excitation energy but lower than the Curie temperature, the ferromagnetically and
antiferromagnetically coupled states are equally populated and the surface layer has no net moment.

I. INTRODUCTION

An understanding of the surfaces of transition
metals is not only of theoretical but also of
practical interest mainly from the standpoint of
their possible catalytic properties. Despite this,
our knowledge of such surfaces is very limited,
especially with respect to their magnetic proper-
ties. In a recent investigation by Fulde, Luther,
and Watson' (hereatter referred to as paper I) an
attempt was made to describe the different physi-
cal effects which are important in determining
them. There the problem was divided into two
parts. First, one must know how the d-hole count
changes at the surface as compared with the one
inside the bulk probe. It is, furthermore, im-
portant to know among how many subbands the
surface d holes have to be distributed. Since the
symmetry of the environment of a surface atom
is lower than that of an atom inside the bulk, the
number of subbands among which the d holes are
distributed can be smaller at the surface.

After one has solved this problem-for example,
by using the renormalized atom approach'-one is
still left with the question of how such a surface
layer couples to the ferromagnetic bulk. This
problem was considered in paper I for a simple
cubic (sc) lattice under the assumption that at the
surface all d holes sit in one subband. (We ex-
pect this to be true in Ni where the threefold de-
generate t~ bands split at the surface into a low-
lying filled doublet and a high-lying singlet which
contains all the d holes. ) It was found that with a
ferromagnetic bulk there will be either one or
three Hartree-Fock surface solutions, depending
upon the d-hole count at the surface. When there
is one solution, it corresponds to a ferromagnetic

or an antiferromagnetie coupling of the surface
to the bulk, depending upon fixed parameters. In
the case of three solutions, there is an antiferro-
magnetic, a ferromagnetic, and an almost-van-
ishing surface magnetic moment.

The aim of the present investigation is twofold.
First, an energy comparison is made in the case
of multiple Hartree-Fock solutions. The circum-
stances under which the antiferromagnetic solu-
tion has the lowest energy are shown, and then
excitation energies between the different solutions
are calculated. Thus, it is found that the energy
difference between the ferromagnetic and the anti-
ferromagnetic surface solution can be very small.

Second, we want to determine the extent to
which the results obtained depend upon the bulk
density of states chosen to correspond to a sc lat-
tice with nearest-neighbor interaction. We there-
fore modify the bulk density of states so that it
more closely resembles the Ni bulk density of
states, and then determine the resultant changes
in the Hartree-Foek surface solutions.

In Sec. II we outline the free-energy calculations
which provide a direct energy comparison of the
different solutions. Section III contains the nu-
merical results for a sc lattice with nearest-
neighbor interactions. In Sec. IV it is shown to
what extent a different bulk density of states
changes the previous results. Section V contains
a discussion of the results obtained, and Sec. VI
is devoted to a summary and to the conclusions.

II. ENERGY CALCULATIONS

A. Model for the surface

The following considerations are made with Ni
in mind. The five d orbitals can be divided into
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a completely filled e doublet and a P, triplet
which contains the d holes. Leaving the filled e,
orbitals out of all further considerations, we
write the bulk Hamilton operator H in the form'

H = E an; a —H~
t, m, a

iE surface

The Hartree-Fock potentials at the surface,
E „are given by

Es, =Es+ Us(2n~, +ns )+2UsnD —E, (6a)

Here a, , denotes a creation operator of a t„
electron in subband m (ns =1, 2, 3) and spin a at
site i. Furthermore, t is the hopping matrix ele-
ment between neighboring sites i and j. The
Hartree-Pock (HF) potential E„is the same for
all three orbitals and is determined by

E~, = ED+ Us(2nD, + ns, ) + Us(na, + n s, ) —Es, .
(6b)

Here S and D refer to the singlet and doublet into
which the t, bands split at the surface. The sub-
traction term HHF is given by

E,~= U(3n, +2n, g . (2) IfaF = +)i[Us(n D+ 2n~ns+ 2nD' nD~+ ns ~ "s~)

%e have neglected the exchange energy here,
since it is much smaller than the Coulomb energy
U. n„ is the bulk occupational number of any of
the three t„orbitals. The last term in Eq. (1)
is subtracted in order to prevent double counting
of the interactions when the total energy is calcu-
lated. It is given by

B 1
HHF =—

i, m, m'a, a'
(m =m', a &a ')

U"&asmaatmaasm'a'asm'o')

s, m, m'a, a'
(m =m', a &a ')

U&a,'. ,a,. /&at ...a, „,)
=3 UN(n, +n, )n, )) . (3)

Here we have set n, equal to n, &+n, ~, and N
equals the total number of atoms.

If a surface is introduced, several modifications
arise which were discussed in detail in paper I.
The following assumptions were made there which
also apply here: (i) The hopping matrix element t
does not change near the surface, except that it
vanishes between the surface layer and the out-
side vacuum. (ii) The Coulomb integral Us at the
surface may be different from the bulk value U.

(iii) The threefold degenerate bulk t„band splits
at the surface into a high-lying singlet, which
contains all of the d holes, and a low-lying doub-
let, which is assumed to be completely filled.
(iv) The d-hole count is changed at the surface.
Using the lowest approximation, the layer next
to the surface layer is assumed to be unaffected
by the presence of the surface.

In the presence of the surface, the Hamiltonian
can then be written as

—3 U(n, +n, (n, ))J,
where ns D=ns D~+ns g$ and N~[ is the number
of atoms in the surface layer.

With the assumption that the doublet is com-
pletely filled, Eqs. (6a) and (6b) simplify to

Esa Es+ Usns-a &

ED =E~+ Usns,

where we have introduced

E =E +4U

Eg =Ea+3 Us —E~a ~

(8a)

(Bb)

B. Hartree-Fock equations for nz,

In order to calculate ns, conveniently, we in-
troduce the Green's function+'

0 n

x &[a,„,(t), a, ,o,],) . (10)

Here we have labeled the sites i and j by (t, n)
and (f', n' = 0), where f ~ 0 denotes the different
layers parallel to the surface and n labels the
different atoms within a layer. The surface it-
self is labeled by l=0. k, [

is the momentum
parallel to the surface. G, (a&, E~~ 0 0) is easily
obtained for a sc lattice' and is given by

Our aim will be to find self-consistently the sing-
let occupational numbers ns, for known values of
the parameters t, U, U» and Es as well as of
n„ for the bulk ferromagnetic state. In the case
of multiple solutions, we want to compare their
energies and to find which has the lowest energy.

H=B +H (4)

Here Ps is the bulk Hamiltonian given by Eq. (1)
but with the inclusion of assumption (i) for the

hopping term. The perturbation at the surface is
described by the additional Hamiltonian H, where

G„,((u, K; 0, 0) =
1+ th, ~((a), k (() —E~~g, ~((u, k

~, )

(11)

where
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nsg = d4) ps~ 40 (15)

where cF is the Fermi energy of the system and

N, ]
is the number of atoms within one layer.

The bulk quantity n„ is determined from
G, (((), k)(' I I) by choosing I very large. The ef-
fect of H is then quite small. The flow of charge
to the surface actually affects the bulk by a cor-
rection of order N~'. For /»1

g,.(,R„)=N-, ' P ( ~-q-, mic08);z,'.)-',
(12}

k, ~((u, f))) =N~' Q cosk, ((u —eI,
Ag

—2tcosk, —E~s, ) ',
and eI =2t(cosk, +cosk„). K~ is the total number
of layers. The lattice constant has been set equal
to unity and the surface was chosen perpendicular
to the z axis. The surface density of states for
the singlet can then be written as

p ~,((()) = — Im G~, (&u, K)); 0, 0),1

lt

and the surface singlet occupation number as

Here S denotes the 8 matrix due to Hs. The in-
dex t.- indicates that only connected diagrams have
to be taken while the degree sign refers to a
thermodynamic average over unperturbed states.
In the following argument, we neglect the effect
of electrons in the surface doublet subbands. The
justification for this is given in Appendix B. So
Eq (1.8) reduces to

n fl.-= 2 g g {Z,.G', .(~„,k, ;0, 0)
Fl k ]]Q

+~[EsaG(a((d ~( i)0 0)]

+ ,'[E~,—G,'~((()„,k)), 0, 0}]'

+ } IIHF 's

0,', (~„,R „;I, I) denotes the Green's function given
by Eq. (11) in the absence of H~, that is, for
E,=0, and is written in terms of Matsubara
frequencies [(()„=2wT(n+-,')]. If the zero-tempera-
ture limit is taken, 0 —0, goes over into hE,
which is the energy shift of the ground state. The
sum in Eq. (19) can be simply performed by ana-
lytical continuation, and one obtains

d(() Im{ln[1 —E~,G'„(((),k), ; 0, 0}D
T]],a

G, (((), f(„I, I) =g„((u, k ()) . (16)
—»)[~s&s) &si -8 «&'(+«) &~))] ~ (20)

Hence, the bulk density of states is given by

where g„ is determined by H~ and is given by
Eq. (12).

C. Energy comparison

a-n. =-T((S&:—1) . (18)

In order to compare the energy of different
Hartree-Fock surface solutions, we adopt the
following procedure. First, we calculate the
shift of the thermodynamic potential due to the
perturbation Hamiltonian Hs. This is dane by
diagrammatic method, i.e., a Green's-function
method. Then we take the limit of zero tempera-
ture. An important advantage of this method is
that feedback effects of the surface on the bulk
properties are automatically taken into account. '
Though they are not important for a determination
of ns~, they must be taken into account when
added up for an energy comparison between dif-
ferent states. The difference in the thermo-
dynamical potentials due to a perturbation H is
given by'

Here we can neglect small corrections to ~F and
n„due to the presence of the surface, since the
feedback effects of the surface mentioned above
are properly taken into account in that equation.
Actually, one can show that the condition s~/
Bns =0 leads to the Hartree-Fock equations
(11)-(15}including the lowest-order terms in
N

Since we want to compare energies of different
states which are distinct only with respect to
nz, we rewrite Eq. (20) after partial integration
as

1 EF
da) ((() —t )F

g ~00

x —Im[lnG~~(a), k, ; 0, 0)]
84)

Usns t ns f+ const, (21)

where the constant term contains only quantities
which are independent of ns, .

III. NUMERICAL RESULTS

We present in this section the numerical results
in a way that enables us to compare readily in
Sec. IV the changes caused by a different choice
of the bulk density of states.
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A. Bulk density of states

1
ps(x} = — Im

Sr&
dy [(x-y}'—1] 't', (24)

We define the two-dimensional density of states
p ll(e ) by

p ii(e}=A'g'Q 5(e —&I ) . (22)
k]1

Within the parabolic band approximation, p ~~(e) is
given by

(St) ' for -4t&e &4t

otherwise .
This implies for the bulk density of states ps(x)
[see Eq. (1'I)]

analogy with a resonance level appearing in the one-
impurity problem, we are referring to this contribu-
tion as a two dimensional surface resonance density
of states p"„(x). It is square in shape, with the center
at x, = (a'+ I)/2n and with a width and height of
4(x2t} and (n' —I}/Sn't, respectively. The ex-
plicit expression for pNR(x} is given in Appendix
A by Eq. (Al). We have plotted in Fig. 1 p (x)
with a=0 and 0.95. (The characteristic features
of p„(x) for [n~ &1 were discussed in I.) Here it
is important to note that pNR(x) is nonvanishing
in the same energy range as is the bulk density
of states ps(x), whereas p„(x) has a nonvanishing
value also outside this regime. '

C. Surface occupational number

where y = e/2t and x denotes the energy in units
of 2t. For later comparison we have plotted
ps(x) in Fig. l.

For a given surface potential a., n~, can be
determined with the help of Eqs. (15}and (25)
once the Fermi energy e~ is known. We require
for paramagnetic Ni 0.1 holes per spin direction
for each of the three t„subbands. This leads to
e~E=1.6865, again in units of 2t. For the ferro-
magnetic state of Ni, we assume that the spin-up
band is completely filled while thespin-down
band contains all the d holes. Hence'

B. Surface density of states

The surface density of states given by Eq. (14}
is written

q~) = 1.2044,

erj =3.0+1.2(U- Uo), U& Uo . (26)

p..=- p.(x)

1 +' 1
4vt ™,y [(x-y)' —IP"+ (x-y) n-

=pNR (x) +p (x) (25)

tip

"03

Here o =E~,/t characterizes the surface potential.
p„(x) can be divided into two terms. The first
arises from the imaginary part of the square root
in the denominator of the integrand and is called
the nonresonant part pNR(x}. The second term p"„(x)
results from the poles of the integrand if

~
n~ & 1. In

Here we have expressed the Coulomb energies U

and U, in units of the total bandwidth 12k. U, = 1.5
denotes the critical Coulomb energy above which
we are in the regime of strong ferromagnetism
where one spin band is completely filled. Nu-
mericai results for n~, a,re shown in Fig. 2 fear

U=, U„which implies c ~~ = 3.60. Also shown for
comparison are the corresponding curves for
U = U, (eRj ——3.00) which were calculated before
in paper I.

D. Solutions of the Hartree-Fock equations
and energy comparison

--0 2

--01

1

-3
= X

FIG. 1. Densities of states (a) pz{x), (b) p -0(x), and

(c) p~-0 95{x). The energy x is in units of 2t; p is in units
of (2t) ~.

We have solved the Hartree-Fock equations
numerically by combining Eq. (Sa) with the results
shown in Fig. 2. The quantity E~ is determined
by requiring a fixed value for n~& = ns& = ns which
can be estimated, for instance, by applying the
renormalized atom approach. ' Here we leave
n~ as a parameter. Figure 3 shows some numeri-
cal results applicable to the case of Ni. The
magnetization M = ns~ —ns~ is plotted as a function
of n~R. The quantity (nR —0.9) corresponds to the
"charge transfer*' of paper I. In order to see the
dependence of the results on the absolute magni-
tude of U = UR, we have plotted in Fig. 3(A) curves
for U=Us=~U, and U=Us=U, . Figure 3(B) shows
the dependence on the ratio U~/U choosing a.



2026 H. TAKAYAMA, KAREN BAKER, AND PETER FULDE 10

Esv f 2t

0.3 0.6

nse'

0.5—

fixed value U/U, =1.06. In the case of three
Hartree-Fock solutions, the ones with the largest
and smallest M are called the ferromagnetic and
antiferromagnetic solution, while the third one
is referred to as the paramagnetic solution. It

a, ~ Es /t

FIG. 2. Surface occupation number n~ as a function of
the surface potential u~ = E$~/t. For convenience we
show on the upper scale the energy in units of the total
bandwidth 12t. Curve (a) corresponds to the minority
spin band with &z& =1.20. Curves (b) and (c) correspond
to the majority spin band with ez~ = 3.00 and &z~ =3.60,
respectively.

should be mentioned that curve A of Fig. 3 in
paper I is in error and has the form shown here.

Within the present model the shift of the ground-
state energy due to the surface magnetization can
be calculated analytically. Details of this calcula-
tion are given in Appendix B. Here we present
merely the results. In Fig. 4 the energy differ-
ences between the ferromagnetic and paramag-
netic solutions, E(F) —E(P), and between the anti-
ferromagnetic and ferromagnetic solutions,
E(AF) —E(F), are plotted as a function of n~z for
U= U$ = Up and U=1.06U„U$=0.63U. By con-
sidering other cases as well, such as U= U$ =

3 U and U = 1.06 U„U$ = 0.81 U, one notices that
the general features of the curves are the follow-
ing: As n~$ decreases from unity, the three solu-
tions appear at a value ng which is about O.S. The
lowest energy solution below ng corresponds to
the single solution above n$'. If it is the ferro-
magnetic solution (three cases in Fig. 3), then the
antiferromagnetic solution becomes lowest in en-
ergy when pg$ ~0.7-0.6. On the other hand, if the
single solution is antiferromagnetic, this solution
stays lowest in energy for all values of n$. In all
cases the paramagnetic solution is highest in en-
ergy, and IE(F}—E(P)I » IE(AF) —E(P)l holds
true except in the close vicinity of n$0'.

From these investigations we see at once that
decreasing Uz/U tends to favor the antiferromag-
netic solution. Such a tendency has already been

Ill 0C
v) 0C

0.6

n'
8

0.8

nP
S

0.8 &, 0

FIG. 3. Surface magnetization n$$ n$~ versus n$. Shown in (A) are the cases {a) U = U$ = U(), {b) U = U$ =1.33UO,.
in (8) are (a) U =1.06UO, U$ ——0.63U, {b) U =1.06Uo, U$ =0.81U. For case (b) of {3),L& and L2 indicate at which values
of n~z we draw the energy vs magnetization curves in Fig. 9.
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pointed out in paper I. Most interesting is the ex-
tremely small energy difference between the fer-
romagnetic and antiferromagnetic solutions.
%'hen we assume 2 eV for the total bandwidth,
E(AF)-E(P) is smaller than 10 ' eV, i.e., 10'K.
This opens up the possibility of low-lying mag-
netic surface excitations corresponding to a
switchover of the surface layer from ferromag-
netic to antiferromagnetic coupling to the bulk
or vice versa.

IV. VARIATION OF THE BULK DENSITY
OF STATES

The aim of this section is to study how sensitive
the numerical results obtained so far are to the
chosen form of the bulk density of states that
represents a sc lattice with nearest-neighbor in-
teractions in the parabolic approximation.

FIG. 4. Energy differences E(F) -E(P) and E(AF)-E(F)
are shown by the broken and solid lines, respectively.
{b) and (c) are for the case U =a.06UO, U& =0.63U while

(a) and {d) have U = Uz = Uo. The energy in this figure
is in units of the total bulk bandwidth. Note the difference
in scales for E{F)-E{P)and E{AF)-E(F).

parameters which are chosen to approximate the
Ni bulk density of states more closely. In Fig.
5(A}we show ps(x} for P =1 and r = V. We inten-
tionally write P ~(e) in what appears to be a com-
plicated manner since this allows the calculations
of the energy shifts still to be performed analy-
tically.

B. Surface density of states

The surface density of states is evaluated as
before. Here, we show only the final results for
n =0 and 0.69 in Fig. 5(A) and for n =-2.15 and
2.66 in Fig. 5(B). The parameter o.'s in Fig. 5(B)
are those of the majority and minority electrons
for the antiferromagnetic solution with U =1.06U„
Us =0.63U, and with n~z =0.82 (indicated by the
cross in Fig. 1). Figure 5(B) clearly shows the
importance of surface resonance levels to obtain
the antiferromagnetic solution.

C. Surface occupational number

The Fermi energy for the paramagnetic state
of Ni is now given by ~~p =2.0331 and for the ferro-
magnetic state by

t~) —-1.8664, Ep) —-3.0+1.2(U —Ua), U~ Uo.

The critical Coulomb energy U, necessary for
strong ferromagnetism to occur is now given by
U0=0.9447. This smaller value of U, is due to the
fact that ps(x) has a larger value close to the upper
band edge than ps(x). n~, is calculated as a func-
tion of e as previously, and the results are shown.

in Fig. 6. We have again chosen values for e~&
corresponding to U = Uo and —', Uo, and for e~& cor-
responding to U& Uo. One notices a distinct differ-
ence between Figs. 6 and 2 due to the occurrence
of a discontinuous change in slope in the curves of
Fig. 6, which is, of course, due to the discon-
tinuity in P~~(e).

D. Solutions of the Hartree-Fock equations
and energy comparison

A. Bulk density of states

In order to approach the bulk density of states
of Ni more closely, ' we introduce instead of Eq.
(23) the following form for the two-dimensional
density of states

b /t for 4t&c ~2pt-
p (e)=~ a/t for 2pt&e&4t

, 0 otherwise. (2't)

The bar distinguishes the present quantities from
the ones considered earlier. p and r = a/b are-

Self-consistent solutions of n~ for the ferro-
magnetic bulk state, and the energy differences
E(F) —E(P) and E(AF) —E(F), are plotted in Figs.
'7 and 8, respectively. (The method of calculation
of the energy differences is discussed in Appendix
B.} The chosen values for the parameters U and

Us are the same as those in Figs. 3 and 4. When
compared with the previous results, the over-all
behavior of the surface magnetization, as well as
the behavior of the energy difference curves, is
similar for the two cases. The small differences
in the magnetization curves are easily understood
when we compare the ns, vs a curves in Figs. 2
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and 6. Most important is the fact that the ferro-
magnetic solution is more stable in this case than
it was in the previous case. Actually, we cannot
obtain the single antiferromagnetic solution even
for Uz/U =0.63, U =1.06U, . Furthermore, the
energy difference E(AF) —E(F) in the present case
is several times larger than it was before, but
is still very small.

One more small difference is the fact that for
U = 1.06U„U~ =0.63U the antiferromagnetic solu-
tion is highest in energy in the region of n~ = n~ .
In order to obtain a better understanding of this
feature, we have tried to calculate the energy
versus magnetization curves. Energies corre-
sponding to other than the Hartree-Pock solutions
are evaluated by means of Eq. (21) using arbitrary
values for nz& or n~ &

(the details are found in

Appendix B). In usual cases, in which the para-
magnetic solution is highest in energy, the double
minima in energy correspond to the antiferro-
magnetic and ferromagnetic solutions. They are
shown in Figs. 9(A) and 9(B). These figures also
demonstrate how the double minima develop as
n~~ decreases. On the other hand, in the case in
which the antiferromagnetic solution is highest
in energy, the situation is not as clear. This is
shown in Fig. 9(C). The Hartree-Fock solution
corresponds to the intersection of the two curves

MINOR I TY

P

FIG. 5. {A) Densities of states (a) pa(x), (b) po.p(x),
and (c) p () 69(z). This may be compared with Fig. 1.
(B) Density of state p(g) for the antiferromagnetic solu-
tion with U=1.06Up, U&=0. 63U, and g&=0. 82 (indicated

by a cross in Fig. 7 B). For this solution we obtain (a)

e~ =2.66 and (b) n~ =-2.15. The broken line is the bulk

density of states p&~{a). The vertical line indicates ez.

Es «

FIG. 6. Surface occupation number as a function of the
surface potential o'~ = Ez ~/t calculated from p~~(~).
Curve (a) corresponds to the minority spin band with
&+~=1.87. Curves (b) and (c) correspond to the majority
spin band with &z~ =3.00 and &z~ = 3.38, respectively.
This may be compared with Fig. 2.
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u) Q

I

v) Q

0.8 1.Q 0,6 Q.e 1.0

n'
S

FIG. 7. Surface magnetization nz~-nz~ vs nz calculated from p ~. Figure 7(A) gives (a) U =Up =Up (b) U =Ug=1.33Up whQe Fig. 7(B) gives (a) U =1.06Up, Ug ——0.63 U, (b) U =1.06Up, Ug =0.81 U. The surface density of sites
p«(x) for the antiferromagnetic solution indicated by a cross is shown in Fig. 5(B). For ease (a) of (8), L3 indicates
at which value of n~z we draw the energy versus magnetization curve in Fig. 9.

I and D, that is, the point at which the conditions
Bb,E/en„=o and BLE/en~& =0 are both satisfied. x 10 x 10

3

V. DISCUSSION

In the previous sections, we have investigated
the problem of surface magnetism in transition
metals, mainly with Ni in mind, within the as-
sumptions pointed out in Sec. II. The present
model has some similarity to the one of a magnetic
impurity embedded in a magnetic matrix which
has been extensively studied. '0 The characteristic
features of the surface problem are dominated
by the fact that the "impurity atoms" [atoms on the
surface are impurities in the sense that U~ differs
from U and that E~ in Eq. (6a) is nonzero] form
a two-dimensional layer. This implies a weaker
condition for the occurrence of resonance states
and the broadening of these resonance levels. For
the one-impurity problem, the energy comparison
between the multiple Hartree-Fock solutions has
been recently reported by Kanamori. " Except for
the difference in the dimensionality of the impuri-
ties and for the greater sophistication of his treat-
ment, the energy expressions of the two —that is,

I

fA
0

{d l/
/

/
~ ~ /

/
/

/

/
/

/

0.6 0.8 1.0

np
S

FIG. 8. Energy differences E(F) -E(P) and E(AF)
-E(F) evaluated hy using pz and P'~~. Explanation of the
various curves is the same as that in Fig. 4.
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nsf -ns $ "st "s$

x10

1.0— I

0.5

LU

- 0,5

, II

0.5

st sJ

FIG. 9. Energy versus magnetization curves. Curves I are obtained by arbitrarily taking n&~ but calculating nz~ with
the condition BAE/Sn&t = 0, while the curves II are obtained by the inverse process (see Appendix B). Parameters U,
U&, andn& are defined by && and L2 of case (b) of Fig. 3(B) for Figs. 9(A) and 9(B), respectively, and L3 in case (a) of
Fig. 7{B)for Fig. 9(C). Note the energy scale for each figure given in units of the total bandwidth.

Eq. (11) in Ref. 11 and Eq. (21) of the present
paper —are quite similar.

We have demonstrated the various possibilities
for the surface magnetism depending on the sur-
face parameters U~ and n~, as well as the shape
of the bulk density of states. There is one other
bulk quantity whosh variation is of interest and
this is the Fermi energy e~, . Until now we have

chosen it such that the number of d holes describes
the case of Ni. In order to demonstrate how
changes in c~, influence our previous findings, let
us consider fcc Co for which the holes are similar-
ly distributed as for fcc Ni." Assuming the refined
density of states ps(x) and the strong ferromagnet-
ic limit (that is, one spin band completely filled),
we obtain for the magnetization as a function of



10 MAGNETIC PROPERTIES OF TRANSITION-METAL SURFACES:. . . 2031

(n 0—
I

ih
C

0.4 08

p-Co
I

10

FIG. 10. Surface magnetization n&& -nz~ vs n& for Co.
Shown are (a) U =U& =Uo and (b) U =1.06UO, U& =0.81U.
It is emphasized here that in the case (a) U = Ug = Up the
antiferromagnetic solution is lowest in energy in the
range n~& ~ 0.71 (note that three solutions exist in the
range nz ~n~z =0.76), while in the case (b) U =1 06UO and

Uz =0.81U the antiferromagnetic solution is always
lowest in energy.

n~ the results shown in Fig. 10. The following
parameters were used there: n~ =0.74 and e~
=1.72, and, furthermore, n~) =1.0 and n~)=0.48
(corresponding to a bulk magnetization of 1.56 p, s
per atom) from which e» = 3.0+3.12(U —U, ) and

e~& =1.0 result. Here U, =0.61. Comparing the Co
results with those for Ni, one notices that the
smaller the values for e~ and e~&, the more the
antiferromagnetic solution is preferred. It is
worth pointing out, also, that in the Co case the
energy difference between the ferromagnetic and
the antiferromagnetic solutions is as small as it
was calculated for Ni.

Now, me want to make a comment on the low-
lying magnetic surface excitation which we found.
These correspond to a flip of the surface magneti-
zation from ferromagnetic to antiferromagnetic
coupling to the bulk or vice versa. If a material
has suitable values for U, U~, and n~, the excita-
tion energy may be lower than the Curie tempera-
ture, as mas emphasized in Secs. III and IV. Then
the question arises of whether the paramagnetic
state, which is highest in energy (see Fig. 9),
should be interpreted as a potential barrier be-
tween the tmo minima. If this is the case, then
a flip of the surface magnetization is observed as
a thermal activation process. If it is not the case
(or if the barrier energy is sufficiently small as
in the range n~~ =n~ ), we expect that the magnetiza-
tion of the surface disappears at much lower tem-
peratures than the bulk Curie temperature.

In order to understand the behavior of surfaces

of realistic crystals, it is necessary but not suffi-
cient to know U~ and n~ accurately since there are
several features not included in our model which
should be taken into account. The occupational
number n~ has been estimated in paper I for Ni by
using the renormalized atom approach. ' For a
more accurate determination of n~~, several refine-
ments should be considered. Among them is a bet-
ter estimation of the distortion of the d-electron
wave functions near the surface. This is also im-
portant for a determination of the intra-atomic
Coulomb integral at the surface, i,e. , the parame-
ter U~, However, these problems are beyond the
scope of this article, and U~ and n~ are therefore
left as free parameters.

Not included in our model are realistic lattice
structures applicable to Ni or Co (fcc, hcp), inter-
actions extending beyond nearest neighbors, and
a possible lattice distortion close to the surface.
Furthermore, there is the problem of the exten-
sion of surface effects into the bulk.

Several authors, such as Kalkstein and Soven'
and Haydock and Kelly, "have investigated the
spatial variation of the electron density of states
due to the surface in terms of the tight-binding
approximation. According to them, surface ef-
fects are insignificant if one penetrates more than
two layers into the bulk. It is of interest to com-
pare their results for the surface density of states
with the present ones, i.e., p„, in Fig. 1 and

P, in Fig. 5(A). One can see that the present
results show the qualitative nature of the surface
density of states pointed out in Ref. 4, that is,
a drastic modification of the Van Hove singularities
characteristic of bulk crystalline p~ and a decrease
of the rms bandwidth. " We expect, therefore,
that our assumption (iv) of Sec. IIA, which neglects
any spatial variation of physical quantities except
for the surface layer, may be reasonable as far as
the surface density of states and the qualitative
behavior of n~, are concerned.

However, the spatial variation of physical quan-
tities near the surface may be of importance in a
different context. The Hartree-Fock solutions
which we obtained are associated with charge
accumulation at the surface. This additional charge
will be screened out within a few layers from the
surface. Also, the deviation of the spin polariza-
tion from the bulk value mill be appreciable on
layers near the surface. This may lead to quan-
titative changes in the energies of the different
surface solutions. At present we find it very hard
to investigate these changes rigorously.

Magnetic surface states may have some rele-
vance in interpreting recent photoemission" and
tunneling" experiments on ferromagnetic Ni, Co,
and Fe. For example, if the escape depth of photo-
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electrons is less than 20 A, as it was noted in
Ref. 15, then surface effects should play an impor-
tant role. Our findings show it to be quite likely
that in this case the measured quantities can ap-
preciably deviate from those of the bulk.

VI. SUMMARY AND CONCLUSIONS

%'e have made an energy comparison between
the different Hartree-Fock solutions which occur in
the magnetic surface problem of transition metals.
The parameters were chosen to describe as well
as possible the case of Ni. The conditions were
worked out under which an antiferromagnetic
surface solution has the lowest energy. %'e have
also studied how sensitive our results are to the
chosen form of the bulk density of states. Attention
was drawn to low-lying magnetic surface excita-
tions which correspond to a flip of the surface lay-
er from ferromagnetic to antiferromagnetic coup-
ling to the bulk or vice versa.

APPENDIX A: SURFACE DENSITY OF STATES

where a and 5 are defined in Eq. (27). This change
does not introduce any difficulty in the explicit
calculations, although it makes the final results
look more complicated.

APPENDIX B: ENERGY CALCULATION

Using the various energy units introduced in the
text, Eq. (21) reduces to

~E 4t Fo
Im dx (x E'R ) dy pg ( y )

tN[] n' -2

x ln[G (x, y;0, 0) '1 —12UznR&nz&.ax

From Eqs. (11)-(13), the relation

8
G, (x, y;0, 0) = — G, (x, y;0, 0)

8

(Bl)

is derived. Then, substituting the density of states
of Eq. (23) into pg(y) we ean at once carry out the
y integration. Ne obtain

The calculation of Eq. (25) is straightforward
and p (x) is given by

n ar f (arc cos(—x+2)) -3&x & —1t

2tp""(x) = r„, -1&x~1

arccos x —2, 1&x&3,

12Usns, ns )

~E 6Fg —2, &f1 —5g EFg + 2, HG

snst ns~~ (B2)

where

1 1+o2f (6) = 8+sin&
4n~ 2~

1 —e2 1+ o. e-
arctan tan—0 1 —Q

For the case
~
a(&1, the spectral weight is divided

as

2t Ck x =~'

2t dx pR(x} 1 a

If physical quantities are calculated by using the
density of states p], , it is only necessary to rewrite
the y integration, such as the one in Eq. (25), as

2 S 2

cp b cp+Q cp,

where o, =Ez, /t and

5E(r, o) = d$($ —r) 1m[In[($'-1) + $ —o]j .
1 y

2

2'
(B3)

Here we have used the following explicit form for
G, (x, y; 0, 0):

G.(x, y;0, 0) =t/[(E'-1)~'+ g- n ] (B4)

where g = (x —y). The correct branch of the loga-
rithms in Eq. (B3) is determined by the fact that
the (retarded) Green's function (B4) always has a
negative imaginary part. Then in the case &&1,
for example, the function Im(in[(t'R- I)~'+ ] —n] j
is equal to w for $ &-1 and 1 &

E, &x, , and equal to 0
for $&x, , where x, =(e'+1)/(2n). When -1&(&1,
the function varies between v and v/2. This dis-
continuity at E =x, corresponds to a surface reso-
nance level. In the case e& -1, the discontinuity
occurs at E =x, & -1, while in the case of -1 & ~&1
there is no discontinuity. Explicit calculation of
Eq. (B3) is then straightforward. Here we only
write the final result for the range &~1 and y&1,
and o, &1 and y&x, :

5E(r, &) =8 &r+—
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W'ithin our model, the contribution to AE from
electrons in the surface doublet substates is eval-
uated in a similar manner. %e only have to rein-
terpret n, and e~, properly. The assumption
(iii) of Sec. II A that the doublet states are com-
pletely filled requires a small 0., and e~, & 3 for
these states. Therefore, we can use Eq. (85) for
both y =~„,—2 and ~~, +2. %'e can see at once
that the first term in Eq. (82) exactly cancels ihe
second term when we only consider the contribu-
tions coming from these substates. [Note that in
this case the second term is given by

24'-Q n~~nq = 48U-qnq,

where nD, (=1) is the occupation number of one of
the doublet states. The surface potential & is
given by

& =E~+12Usns,

where En =En/t ]Thu.s, we can justify the assump-
tion made in Sec. II.

It is interesting to look at the energy of different
states which are not Hartree-Fock states, that is,
states for which the HF conditions 2n, E/sn„=0
and sn. E/sn«=0 are both satisfied. Such a calcula-
tion is possible if we use Eq. (82), which contains
only nz, and e~, as parameters. [Here we im-
plicitly assume that the effective potentials are
given by Eq. (6a) even when n~ is arbitrary. ]
In fact, we calculate the energy versus magnetiza-
tion curves shown in Fig. 9 as follows: First we
take an arbitrary value for n», determine ns

&
by

one of the two HF conditions Sb,E/Snz&-0, and
evaluate nE using Eq. (82). This way we obtain
curve I. For curve II, n» is chosen arbitrarily.
It is worth noting here the flatness at one end of
curve II. In this range, the condition Sn, E/ Sn«=0
gives rise to n» =1 for different values of n».
This indicates the fact that if the up-spin band is
always filled, hE is independent of the down-spin
occupation number n» when we remove the condi-
tion shE/en~, =0. This situation is the same as
the independence of energy from the filled doublet
states discussed just before.
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