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Using the Hartree approximation, a high-temperature expansion, and the molecular-dy-
namics technique, we study some properties of the one-particle probability distribution I"&(U„)
of the displacement U„of particle one in a model system. The system is two dimensional
and subjected to constraints in such a way that it exhibits antiferrodistortive structural phase
transitions. It covers the displacive and order- isorder regime, including the Isi and

displaci~e limit. We present evidence that Ft(U„) or its symmetrized analog Et(U„) =~s[E&(U„)
+&l(-U„)), being a very useful property to elucidate the regime to which a particular anti-
ferrodistortive transition belongs. In the displacive regime, the ratio

a~ =
g F~(U~~) - +~(U~&)

InsuI min

for U& either negative or positive, is shown to diverge at some temperature T, because
El(U)) exhibits for T& T a double-peak structure disappearing at T= T*. In the order-dis-
order regime, the ratio T jT, is infinite and decreases in the displacive regime by approach-
ing the displacive limit to some value T*jT~& l. As Muller and Berlinger have shown, the
key quantity a, can be measured, close to T~, by means of the electron-paramagnetic-reso-
nance technique.

I. INTRODUCTION

In this work, we study some properties of the
one-particle prpbability distribution E,(U„) of the
displacement U„of particle one in a two-dimen-
sional model system. The system is subjected to
constraints so that it exhibits antiferrodistortive-
structural-phase transitions. It covers the order-
disorder and the displacive regime, including the
Ising and the displacive limit.

Recently, we also performed a molecular-dy-
namics study of static and dynamic properties of
this model system. '~ It was shown, as expected
from the universality hypothesis, that the critical
exponents P and y are consistent with P = —,

' and

y =~4, the exponents of the two-dimensional Ising
model. Moreover, we elucidated the microscopic
origin of the central-peak phenomenon, occurring
close to T„ in the dynamic form factor of the
density fluctuations. This work demonstrated the
formation of clusters in such a system consisting
of particles with a spontaneous local-order param-
eter contrary to that expected from zero tempera-
ture. Moreover, it was shown that these clusters
increase in size by approaching T„so that a slow-
ing down of their dynamics occurs, giving rise to
the central-peak phenomenon, first observed in
SrTiO& by means of the neutron-scattering tech-
nique. ' It should be noted that the existence of
correlated regions (clusters) has been inferred
from the anisotropy of the electron-paramagnetic
(EPR) linewidth in SrTiOs.

The present work was mainly motivated by the
EPR study of Et(U„) =a [Et(U„)+Et(-U„)] in SrTiOs,
by Muller end Berlinger. These authors demon-
strated that E,(U„) can be measured very accurate-
ly close to T, and, moreover, that the ratio

l Fl{U„jFq{U„

tends to diverge, at least in SrTi03, close to T,.
In Sec. II, we characterize the model system.

Section III is devoted to sketching a mathematical
formalism, developed in the context of the theory
of classical liquids, which constitutes a conve-
nient basis to investigate the properties of E,(U„)
and Et(U„). In Sec. IV, we study these properties
within the framework of the Hartree approxima-
tion, in Sec. V by means of a high-temperature
expansion, and finally, in Sec. VI, by means of
the molecular-dynamics results. The main results
will be summarized in Sec. VI. They include the
following points: Conclusive evidence is given
that the one-particle probability distributions,

IE,(U,) or E,(U'„) are very useful properties to elu-
cidate the regime to which a particular antiferro-
distortive transition belongs. Moreover, it is
shown that the divergence of the ratio

is noncritical in nature, but a property of the dis-
placive regime.
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FIG. l. Arrangement of the particles in the refer-
ence-square lattice with lattice constant c and two atoms

per cell. 1, 2, 3 and 4 label the nearest neighbors of the

particle marked by Q.

II. MODEL SYSTEM

A two-dimensional model Hamiltonian, covering
the whole range from the order-disorder limit to
the displacive limit, reads ' '

3C= T+ V,
T Q (Pl)& ~ (P&)&

1

V= V~+ VI,

V, = —,'Ag [(U,')'+(U', )']

{ii) V~ [Eq. {5)]represents an isotropic nearest-
neighbor interaction.

From these constraints it follows that (Fig. 1)

(9)

C designates the strength of the nearest-neighbor
pair interaction. A, B, and C appearing in the
potential energy [Eqs. (4), {5), and (9)] are the
model parameters. Substituting relation (9) into
{7), and setting these forces equal to zero, we
find that at 7 =0

(U,')'= (U',)' = (4e -A)/a . (10)

This displacement corresponds to the local zero-
temperature order parameter. To guarantee
mechanical stability, the matrix

must be positive definite. This requirement leads
to the following condition:

Next we impose the following additional con-
straints: (i) antiferrodistortive displacement', so
that

UT~ Uf( 1)l~ lg~+ly-jy-
X X t

(4) 4C-A &0. (12)

~0

P„' and U„'~ are the momentums and displace-
ments of particles at

R„'= la+ (~a, 0}+{U„',Of,

R,'= Ta+(a, —,'a}+fo, U',],

(5)

(6)
and, moreover,

(U~) =(U'„) =(4e —A)ja) 0, (14)

To guarantee that the antiferrodistortive low-tem-
perature phase exists and leads to an absolute min-
imum of the potential energy, the parameter C

[Eq. (9)], must be positive,

C&0,

indicating that the motion of the particles is sub-
jected to the constraints shown in Fig. 1. Owing

to these constraints, a particle can only displace
either in the x or y direction.

The model Hamiltonian may be understood, if
one considers the situation of a crystal consisting
of two sublattices. The atoms of one sublattice
give rise to a short-range intracell anharmonic
potential V„ in which the atoms of the second sub-
lattice, which we consider explicitly, move.
These latter atoms are then coupled by means of
a harmonic nearest-neighbor interaction V~.

To determine the equilibrium position of the
particles at T =0 within the framework of classical
mechanics, we consider A&0, B&0, C&0, (15)

so that the local order parameter does not vanish
at T =0. The model parameter must then be
chosen in such a way that conditions (12)-{14)are
satisfied.

The arrangement of the atoms in the antiferro-
distortive low-temperature phase is sketched in

Fig. 2. It corresponds to the arrangement of the

oxygen atoms in SrTi03 in the a-5 plane.
The antiferrodistortive-phase transitions, as-

sociated with Hamiltonian (1) may be subdivided
into two regimes, ' according to the form of the
single-particle potential in V, [Eq. (4)]. The
choice
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context of the theory of classical liquids, ' which
constitutes a convenient basis to investigate the
properties of the one-, two-, and multi-particle
displacement-probability distributions.

We consider the model system defined in Sec. II.
This system is assumed to be in equilibrium and
isothermal. Let us designate with

(Ul U1 UN UN)

(lyq) e-Bvl(U~, U~) ),

FIG. 2. Arrangement of the particles in the low- and
high-temperature phases. Open circles form the refer-
ence lattice which is equivalent to that of the high-tem-
perature phase, with atoms 1' and 2' per unit cell.
Closed circles denote the positions of the particles in the
low-temperature phase with four atoms per unit cell.
Particle 1' displaces only in the x direction, and particle
2' in the y direction, whereas particles 1 and 3 displace
in the x direction, and 2 and 4 in the y direction.

leads to a double-mell single-particle potential im-
plying antiferrodistortive transitions of the order-
disorder type. In the displacive regime, the sin-
gle-particle potentials in V, [Eq. (4)] have a sin-
gle minimum, implying both A and B positive, so
that

A&0, B&0, C&0.
In the displacive regime, the low-temperature
phase is stabilized by the pair interaction only

[see Eq. (14)], whereas in the order-disorder
regime, both the interaction term and the negative
harmonic term (A& 0) stabilize. Figure 3 shows
schematically the two regimes and their limits.
The Ising limit is reached if the wells are so steep
that the motion within each can be neglected. In
this case, Hamiltonian(1) reduces to the two-di-
mensional Ising Hamiltonian, representing a typi-
cal order-disorder model. In the displacive limit,
we no longer have a low-temperature phase be-
cause the local order parameter [Eq. (14)] vanish-
es at T =0.

Emphasizing again that model Hamiltonian(1)
goes over to the Ising one by changing the model
parameter A continuously, it appears, by invoking
the universality hypothesis, that the critical ex-
ponents associated with this Ha.miltonian are ex-
pected to be close to those of the two-dimensional
Ising model. A recent molecular-dynamics ' in-
vestigation confirms this expectation.

III. ONE-PARTICLE DISPLACEMENT-PROBABILITY
DISTRIBUTION

In the present section, we shall be concerned
with a mathematical formalism, developed in the

where
lee

N

q —f,-'" jgdU'dU'
oo '1' 'f

&(e-BV({Ug f Uy ] )

xF„((U„',U,']),

F (U' U', ) =f.""" IIdU„'dU'
ls2

(20)

and higher-order correlation functions. F, (U„)
is the probability of finding the particle (1, x} at
U„, with all remaining particles in arbitrary posi-
tions.

Of particular interest in this context is the sin-

3/2i f (Ac —
A)

Ising
limit Model

i

—0.5

(4c)"/z
8

Model
II

0 0.25

Displacive
limit
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l

l

E'
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4C

Order- disorder
regime

Di s pl ac ive
regime

FIG. 3. Sketch of the order-disorder and displacive
regime, including their limits for antiferrodistortive
transitions. U„=U„=[(4C -A)/Bj ~ [Eq. (10)] is the
local order parameter at 7=0. It vanishes in the dis-
placive limit. The ratios A/4C = —0. 5, 0.25, and 0.875
designate models I, II, and III, respectively, subsequent-
ly studied.

(18)

as the probability of finding the particles of (U„',
U J. This probability just equals the configuration-
al part of the Gibbs' distribution function. v With
the aid of this probability, we may then form

w

E (U) —L "' dU'g dU'dU',
~0
1~2
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E,(U'„) = —,'[Eg(U„) +E,( U,')],- (21)

gle-particle correlation function E,(U',), or the one-
partic le displacement-probability distribution. In
fact, Muller and Berlinger have shown that this
quantity is related to the line shape of the electron-
paramagnetic-resonance (EPR) absorption line,
due to, for example, the iron-oxygen-vacancy
(Fe ' —Vo) pair centers, statistically distributed
in the system. Due to this statistical distribution,
the line shape is actually not proportional to
E,(U,') but to the symmetrical analog

E~{U')=D exp(- p[2A(U„) + —,'B{U„) -4C (U„)U„]) .

(28)
t&

D =I. dU„

xexp(-8[ ,'A(U—,)2+ ,'B(U-„)' —4C (U'„) U„]].
(28)

Below T, ((U, ) 00) we find from Eqs. (27) and (28)
three extrema in E~(U„) at

U„= 0 (minimum), (3o)

the symmetrized one-particle displacement-prob-
ability distribution.

Next we derive some properties of E,(U„).
From the definition of the local order parameter

(U„) =(168C (U„) A)(B -(maxima) .

For small (U„) the maxima occur only if

16P C'(U', )'& A . (32)

(ri ) zf =sv tu )r',tu '„), ',
a Cl

(22)
For

16PC (U„) &A, (33)
and the fact that

(U„)=0, for T& T, (23)
we have, however, even below T„a single-peak
structure centered around

we obtain

Eq(U, )=E,(- U„), for T& T&

and

(24)

~0

f Ey(U„)
x U ~ao

d

dUI Ei(- U.')
X

=0 (25)

for T ~ T„so that according to Eqs. {21)and (24),

E,(U,')=E~(U„), for T& T, . (26}

IV. PREDICTIONS OF HARTREE APPROXIMATION

In the Hartree approximation, one assumes

E„(U'„U'„.. . , U„", U,")

(27)

so that the one-particle displacement-probability
distribution is given by

Moreover, it follows from relation (25) that
Eq(U, =O) is extremum above T,. The main motiva-
tion for the present investigation was the question
whether or not this extremum is a minimum or a
maximum and to what extent this property depends
on the model parameters (A, B, C; Sec. II) chosen.
The EPR measurements indicated that, at least
in SrTi03, E, (U, =O) is maximum and single peaked
above T,.

To investigate this question for our model sys-
tem, we next study the predictions of the Hartree
approximation.

U„= 0 (maximum) .
Above T„we find from Eqs. (30) and (31),

U„= 0 (minimum)

{U,) = A/B (maxi-ma).

(35)

(36)

F (U„-F,(U„ (38)

diverges at T*(&T,) [Eq. {37)], because the de-
nominator vanishes, [Eqs. {33), (34), and (37)].
This prediction, obtained within the framework of
the Hartree approximation, is consistent with the
EPR study by Muller and Berlinger in SrTi03,
where the existence of this divergence has been

These analyses lead to the following predictions
of the Hartree approximation: (a) Order-disorder
regime (Fig. 3}: F~(U,) exhibits, above and below
T„adouble-peak structure as shown schematical-
ly in Fig. 4(a). (b) In the displacive regime (Fig.
3), and low temperatures, we have again a double-
peak structure as long as condition (32) is satisfied
[Fig. 4{b)]. By approaching T, from below, how-

ever, (U, ) decreases and at the same temperature
T*& T„condition (32), guaranteeing a double-peak
structure can no longer be satisfied. At this tem-
perature T~, given by

168 C (U„) =A, (37)

the double-peak structure disappears. Above T~,
condition (33) applies, guaranteeing a single-peak
structure centered at U~= 0 and persisting for all
temperatures T & T* including T,.

From these predictions, it follows that in the
displa. cive regime the ratio
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F„(U"„) F4 (0„)

Tc

F){U„). A convenient method to test this predic-
tion is the high-temperature expansion performed
in Sec. V.

V. HIGH-TEMPERATURE EXPANSION RESULTS

F„(u„) F4 (U„)

It is evident that at high temperatures, the inter-
action term V, [Eq. {5)]is no longer of particular
importance. In this temperature regime, we may
expand therefore e 8 appearing in the configura, -
tional part of the Gibbs' distribution function [Eq.
(17)] a.s follows:

e =e &(I —8 Vl+-,'8 Vi —.. . +. . . -), (39)

for for
(6 P C &U„» A [Eq.(32)] (6 S C &LI„& & A [Eq (33)]

I IG. 4. Schematic sketch of the probability distribu-
tionI'~{U„) IEq. {21)]according to the predictions nf the
Hartree approximation: {a) order-disorder regime;
{b) displacive regime.

where V, denotes the sum of the single-particle
potentials given by Eq. (4).

Using this expansion, we next investigate the
prediction of the Hartree approximation {Sec. IV),
according to which F,(U,) should exhibit a single-
peaked structure for T &T„centered at U„=O, so
that

(40)

demonstrated for the first time. Within the frame-
work of the Hartree approximation, however, the
divergence of ratio (38) is uncritical in nature be-
cause it occurs at T~, being —according to rela-
tion {37)—below T,. In SrTi03, however, the di-
vergence was found to occur rather close and pre-
sumably at T,.

For temperatures T ~T*, including T„ the
Hartree approximation predicts a single-peaked

(
da

12 F,(U) . 0.

Since {40) holds exactly for T T~„Eq. (25), we
only have to study prediction (41). Using the def-
initions (17)-(19)and (5), we obtain the exact re-
sult:

( I 2 Fy(U„) I
———l3AF, (U„=O)+ 8 dU ) [dU„dU,'

X U a0 1~

x I,U„','U'„') x ~"= —P&&, |U, =D) U'O'G(U, '=0),
js

where, using Eq. {9),

(42)

G(U„=O)= (4!L) dUU(UU) Fz(U„=O, UU)+(4!I. ) dU dU U U, F&(U„=0, U&, U )

—(8/I. ) dU, dU2U', U~F (U, =O, U„U2) . (43)

W

The pair-correlation function Fa(U„= 0, U', ) is defined by Eq. (19) and the triplet correlation function, anal-
ogously by

FA(U„', U,', Uq) =I. 2~~ dUadU„dU„&)AU„'dU, F&((U„, U,)) .
1+,

(44)

It is interesting to compare the exact expression
{42) with the corresponding Hartree result. From
Eq. (28), we obtain in this approximation

(
d

I 2 F)(U„') = —(- P A + 188 & {U„) ) .
(45)
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and, in particular,

F,(U„'=0, U'„) =F,(U'„=0, U', ) . {47)

These properties indicate that the first term in
G(U„=O) [Eq. (43)] may not vanish above T„as
predicted by the Hartree approximation. We may
suppose, therefore, that

d

q(~) s )" t))'. )); = —))&)" t)) 0).=
x U~)&

Comparing relations (43) and (45}, it is seen that
the first terms on the right-hand side have the
same structure and do not vanish. The second
term, however, vanishes in the Hariree expres-
sion (45} above T„so that Et(U, ) exhibits a single-
peak structure centered at U~= 0. In the exact ex-
pression, however, the second term is not expect-
ed to vanish, even above T,. In fact, from spatial
inversion it follows that

E (U„, U,)=E ( U„, —-U,), {46)

+ Pa C G (U', = 0) & 0, {48)

leading to a double-peak structure of Ft(U„) with a
minimum at U„=O, even above T,. This double-
peak structure will disappear at temperature T~,
defined by

—AE&(U„= 0) +P C G(U„= 0) = 0, (49)

at which a single-peak structure appears. Relation
(49) is the exact analog to the Hartree condition
(37).

To substantiate the conjecture, strongly violating
the prediction of the Hartree approximation, that a
double-peak structure in F,(U„) might appear even
above T„we next perform a high-temperature ex-
pansion of expression (42). In lowest order where,
according to Eq. (39},

-&~ -e&~s

we obtain from relation (42)

(
da

, ;, )., ))r', ) = -))(L, i drr)e '""'*')

+ EO

x A —4EC' d U'(Ut)'e-'""~&
~ CO

++
dU'e '"&~i

x
Ia&

(50)

where

e = exp (- P [~~A(U„} + 'B(U„} j) . —

In this order, only the first term in Eq. (43) con-
tributes. Nevertheless, this lowest-order result
already indicates that even at high temperatures
the expression (50) might become positive so that

4PC G (U„=O)&A, (52)

where

w' =G)= f Ddu' )))')'

r
+ CO

dU'e '" &'&
~e CO

(53)

Provided that relation (52) can be satisfied,
F,(U„) will exhibit, even at high temperatures, a
double-peak structure with a minimum at U„= 0.
To investigate this possibility, we evaluated
G {U„=0) numerically for various temperatures
and the following two displacive models:

Model II: A= —,', 8= —,', C= —' Aj4C= —' ' (54)

Model III: A = ~, 8 = -'„C = —,', A/4C = —', . (55)

We note that the units of time and length are chosen
in such a way that the units of A, I3, C, and k~1
are equal to one. The results are summarized in

TABLE I. Numerical values for the factors appearing
in relation (52), for model II, with parameters A=(,
B 3 and C = ~2. In this displacive model &j()fe found, by
means of the molecular-dynamics technique, k&T, ~ 2. 19
fzq. {56)].

kgT

10

4
3.907
3.500

o'{U~ = 0)

3.325

2, 938

2.499

1.980
1.953
l.832

1.673

4PC Go{U~ = 0)

0.3325

0.3673

0.4170

0.4950
0. 5000
0.5230

0.5580

0.5

I

Tables I and II. In model II, being far from the
displacive limit (Fig. 3), the lowest-order expan-
sion results indicate {Table I), in conjunction with
condition (52}, that below ksTs =4, F,(U'„) will ex-
hibit a double-peak structure with a minimum cen-
tered at U„=O. Noting that k~T, =2. 19, this phe-
nomenon is expected to occur even above T,. In
model III, which is rather close to the displacive
limit, the expansion results, summarized in Table
II suggest that condition (52) cannot be satisfied
above kBT, = 0. 245. The expansion results indicate,
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TABLE II. Numerical values for the factors appear-
ing in relation (52), for model III, with parameters A

4 8 3 and C = ~. This model is rather close to the
displacive limit (Fig. 3) because 4C -A = 0.25. A mo-
lecular-dynamics investigation indicates that k&T,
= O. 245 [Eq. (57)].

3
2
1
0.5
0.25

a'(U~ = o)

1.111
0.813
0.461
0.252
0.133

4pt.'t."'(Uf = o)

0.370
0.407
0.461
0.504
0.532

1.75

In the molecular-dynamics technique, the sys-
tem is assumed to evolve according to Newton's

equations associated with Hamiltonian (1). We

considered, as in our previous work, ' a system
of 40 x40 high-temperature unit cells (Fig. 2),
subj ected to periodic -boundary conditions. The
particles are then allowed to move and their Can-
onical variables are calculated with a time incre-
ment. This set of difference equations approxi-
mates the set of Newton's equations. Explicit de-
tails of programming and the form chosen for the

difference equations are given in the papers of
Rahman and Verlet. " For our purpose, however,
it was more convenient to keep the temperature
constant. This can be achieved by adjusting the
instantaneous values of the velocities after any

time increment in such a way that T remains fixed.
In this procedure equilibrium is reached, while

the instantaneous value of the order parameter,
for example, fluctuates about a mean value. Using
the equilibrium data saved one might then calcu-
late space-time correlation functions, related to

therefore, that model III might exhibit a sinqle-
peak structure F,(U„) above T, centered at U„=O.

From these estimates, it becomes clear that the
shape of the one-particle probability distribution
F,(U„) depends, above T„heavily on the ratio
A/4C. In fact, the lowest-order expansion results,
summarized in Tables I and II, indicate that T*,
designating the temperature at which the double-
peak structure E,(U„') disappears, decreases by
approaching the displacive limit.

By means of the high-temperature expansion
technique, it is impossible however, to decide
whether or not the double-peak structure disap-
pears already at some temperature T~ below T„
as predicted by the Hartree approximation [see
Eq. (44)]. Nevertheless, using this technique, we

have shown that a double-peak structure may even
exist above T, and that the changeover at T* to a
single-peak structure, and the associated diver-
gence of ratio (38) is a noncritical phenomenon.

VI. MOLECULAR-DYNAMICS RESULTS

the linear response of the system, and time aver-
ages. The limitations of this technique as a tool
to investigate phase transitions are similar to
those of the Monte Carlo method. They have been
discussed in that context extensively.

Our data for the order parameter taken at vari-
ous temperatures indicate that in the correspond-
ing infinite system k~T, is close to

Model II: k~T, =-2. 19;

Model IG: k~T, =O. 245 .

(58)

hF(U„)

1.95
2.07
2.40
3.00
4.00
5 00

40.00

0.0

FIG. 5. Calculated probability distribution I &(U„)

[Eq. (21)l in model II [Eq. (54)l at various temperatures
k&T. In this model k&T~ is estimated to be k~T, 2. 19
[Eq. (56)l.

The critical exponents P and y have been found to
be consistent with those of the two-dimensional
Ising model (P = —,', y = +&), as expected from the
universality hypo'thesis. '

Using the molecular-dynamics technique, we
also calculated the symmetrized probability dis-
tribution E,(U„) [Eq. (38)] of the local displace-
ments in models II and III at various temperatures.
The results are plotted in Figs. 5 and 6. From
Fig. 5, it is seen that model II [Eq. (54)) being
rather far from the displacive limit F,(U,), ex-
hibits a double-peak structure even above T,. This
result is consistent with the high-temperature ex-
pansion extimates (Table I) including temperature
k~T*=4, at which the double-peak structure dis-
appears. At this temperature (k~T*= 4 & k~T,
= 2. 19) the ratio defined by Eq. (38) will of course
diverge.

In model GI, being rather close to the displacive
limit (Fig. 3), the double-peak structure is seen
to disappear (Fig. 8) around ks T~ =ksT, =0.245.
This result is consistent with the high-temperature
expansion estimates (Table II) indicating that, for
this model, F,(U„) might exhibit a single-peak
structure only, above T,.

From the molecu1. ar-dynamics results presented
in this section, the following conclusions may be
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0 4

0.2—

0.'I 8
0.20
0.22
0.25
0.24
0.25
0.26

0.0 '

-2
"x

FIG. 6. Calculated probability distribution I" ~(U~~ )
[Eq. (21)] in model III [Eq. (55)] of various temperatures.
Ne estimated k&T, to be kgT 0.245 [Eq. (57)].

drawn: (i) The double-peak structure of E,(U„)
may disappear above or close to T„depending for
fixed B and C on the ratio A/4C. (ii) The ratio
T~/T„where T~ designates the temperature at
which the double-peak structure disappears, or,
equivalently, the temperature at which ratio (38)
diverges, decreases by approaching the displacive
limit with fixed B and C. In model II, we found
T "/T, = 1.8 (Fig. 5) and in model III T*/T, = 1
(Fig. 6). (iii) These properties of E,{U,) are con-
sistent with the high-temperature estimates. (iv)
From the present molecular-dynamics result, it
is impossible, however, to draw a definite conclu-
sion about a possible disappearance of the double-
peak structure below T,(T~/T, & 1), as predicted
by the Hartree approximation [Eq. (37)].

VII. SUMMARY AND CONCLUDING REMARKS

In this paper, we studied some properties of the
one-particle displacement-probability distribution
E,(U„) and its symmetrized analog E&(U'„) by means
of the Hartree approximation, a high-temperature
expansion, and the molecular-dynamics technique.

Summarizing the main results, we first refer
to Fig. 7. In the Ising limit (Fig. 3), the shape of
E,(U„) is qualitatively equal above and below T,
and consists of two symmetric 6 spikes [Fig. 7(a)].
The ratio (38) is, in this limit, just a constant.
By increasing A, with fixed B, for example, there
is no dramatic change of this picture. At T =0,
we have again two symmetric g spikes, broadening
with increasing T [Fig. 7(b)]. For all finite tem-
peratures, however, the double-peak structure
persists. The ratio (38) increases with increasing
temperature and diverges only at T = —~. This
picture remains valid up to and including A = 0
[Eq. (52)] designating the boundary between the
order-di sorder and the displacive regime (Fig. 2).

(b) (c) (d)

TRO

~v

„F„(ux) h Ft(ux

t
ux "x "x ux

tv

h F, (ux) h F, (u„)

T'Tc

h F, (u„)

T& 0

1
, F, (ux

Is m9 llmlt

t"x rs ".
Near the displacwe

limit

J X
Displacive limit

-co~A~0 cA

4C
A ~ 4C

FIG. 7. Schematic sketch of the symmetrized proba-
bility distribution E~(U„) [Eq. (21)] for various values of
(he ratio A/4C by fixed B.

For A~O, however, there is a temperature T*
& T~, at which the double-peak structure of E,(U„)
goes over into a one-peak structure [Eq. {49)].
Here, the ratio (38) will diverge at T = T~& T,.
This view has been confirmed by our high-temper-
ature expansion analysis and by the molecular-dy-
namics results for model D. By increasing A

further, T~ will decrease as the high-temperature
expansion analysis and the molecular-dynamics
study of model III revealed. At a particular ratio
A/4C for fixed B, T~ will coincide with T, Th.e
molecular-dynamics results for model ID indicated
that this ratio is close to A/4C = ,' for-B= —,'. The
associated divergence of ratio (38) is, however,
noncritical in nature, because it also occurs for
such values of A/4C where T~ differs from T,.
Clos e to the displacive limit (A/4C ~ 1) the sym-
metric 6 spikes [Fig. 7(c)] become very close.
Due to this fact, and the broadening of the spikes
with increasing temperature, a single-peaked
structure centered at U„'= 0 is expected to appear
at T~ below T,. The molecular-dynamics results
in model III support this possibility (Fig. 6), pre-
dicted by the Hartree approximation.

These results imply that the ratio T*/T, de-
creases with increasing ratio A/4C, as sketched
in Fig. 8. For A=0, T~ is infinite as might be
seen from Eq. {52). The molecular-dynamics re-
sults in model III (Fig. 6) revealed, moreover,
that T*/T, might become one for a particular ratio
A/4C with fixed B and C. Here, the divergence
of ratio {38)might appear to be critical. Taking
the model-parameter dependence of the ratio
T~/T into account, howeverit ,becomes clear
that this divergence is noncritical.

By increasing A/4C further (A/4C & 0. 875) we

expect that the ratio T~/T, becomes smaller than
one. Such behavior has been predicted by the Har-
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tree approximation [Eq. (37)]. To substantiate
this conjecture, sketched in Fig. 8, we may go
beyond the Hartree approximation. This may be
achieved with the aid of the exact relation (42) and

the approximations

E2(U„= 0, U, ) = Eg(U„= 0)E,(U~),

Es(U„= 0, U, U ) = Fi(U„= 0)Ei(U, ) Fg(U, ) . (58)

Substituting Eq. (58) into Eqs. (42) and {43), we
find

d

d (~)2 Ei(U.) = d(UI)2»(UI)
V&*0

= —PE (U,'=0) [A —4P C {(U')') —12P C~{Uf)'], (59)

where

{U„') = d U„'U,'F, (U'„), {(U„')') = dU', (U,')'F, (U'„) . (60)

This approximation differs from the Hartree one
in that one starts from the exact expression for
the second derivative and introduces, at this stage,
a Hartree factorization. At low temperatures,
where ((UI) ) = {Uf), relation (59) becomes iden-
tical to that of the Hartree approximation given
by Eq. (45). As a consequence, relation (59) goes
beyond the Hartree approximation and is expected
to hold, therefore, also at temperatures T ~T,.
In Table III, we listed estimates for the terms
appearing in Eq. (59). It is seen that the second
derivative (59} is predicted to become zero, below

T, =O. 245, at a temperature T~ (0. 24& T~~0. 245),
where the order parameter becomes sufficiently
small. Recognizing that ((UI) ) decreases for
fixed 8 and C as a function of the argument A/4C,
it becomes clear that T* T, will decrease further
by increasing A/4C above —,', because a larger local
order parameter {UI) is needed to cancel A in Eq.
(59}.

This behavior may be further substantiated by
considering the dependence of the exact expression
for T"[Eq. {48)]on

T"/T, = 0 [1/(1 —5)], (65)

close to the displacive limit. From the molecular-
dynamics results for model III, we find 0=0. 875,
because T"=T, and 1 —5 =A/4C = 0. 875, so that
T~/T, becomes smaller than one close to the dis-
placive limit, as shown in Fig. 8.

Finally, at the displacive limit, we have at
T =0, a 5 spike centered around U~=O, because
the order parameter vanishes [Fig. 7(d)]. In-
creasing temperature leads to a broadening of the
g function, but the single-peak structure persists
for all temperatures.

To conclude, conclusive evidence has been given
for the usefulness of the probability distribution
E,(UI} or its symmetrized analog E&(UI) in eluci-
dating the regime to which a particular antiferro-
distortive transition belongs. Moreover, we have
shown that the possible divergence of the ratio (38)
is noncritical in nature. It may appear below, at
or above T, and is a property of the displacive re-
gime. From Fig. 8, it is seen, however, that
this property, which may be measured by the EPR

5=1-A/4C . (61)

Substituting this expression into Eq. (49) and noting
that at low temperatures and small 5, G(UI = 0)-5,
whereas E,(U„= 0) tends to a constant for 5 =0, we
fl nd

(62)

so that T~ = ~ for 5 = 1 (A= 0) and in the displacive
limit (g =0) T~=O, as it should be. From the Har-
tree approximation, it is known that

ksT, = (16C /38) 5, (63) A

4(.

close to the displacive limit, implying the general
asymptotic behavior

0.25 0.875

as expected. Combining Fqs. (62} and (64) we find

FIG. 8. Dependence of the ratio T*/T, on A/4C for
fixed B and C. T* designates the temperature where
ratio (38) diverges.
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0.18 0.57
0.20 0.56
0.22 0.48
0.23 0.43
0.24 0.35
0.26 0

0.32 0.48
0.31 0.47
0.23 0.43
0.18 0.41
0.12 0.38
0 0.34

9.78
7.00
5.09
4.13
3.08
1.31

technique, may be used to determine the position
of a particular system within the displacive regime.
In fact, the ratio T~/T~ where T* designates the
temperature at which the ratio a, [Eq. (38)] di-
verges, was found to depend on the model param-
eters chosen [(Fig. 8)]. In this case, we conclude
that the experimentally verified divergence of
ratio (38), occurring in SrTios close to T, or at
T„corresponds to the special case Ta/T, ~ I,
which we realized in model IG, being close to the
displacive limit. Our results have been derived,
however, within the framework of classical sta-

TABLE III. Numerical values for the terms appear-
ing in relation (60), for model III, with parameters A
=P, 8= s, 0 =$, calculated with the molecular-dynamics
technique.

(Uf )2 ((Uf )2) 4P(2(((Ui )2) + 3@i)2]

tistical mechanics, As a consequence, we ignored
the zero-point motions and the tunneling through
the potential barrier (A & 0). Koehler and Gillie
have taken into account these effects within the
framework of the Hartree approximation. These
authors have shown that even for 2 &0 (see Fig. 3),
the double-peak structure of the one-particle dis-
tribution function might disappear already at some
finite T*, provided that the well of the particles
is small enough. As a consequence, the boundary
between the order-disorder and displacive regimes
will be located at negative values of A, for any
finite mass of the particles. This suggests that
in those situations where quantum effects can no

longer be neglected, the curve shown in Fig. 8
will be displaced to the left.

To conclude, we hope that our present work will
prompt further EPR investigations of the symme-
trized one-particle displacement-probability dis-
tribution, aiming to test our predictions. In fact,
by means of the EPR technitlue, ratio (38) can be
measured very accurately, close to T,.
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