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The longitudinal susceptibility of the low-temperature Heisenberg ferromagnet is treated in
random-phase approximation (RPA) in order to discuss whether a zero magnon (spin-density mode in
the collisionless regime) can exist. In the unrenormalized RPA, this mode is found at large wave
vectors in systems which have an exchange anisotropy which enhances the repulsion between
spin-density fluctuations. It is shown, however, that (with the possible exception of certain
two-dimensional systems) spin-wave damping suppresses this mode. A similar approach is applied to the
low-temperature Heisenberg antiferromagnet. For systems with non-negligible anisotropy, it is shown
that, with the possible exception of certain two-dimensional systems, spin-wave damping suppresses the
zero-magnon mode. An argument is then given which suggests that the mode does not exist in the
isotropic antiferromagnet either.

I. INTRODUCTION

The longitudinal susceptibilities of low-tempera-
ture Heisenberg-like magnetic insulators in the
collisionless frequency regime and their possible
excitations, zero magnons, are discussed here.
These susceptibilities in the hydrodynamic fre-
quency regime and their second-magnon resonances
have been investigated in detail. ' 4 Rather less
work has been done on them in the collisionless
regime. Recently, however, Natoli and Ranninger
and Izuyama and Saitoh have suggested that a zero-
magnon mode supported by the mechanica1. repul-
sion between spin-wave densities exists there.

The susceptibility of the ferromagnet with and
without exchange anisotropy is obtained in a, ran-
dom-phase approximation (RPA} and is evaluated
for small and large wave vectors. The results are
used to discuss the characteristics of this system
which are of importance in the zero-magnon ques-
tion; they are found to include exchange anisotropy,
spin-wave interactions, spin-wave damping, wave-
vector magnitude and direction, dimensionality,
and spin magnitude. In the unrenormalized RPA
this mode is found at large wave vector in systems
with an exchange anisotropy which enhances the re-
pulsion between spin-density fluctuations. Except
possibly in certain two-dimensional systems, how-
ever, spin-wave damping suppresses the mode.

This work shows that previous results for the
longitudinal susceptibility of the isotropic low-
temperature ferromagnet "' cannot be used to
treat the zero-magnon problem in that system be-
cause of their inadequate treatment of the spin-
wave interactions. This same conclusion has been
reached by Harris, who first obtained the correct
susceptibility of the low-temperature isotropic
ferromagnet. The present work uses this same
susceptibility as a starting point for the discussion
of the zero-magnon question in the isotropic case.

The analysis is here extended to other systems
(principally those with anisotropy}, and a fairly
complete discussion of the possible existence of a
zero-magnon mode is given.

Finally, the zero-magnon question is the low-
temperature antiferromagnet is discussed by an
approach similar to that used for the ferromagnet.
The denominator of the components of the matrix
longitudinal susceptibility is obtained for systems
with non-negligible anisotropy using a random
phase approximation. Its analysis shows that, with
the possible exception of certain two-dimensional
systems, a well defined mode does not exist owing
to the effects of spin-wave damping. An argument
is then given which suggests that such a mode does
not exist in the isotropic antiferromagnet either.

This paper is organized as follows. Sections
II—V deal with the ferromagnet. In Sec. II the
Hamiltonian is presented, hand the effects of ex-
change anisotropy on spin-wave interactions are
discussed. In Sec. III the RPA susceptibility is ob-
tained. The susceptibility is evaluated in Sec. IV,
and its zero-magnon resonance is found. In Sec.
V the suppression of this mode by spin-wave damp-
ing is demonstrated. In Sec. VI the antiferromag-
net is discussed.

II. HAMILTONIAN FOR THE LOW-T FERROMAGNET

The Heisenberg ferromagnetic system will be
represented by the Hamiltonian

&= —&ZS'; —» ZQ S, S;,6 —»oJ Q S»'S», -
5i» i 6 (2 i}

where the label i refers to the sites on a simple
cubic lattice of X spins S and of lattice constant a,
and ~ are the vectors to the nearest neighbors of i,.
The spins interact by nearest-neighbor coupling
with a coupling constant J. The term involving 0
is a uniaxial exchange anisotropy.

In his work on the low-T thermodynamics of the
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Heisenberg ferromagnet, Dyson showed that the
spin Hamiltonian could be replaced by an equivalent
boson Hamiltonian when quantities of order e ~ are
neglected, where P = (ksT) ' and kz is Boitzmann's
constant. In the resulting treatment, the spin
waves interact weakly at low 7', and therefore the
contributions of the spin-wave interactions can be
calculated perturbatively in temperature. Silber-
glitt and Harris' have discussed the validity of
using this boson Hamiltonian in the calculation of
dynamic quantities.

It might be mentioned here that the other common
low-T boson Hamiltonian for the ferromagnet, viz. ,
that of Holstein and Primakoff, "does not correctly
represent the weakness of the spin-wave interac-
tions at low T. Thus it cannot be used to determine
the effects of those interactions perturbatively
without a, further resummation (usually in 1/S).
The use of the Holstein-Primakoff Hamiltonian has
led other authors to incorrect conclusions for the
longitudinal susceptibility and the zero-magnon
question.

A simple substitution for the spin operators
equivalent to that of Dyson is provided by the
Dyson-Maleev ' operators:

S;= (2S)'~ [a, +(1/2S)a;a, a, ], S; = (2S)'aa';,

teractions will have important results in the zero-
magnon problem. Many magnetic insulators have
non-negligible exchange anisotropy (see, e. g. ,

Elliott and Thorpe"); the term in a will be used as
a simple and reasonably realistic way in which to
include such effects.

The effect of 0' on spin-wave interactions is
easily seen. The process of interest in the dy-
namic susceptibility involves the system of thermal
magnons being acted upon by a disturbance of wave
vector K. A subsequent spin-wave interaction in-
volving the propagation of this disturbance can be
roughly described at low T by taking q and q' small
in the interaction part of B, which gives for that
part

&z" =—Z [(-&)(I+yz)
4N ~

+Tz(q, q')]art„a',,a,az„,. (2. 5)

Here r~(q, q'} is a term dependent on K and pro-
portional to powers of the small q and q'. The
first term in (2. 5) dominates the interaction for at
least o» (kz&/JS), and it will be shown later that
it is the more important interaction contribution in
the zero-magnon problem for all nonzero o.

From

S'; = S —a&a, ,

(2. 2) 1
S =—~a&E ~Z ~ IC+q q

e

where a;, a, are boson operators. Their Fourier
1.attice transforms are

V (K, q, q )az„a,,a,az„.,&z„„
where

&, = h+ (1+0) JzS —JzSy,

(2. 3}

V'"(K, q, q') = ,' Jz[y...+y, , -{I+a}y,-
- (I+&)y, 1, (2. 4)

and as usual y;= (1/z) gge'~'~, with z the number of
nearest neighbors (six for the sc lattice).

For o =0, if either of the incident wave vectors,
q or K+q', goes to zero, then t/" vanishes. Be-
cause only long-wavelength spin waves are ther-
mally excited at low T, this is the basis for treat-
ing this Low-T Hamiltonian as a weakly interact-
ing system. For 0 &0, on the other hand, V

does not go to zero for an incident wave vector
going to zero, and this effect onthe spin-wave in-

Making this substitution, the Hamiltonian (2. 1) be-
comes

ff n" = (const. }++(u,ata,

&o, = [k —(-o)6ZS] «ks T (2 6)

for K&0, Eq. (2. 5) represents the interaction of
spin-density fluctuations. For 0& 0 the first term
is repulsive; in direct space its interaction poten-
tial falls off in a range of about the lattice spacing.
The term involving Tz(q, q') also gives an interac-
tion between spin-density fluctuations, but its na-
ture cannot be seen easily because of the q, q' de-
pendence.

There now arises the question of whether these
repulsive interactions will support a mechanical
spin-density oscillation similar to that of zero
sound in a Fermi liquid or the plasma mode of the
electron gas. This question will be investigated
for the ferromagnet in Secs. III-V. The results of
Secs. III and IV for the longitudinal susceptibility
will verify the existence of a repulsive interaction
for v& 0 and will give results for v=0.

In discussing the zero-magnon question it will
occasionally be convenient to formally evaluate the
susceptibility for the choice of parameters which
maximizes the possibility of the mode occurring.
These results will then be used to demonstrate the
nonexistence of the mode for these parameters and
will therefore demonstrate its nonexistence more
generally. These parameters will be shown to be
obtained by choosing (ol non-negligible (o'& 0), and
taking
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(the magnetization is taken to remain along z and

~, ~ 0 throughout). " This choice of parameters
will not be made in obtaining the susceptibilities,
and its use in the zero-magnon problem will be
specifically discussed.

III. LONGITUDINAL SUSCEPTIBILITY OF THE LOW-T
FERROMAGNET IN RPA

In the presence of a locally varying field pertur-
bation, the spin (spin-wave) densities of this sys-
tem move to screen out that field. This self-con-
sistent response in spin density mill be described
in the collisionless regime by the dynamic longi-
tudinal spin susceptibility in the random phase ap-
proximation. The validity of the RPA in this low-
density system has not been rigorously established.
Its use in the isotropic case is based on the physical
idea that the interaction of some spin wave with
thermal spin waves is small at low T and that it is
correctly represented by the Dyson-Maleev inter-
action in the first Born approximation. This ap-
proach to spin-wave scattering in the isotropic
ferromagnet has been shown to give a physically
correct representation of that interaction in the
calculation of both the free energy and the spin-
wave damping. " The discussion of Sec. II shows
that for anisotropic exchange, the spin-wave inter-
actions are enhanced. The use of the RPA in the
anisotropic case (0 will be taken to be negative
hereafter} also requires that the spin-wave inter-
actions be small; hence 0 will be taken to be small
in the following. In fact it will be shown that the
effect of the exchange anisotropy dominates the
spin-wave interactions in the zero-magnon problem
for all nonzero 0. If the anisotropy and hence the
spin-wave interactions are fairly large, a more
complete description of the multiple scattering pro-
cesses between pairs of spin waves will probably
become necessary. The effects of bound states
upon the spin-mave scattering states in the RPA
will be ignored because they have been shown to
have little effect on the spectral densities of the
spin waves. '

The RPA is a good description only in the colli-
sionless regime, i.e. , for frequencies ~ such that
(d» I, where I is some upper limit on the spin-
wave relaxation frequencies of importance (see,
e.g. , Kadanoff and Baym' }. In the hydrodynamic

regime a more complete theory is necessary in
order to preserve conservation properties. "

The susceptibility is given in terms of the longi-
tudinal thermodynamic spin Green's function:

(TS;(r)S „(0)). (3. 1)

The usual thermodynamic perturbation formalism
will be used here (see, e. g. , Abrikosov ef al. ").
The dynamic part of (3. 1) is given by

QG(K, T;q, q')1

Qy@

= —P (Ta'„„(r)a,(7)a', . (0) a, ,(0}),
Qy 0

(3.2}

g' '(q, iv„}=(iu„—~,} '. (3 3)

The frequency components of boson Green's func-
tions are given by the form

g(q, r) = —QA.(q, iu„)e'

n

{3.4}

where &u„=(2vn/P), n any integer. G' ' becomes

G(o)(K .
)

f(v) f(ar)—
'EC0„—(d g —(d

(3. 5}

where f(x}=(e~"—1) '. Because V is frequency
independent, G can be written in terms of one fre-
quency; the RPA Dyson equation for G is then

—QG(K; ie„;q, q') =G' '{K, iv„;q)

DM+G' '(K, ia„,'
rg} —,~V (K, P, fj}

& —~G(K, i(d. P, q ).
a'

(3.6}

The solution of this integral equation in momen-
tum is somewhat complicated because of the mo-
mentum dependences of V ". It can, homever, be
separated, and it has been solved for a number of

which gives this spin correlation function by the
spin-wave -density correlation function.

The RPA for 6 can be obtained diagrammatically
as in Fig. 1. G is given in terms of G'o', the un-
perturbed two-particle spin-wave Green's function.
The spin-wave Green's function is g{q, T)
= (Ta~(r) a,(0)), and has the unperturbed form

K+q
K+p q'

G

FIG. 1. Dyson equation for RPA longitudinal Green's function. .
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inte resting K. The discussion of the ze ro -magnon

mode will be by several illustrative calculations,
and the longitudinal susceptibility will now be ob-
tained for these cases. The simplest cases will
be given first. For definiteness, the susceptibility
(obtained by i&a„&u-+fee, small} will be discussed
for ~ &0. '

A. G when 0 dominates VDM

The approximation V "=——,(-a)[Z(0) ~ J(K)] is
valid when I 0 t is sufficiently large that the first
term in (2. 5) dominates the spin-wave interaction.
Its region of validity in the zero-magnon problem
will be examined in Sec. IV. Equation (3.6) then
gives

1~Z G(K, v;q, q')
a& {I

(I/&)Z. ([f(~,) -f(~.. )]/[" +&'& -(~- -".}]&
I —,'-( —o)[~(0) + ~(K)](I/~) 2, ([f(~,) -f(~,.»)1 /[~+ ~e —(~..» —~.}]~

(3.7}

The denominator of (3.7} is suggestive of a similar
one for the Fermi liquid in the RPA. It will be
shown in Sec. IV that the momentum sum in the
denominator has a positive real part; therefore,
the suggestion in Sec. II that a negative o is most
likely to give a resonance in the self-consistent
response of the spin-density fluctuations is borne
out.

By iterating (3.6), G is seen to consist of a series
of terms involving G' 's connected by V "'s:

1
G(K, iu„;q, q')=G' '(K, iw„;q)

+G'+(K, i(u„;q) —QV (K, p, q)
1

B. 6 for 0=0

The dependence of V M(K, q, q ) on q and q' must
be included for a=0. Factorizing V, (3.6) be-
comes

—QG(K, &u; q, q') = G' '(K, ~; q)
g I

+G'o'(K, ~; q) 4 JQ(e'"' —e "')

(e"' —1)—Z G(K, ~; p, q'). (3.8)

xG (K f& p)+ ~ . .

It will be shown later that for v &0, G' '(K, x; q} is
non-negligible only for qa~ (ksT/JS)'a (see Sec.
IV). Thus in order to obtain the low-T contributions
to the series (3. 9), all of the V "(K, P, q) must be
expanded for both small P and q.

Expanding the interaction term in (3. 8) up to
terms quadratic in p and q and their products and

deleting terms which vanish for a lattice of inver-
sion symmetry, (3. 8) becomes

—,QG(K, ~; q, q') =G'"(K, cu; q)
tl c

([cos(K ~ ~ }- I —.(q ~ ~)' "][--(p~ ~)' ~ ~ ~ ]

1~
-[sin(K 6}+(q &)+ ~ ~ ][(p &)+ ~ ~ ]) —~G(K, (u; p, q').

gV -, (3. 10)

Equation (3. 10) can be solved especially easily for two interesting K values near the Brillouin-zone bound-

ary by exploiting the q dependence of the approximations that will be used for 6'o' in these cases.
For K =(k, k, k) and sin(ka) «1 (ka near v), the approximation for G'o'(K, ~; q) depends on q through q

only [see (4. 7)]. Then (3. 10) yields

(I/V) g, L[f(,) —f(~,.»)]/[~ ie —((u„»—~,)])
I —~ ~[1 —cos(ka)](I/&)&.(qa)'([f(~.) f(~„»)l/[~+f» —(~-,.» —~,)]]

'

For K=(k, 0, 0) and sin(ka)«1 (ka near v), the approximation for G'+(K, &u; q) depends on q through only

q'„[see (4. 13)]. Then
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)
(1/&) K. ([f(~.) -f(~..r)]/[~+ fe —(~.,r —~.)]] (, „N~, ' ' ' 1 ——,'J[1 —cos(ka)](1/X) g, (q, a)' 1[f(~,) f(-v„r)]/[~+tE —(~„&—~,)]j

The q and q„present in the sums in these two denominators arise from V™for 0 =0 and represent the
weakness of the long-wavelength spin-wave interactions.

When lowest-order terms in both o and q, P are retained in V (K, P, q), the denominator of G for large
K=(k, k, k}, sin(ka) «1, becomes

1 -( .)[J(0),J(Z)]-'g f'" }--'(""),-J[cos(ka) 1]-'g(qa)2 f("'-f'""' (3. 13)

and a similar result for K= (k, 0, 0).
The results obtained here for (7= 0 are not in

agreement with those of Natoli and Ranninger, ' of
Liu, and of Reiter in the collisionless regime be-
cause those authors have not properly treated the
average field due to the spin-wave interactions at
low T. These results for 0 =0, however, are in
essential agreement with those of Harris. '

Equation (3.6) can be solved for other K, but for
K away from the zone boundary, the resulting sus-
ceptibility has a more complicated denominator
and is less straightforward to discuss. These re-
sults will not be written down here.

IU. ANALYSIS OF LOW-T FERROMAGNETIC
SUSCEPTIBILITY

The momentum sums in the denominators of the
susceptibilities will now be carried out for several
K of interest. In particular, the possibility of a
zero-magnon mode will be examined.

A. Ea«(kl p/J$)'r'

e-g(up+I'Sa q )

f(u,)- z„, t z for vo&0. (4. 3b)
(1 —e ~"o)+PJSa q

Using (4. 3b} and performing the angular integral
and other manipulations, D becomes

J(0)(—&)
( f) 8 zJ$ (P JS)1/2

te' dt
(8 —t }(A + t )

'

where

P (d +'lf'=4 JS" K

Performing the integrals in (4. 4) (taking care with

the signs of the imaginary part of B and the real
part of A), gives for D

J(0)(-o) e ~"o

8tt JS (PJS}'t

—e ~ mivB 1+erf i vB

(4. 1)
Non-negligible contributions to the momentum sum

in D come from qa~ (ksT/JS) t, for which the

spin-wave energy can be expanded

cu, = ()o+ JSa q, (do= h+6JSO. (4. 2)

In the several examples of this section, the small-q
values of f(a,) in the momentum sums will play the
most important role, and the following approxima-
tions, which give correctly both the small- and

large-q behaviors of f(~,), will be used:

e~"& e usa P
f((u,}- —= , 2 for (F0=0, (4. 3a)

The case of small K is most similar to zero
sound in a. Fermi liquid (see, e.g. , Fetter and

Walecka ). Consider first systems in which the o

term dominates the spin-wave interactions. Ex-
panding the susceptibility in (3.7) for small K gives
for its denominator, D(K, u&):

D(K, (u) =1 —p J(0)(-a}

where

—(ktte" vA )[1 —erf( WA )]), (4. 5)

Because of the small factor (keT/JS)'t~e 8"o pre-
ceding the integral in (4. 4), a resonance of the
zero-magnon kind can occur only if the integral be-
comes large for some B. The best chance for this
to occur would be for small A(~~«k T}sin which.
case the integral appears to diverge for small B.
Taking A to be negligible in (4. 5}, however, gives
that the maximum value of the real part of the last
two curly brackets is a constant (W~) and that for
small B their imaginary part diverges as B '/ .
Therefore, even for this optimum choice of values
of A and B, this denominator does not give a reso-
nance, and for small B the imaginary part of the
denominator is dominant.

The physics of this case can be understood by
comparing it with zero sound in a Fermi liquid.
These results for the real and imaginary parts of
D can a1.so bg obtained by replacing the denominator
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in the q sum of D in (4. 4) by a principal part and a
& function and proceeding as above. The T depen-
dence in front of the real integral [c.f. (4. 5)] rep-
resents the fact that any resulting mode would be
proportional to the density of particles in the sys-
tem [c.f. Fetter and Walecka, Ref. 19, Eq. (16.10)],
which for these boson spin waves is small in
(ksT/JS). The small {d which is therefore neces-
sary to make the real part of the integral large
means that the ~ function in the imaginary part of
D will be satisfied throughout a large part of the
range of q in the sum. Thus, the Bose character
of the spin waves dominates the behavior of the
longitudinal susceptibility for small K.

A similar analysis of a solution of (3.6) for {r= 0
and small K shows that a zero-magnon mode does
not exist in that case either.

B. Large R

D(K, {{))= 1 —0( —o) [J(0)+ J(K)]-
~V

f(~.) f(~,-.»)
{d + i e —[{0),„—0e,]

(4. 8)

Once again, for ~ &0, only the first term in the
sum is non-negligible. &„willbe written (d~ = eo
+ 8'~. The integral is treated in much the same
manner as in the previous cases and becomes

(-o)3[J(0)+J(K)] e a"e

(2rr) W» (P JS) t

x e
(A+ t')(C+t') ' (4 9)

tribute to a zero-magnon mode. Therefore, for
nonzero 0 it remains only to consider the first two
terms in (3. 13), which is equivalent to the approxi-
mation (3.7), and gives

i. For K = (k, k, k) and sin(ka') «1 (ka near )r).
First, the o =0 form of D will be examined. D is
given by the denominator of (3. 11). When the ori-
gin of summation of the term involving f({d„»)in
the q sum in D is shifted by -K, its denominator
contains (&a+a)»„}. For &u &0, this term gives a.

contribution small in (ksT/JS}, and it will be dis-
carded. For a simple-cubic 1.attice with nearest-
neighbor coupling

{d;,x = {{)»+ 2 JSQ [1 —cos(q;a)] cos(K, a}
g+

+ 2 JSQ [sin(q;a)] sin(K, a} (4. 6)
j +

where

A=1 —,0 ={0000)( " ).
Integrating, this becomes

0 {- ){0{0)~ &{&il)
2(2rr) W»

PZS '/' C -a
&&((vC)e [1 —erf(vC)]

—WAe"[1 —erf(JA )]}. (4. 10)

for all q and K. Using (4. 3a), expanding (4. 6) for
small q, replacing the sum by an integral and taking
its upper limit to infinity, D becomes

) (0{0)—0{{{))(0T)
0

X

r�en

t' e
[({d+ i e —a)»)/u»](6P JS) + t

(4. 7)
For»(d~, the imaginary part of this integral is
zero, and the maximum value of the real part as a
function of ({{)—{d») is (a ){7r). Because of the
(ksT/SJ} preceding the integral, there can be no
resonance. Harris has reached a similar conclu-
sion for this case. For ~& ~~ both real and imag-
inary parts of the integral are nonzero, but both
are bounded by constants of order unity. It is the
presence of q in the momentum sum of (3. 11)
representing the weakness of the spin-wave inter-
actions for 0 = 0 that precludes a zero-magnon mode
in this case. Thus the spin-wave interactions in
the isotropic low-T ferromagnet are not strong
enough to support this mechanical mode.

The above analysis shows that the last term in
(3. 13) is always small in (ks T/JS) and cannot con-

The presence of the small factor (kr)T/SJ)' e
in the second term of D in (4. 9) requires that the
integral become large for there to be a resonance,
and the best chance for this to occur is for A(&ua)

and C to be small. Taking e&8'~, the imaginary
part of D is zero. Taking A to be negligible (&ua

«ksT} and expanding (4. 10) for small C gives

D K „)1 3(-o)[J(0)+J(K)]
Bm%'~

~s Wc

The frequency of the resonance in the susceptibility
is given by equating D(K, {{))= ReD(K, {d)= 0, which

gives

J0 +J(K ' k, T

(4. 12)
Thus the random-phase approximation for the
longitudinal susceptibility gives this undamped
mode above the 8'~ band at the zone boundary.

Since the last term in (3. 13) is always negligible,
(4. 12) gives the resonance in the RPA susceptibility
for all nonzero o. That is, for the zero-magnon
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question, V "is dominated by the anisotropy term
for all nonzero values of o.

In Sec. V the effect of including spin-wave damp-
ing in the intermediate states of the RPA will be
obtained. These effects tend to suppress the zero-
magnon mode. In order to complete the discussion
of the behavior of the RPA longitudinal suscepti-
bility, however, the results of calculations per-
formed for other values of K will be summarized
here.

ii. Other large K. The discussion of the mo-
mentum sums above shows how important the q
behavior of the summand is in producing a diver-
gence of the sum and thus a resonance. Equation
(4. 6) shows that for various geometries and mag-
nitudes of K, the denominator of the summand has
different q behaviors. For example, for K neither
small nor on the zone boundary, there are terms
in q; as well as q; in the denominator. Also for
0 =0 the numerators of the summands acquire fac-
tors of q;. An analysis of the often complicated
sums for various K has been carried out, and in
all cases for 0 = 0 there are no divergences for any

For 0 & 0 the modes from the resonances of the
susceptibility have very nearly the same T and 0

dependences as in (4. 12); all of these modes in
three dimensions are suppressed in the same way
as that to be shown in Sec. V.

As a simple and useful example of the effect of a
different geometry of K, consider another K near
the zone boundary: K=(k, 0, 0), sin(ka)«1. Equa-
tions (3.7) and (3. 12) give the forms of D, and
from (4. 6) the denominators of the summands now

involve only q„. Using the same approximations
used before, the q, and q, integrals give to the q
sums a factor of

V. SPIN-NAVE DAMPING IN INTERMEDIATE STATES OF
LOW-T FERROMAGNETIC SUSCEPTIBILITY

Although the mode zt the zone boundary in (4.12)
is a high-frequency mode, the effect involved, i.e. ,

the "gap" ((d —Wr) between it and the band Wr, is
small, and therefore it may be important to include
the "thermal blurring" effects gf the spin-wave
damping in the intermediate states of the RPA.
These effects are seen to be important by noting
that the damping of a large-wave-vector spin wave
in the first Born approximation in a system with
non-negligible a is proportional to (ksT/JS)oa,
whereas the gap ((d —Wr) is proportional to
(ksT/ZS) .

Expressions for the temperature and anisotropy
dependence of the low-temperature spin-wave
damping I'„will be required. I", will be calculated
by using the first Born approximation to the spin-
wave scattering involved. Tahir-Kheli and ter
Haar first obtained this approximation for the
damping in the isotopic Heisenberg ferromagnet.
Harris" used a full T-matrix calculation to show
that in the isotropic system essentially the same
result (at least for p(d~ «1) is obtained by summing
all orders in the Born series. Therefore it will
be assumed that the first Born approximation is an
adequate description of I

„

in systems with the
small values of 0 being discussed here. This gives

P (~( ) + ~(k) —(1+ ) ~( — ')
lt

—(1+&) ~(k —q')]' I. I 1+f(~. ) +f(~.„,)]

~f(~.) -f(~;)f(~&, , )]
X 5((()g —(d ~ —(()))~ qs + td

r
-(8 J'Sa (q 4 q )

o o &~Sa'(q.'+ q,'+ q,')

27teg J'$a q~
2 2

Ei(PZSa q„), (4. 13)

The spin-wave damping is included in the RPA
susceptibility by renormalizing the spin-wave
propagators in G' ', which gives (see e. g. , Baym
and Sessler")

1 oo

G'"(Z, i~„;q)=, p(q+K. (()s)p(q (()o)
m

where

.()r8((
The weak divergence of the Ei function for small
q„has no appreciable effect on the q„integrals, and
the remaining integrals in q„have the same form
as those in q for K = (k, k, k) Isee (4. 7) and (4. 9)].
The momentum sum for 0 = 0 has no divergence for
any ~, and for o & 0 there is a mode which is the
same as that given in (4. 12) except for minor nu-
merical differences, ' it should be noted that the
coefficient [J(0)+Z(K)] in (4. 12) which is small
near the zone boundary in (1, 1, 1) is not small in
(1, 0, 0).

X
d(d) dE02

(i l(„+i (u„—(u, )(i X —(do)
'

where p is the spectral density for the renormalized
spin-wave Green's function:

p(q, &u) = —limlmg(q, u+ie).

Performing the frequency sum,

—QG )(K, i(d„;q)

1 o(o 00

p(q+&, ~i)p(q, ~o)
Q «oo «oo

„

f((do) -f((o&)
dcog d(dg

SCO~ —g + 2
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At low T each p(K, &u) is a sharply peaked function
of ~ about the renormalized spin-wave energy with
a width given by the spin-wave damping. The re-
normalizations of the real spin-wave energy will
be dropped, and the combined widths, I', and I'~„,
will be approximated by I'~ for large E and small
q. Then

—QG '(K, (u,
'

q)
a

(5.4}

This gives

CO e' dt

[(6P J)S((u —W» + fr»)/W»] + t
(5. 5)

2(- o)[J(0) + (%] "s
(2w)~ W» JS

e~ —[1 —erf(f)]
2f

where the magnitude of g is

II' l={(6PJS/W»)'[((u —W»)'+ I'»] j' ',
and its argument is ~8, where

(5 6)

8 = arctan

Once again the maximum value of the real part of

the integral is obtained by taking f small. Expand-

ing (5. 6) for small g gives

S(-0')[J(O)+J(K)] k T '~'

(2w) W» JS

(~w) cos~8
f(6P JS/W )'[((u —W )'+ r', ]) '~'

Using this form of G' ' in the analysis of Sec.
IV 8 i for D with nonzero cr and for large K= (k, k, k},
sin(ka) «1, and taking A to be negligible, the ana-
log of (4. 9}becomes

(-o)3[J(0)+J(K)] ksT '+
(2w) W» JS

te' dt
2

X
(A + P)(C + f )

' (5 9)

where

2=1 —e ~o, C=4P JS

Performing the integral, taking A to be negligible,
and expanding for small C gives the following un-
renormalized zero-magnon mode at the zone
boundary in two dimensions:

(u —5'~ k~ T 1

The size of I"„for large K and o~(ksT/JS) ~' in two
dimensions (taking ao«ksT), however, is

sions for the spin-wave damping must be used, and

in these cases the second term on the right-hand
side of (5. 7) is even smaller.

Strictly interpreted this result shows that the
mode given by (4. 12) is not well defined owing to
the effects of spin-wave damping. Clearly, how-

ever, it should not be claimed that the maximum

size found here for the second term of ReD in (5. 7)
is precise. This calculation shows the important
role played by the spin-wave damping is suppress-
ing the zero-magnon mode in this system; further-
more, because the assumption of a negligible ~0
was used to maximize the possibility of the mode

appearing in (4. 12), this calculation makes it ap-
pear very unlikely that such a mode could be well
defined in a realistic system.

In a final example it will be pointed out that, like
anisotropy, dimensionality plays a qualitatively dif-
ferent role in determining the "gap" for a possible
zero-magnon mode than it does in the spin-wave

damping. Consider a two-dimensional ferromag-
netic system. In, this case the system orders only
for some (small) over-all anisotropy field. Treat-
ing the momentum sums as usual, the denominator
D for large K = (k, k), sin(ka) «1, and &r nonzero
[cf. (4. 9)] becomes

2(- o)[J(0)+J(K)]e '"'
2wW»

(5 7)
I'» from (5. 1) for large K and o ~ (ks T/JS)'~' (taking

Q)o « ks T) is
rE ~vs JS (5. 11)

fx- g2 8 (5. 6)

with a constant of proportionality of about the same
order as for (u& —W»)/W» in (4. 12). Using this ex-
pression for 1~ and considering the powers of all
the parameters o, S ', and (ksT/JS}, the maximum

value of the second term on the right-hand side of

(5. 7) [obtained for (&u —W») = 0] is proportional to
(ks T/JS) For o (ks T/JS). different expres-

Thus I"~ is smaller than the gap (u —W~) by a fac-
tor (o/S), which could be quite small. If D in (5. 9)
were renormalized with I'» as in (5. 5}, a sharp
resonance for the zero magnon would occur when

(o/S) is sufficiently small.
Because of the assumptions used in obtaining this

mode in two dimensions, this result can only be
used to suggest that further investigation of the
two-dimensional case may be worthwhile. In par-
ticular, it must be determined whether in a realis-
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tic system it is possible to have non-negligible cr,

the magnetization aligned along z, and also vo
«k T.

V. QUESTION OF THE ZERO MAGNON IN THE LOW-T
ANTIFERROMAGNET

The zero-magnon question in the antiferromag-
net will be treated in a manner similar to that used
for the ferromagnet. The role of the weak spin-
wave interactions at low T in the isotropic anti-
ferromagnet is considerably more subtle than in
the ferromagnet, ' and that case will not be treated
in detail. It will, however, be shown that the mode
is not expected to exist in three-dimensional sys-
tems with anisotropy, and an argument will be
given that suggests that it does not exist in isotropic
systems either.

The formalism developed by Harris et al. for
the low-T antiferromagnet will be employed here;
their expressions and notation will be taken over

directly and referred to as HKHH. Because the
calculations for the antiferromagnetic longitudinal
susceptibility are rather lengthy only an outline of
them will be given. The required results will then
be given and discussed.

In the two-sublattice antiferromagnet, the lon-
gitudinal spin-spin Green's function [cf. (3.1)]
becomes a 2&2 matrix because of the two spin sub-
lattices. Each component of this matrix is ex-
pressed in terms of 16 of the total of 64 two-parti-
cle Green's functions involving the n, and P„spin-
wave operators with coefficients given by the
Bogoliubov parameters mp, l„(which relate spin
operators to spin-wave operators).

The random-phase approximation will be used
for systems with zero or small anisotropy. In the
RPA each of the a, P two-particle Green's func-
tions is given in terms of four of these Green's
functions in an integral equation in momentum. A

typical example is

»

—g(Tp &K„&(r)o(,(r)o»I. K(0)n, .(0)); =l, l„K (AsT}QGI)&I(K+q, —i(d„—iX )G'„'(q, —iX )
)tm

~~) g (,),.„&(T'„.,( ) o,(») ', . „(o),.(o)),. a"'io; I, (()
(-HE

4 Sy'2 p p+K

+(TP &,o (r)o (r)&E,, (0)o',, (0)),. 4' '(q, P, K)+(TP &, (T)(3 (7)&, (0)o,,(0)),.„4''(q, P, K)

+(Tap, (T)P'p(r)ac', , (0)o&, ,(0));„P'"(q,P, K)),
where

(q» p» K) = 2[4 q»IC+p, p, IC+q+ C'rC+p»q p IC+aJ»

('q» P» @ [@qE+PP»K»+q]»»

y(6) (6) (6)
(q» p» @= 2[4q Eop p»Koq + C' Kop»qE»oqp]»»

(7) (7) (7)
('q» P»»~/ 4[4'qE PE »qPo+»Co'K»+P, q, E+q, P+ @qE+PPK+»q »@K»+P»q»P»Koq J

(6. la)

(6. lb)

The 4'" come from the vertices of the HKHH spin-
wave Hamiltonian [HKHH (2. 17b)]. The i(d„indi-
cates the frequency component, and G' „'are the
unperturbed one-particle spin-wave Green's func-
tions [HKHH (2. 23)]. The two-particle Green's
functions are given by 16 sets of four coupled inte-
gral equations. They are difficult to solve in gen-
eral because of the dependence of @'"on P and q.

A. Denominator of the longitudinal susceptibility for anisotropic
systems

To treat the antiferromagnet, we begin by con-
sidering systems with anisotropy, which is given
in HKHH by H„.' (Unlike HKHH, we retain the
sublattice field h, which enters only the spin-wave
energy E, }For &d &0, unp. erturbed two-particle
Green's functions,

Q[G&0)(K+q, —iX —i(d„)G„„)(q,—il& )],

have non-negligible contributions for q-(lcsT/&Zs)
and Iq+Kfa (fasT/JZS). When the )1»'" in the inter-
action terms of the RPA equations are evaluated
for these small wave vectors [cf. E&l. (3.9) and

the following discussion for the ferromagnet], they
become constants (dependent on H„,Eo, and K)
plus terms proportional to the small wave vectors.
As discussed in Sec. IVB i for the ferromagnet,
the terms proportional to the small wave vectors
have less likelihood of giving a zero-magnon reso-
nance, and they will be dropped. Then the n, P
two-particle Green's functions and thus the longi-
tudinal-susceptibility matrix components are
solved for. The denominator of each component con-
sists of unity plus a sum of the following terms
plus all of their products (up to five different fac-
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tors in a term}:

~(fP )a f(Eq) f(Eq~»)
++i& —E„~+E,

g)) ) )
) )f)+ ) f(+ )))
(d + &6 +Eq+g +E

g(f I )a
1 [f(&—e) -f(E,»)1
(d+iE -E,z -E,

g(f I )2
1 [f(E-+») -f(E,)]

(d +i& —E„~—E,

}~ f(E.) f(E,.»-)

(d + zE + Eq~g —Eq

(6. 2)

be as conclusive as those made above. Such sums
must be taken over the entire Brillouin zone and

can therefore give contributions as large as order
unity. On the other hand, the integrals correspond-
ing to these sums in both two and three dimensions
appear to never be more than logarithmically di-
vergent, and when spin-wave damping is included
in the intermediate states, the results are fairly
smooth functions of cu; such terms do not appear
to give a sharp resonance which would correspond
to a zero-magnon mode.

C. Question of a zero-magnon mode at small E in anisotropic
systems

The coefficients of these terms arise from the K-
dependent constants +'". The forms in (6. 2} will
now be examined for a possible zero-magnon reso-
nance.

B. Question of a zero magnon at large K in anisotropic systems

As in the ferromagnetic case, the momentum
sums will be carried out for a formal choice of pa-
rameters (given by taking Eo «ks T) which maxi-
mizes the chance of a mode occurring; the mode
will be shown not to exist for this choice, and thus
it will not exist more generally.

In a lattice with inversion symmetry, for small
k (with Eo negligible), E, ~ (k I, and I, =—(I/WE, )
~ (I/Wk). For large K the most divergent sum
containing either f(E,) or f(E„»)in (6. 2) is„in
three dimensions, proportional to (taking Eo negli-
gible)

(
k~T " dxe"
ZS», [P(&u —E„)—x]' (6. 3)

The integral in (6. 3), which must become large in
order to make (6.3) of order unity, gives a con-
tribution which goes like lnP(&u —E„)for small
P(~ E») Such -a div.ergence however is so weak

that the inclusion of spin-wave damping in the RPA
would certainly blur it out.

In two dimensions for large K, the integral cor-
responding to that in (6. 3) has an additional factor
of q ', and therefore the term corresponding to
(6. 3) has a leading contribution proportional to
[P(a —E»)] for small [P(u —E»}] Equating thi. s
term to unity, gives a resonance (&o —E„)
~ (ZS)(ks T/ZS»). A calculation of the spin-wave
damping for this large K and non-negligible anisot-
ropy in the low-T antiferromagnet has not been
performed, but the results of HKHH suggest that
I"» would be smaller in temperature than (ks T/JS).
This argument therefore suggests that further con-
sideration of the zero-magnon question in the two-
dimensional antiferromagnet may be worthwhile.

The behavior of the sums in (6. 2) which do not
involve some Bose distribution must also be con-
sidered, but the comments made about them cannot

The behavior of the momentum sums for small K
in the antiferromagnet is quite different from that
in the ferromagnet. For (d &0, the first and last
sums in (6. 2) are most likely to give a mode. In
order to maximize the possibility of a mode oc-
curring (by maximizing the power of q in the de-
nominator of the integrand) the K dependence of

I„»will be dropped Ta.king Ka «(ks T/ZZS) and

E,=cq for small q, the denominator of these inte-
grands become

(d +(E„» E,)= (d + -~ —K=(d+cKcose» y (6.4)

where 8~ is the angle between K and q. When the
angular integral is done, the most divergent con-
tribution to these sums in three dimensions is

(d k~T g q ~q (d

For (d-cK, equating this term to unity gives a
resonance which is similar to zero sound in a
Fermi liquid. This logarithmic divergence is
weak, however, and it is likely that it is blurred
out by the dispersion in c from the q term in Z(q)
and also by the thermal spin-wave damping. In-
deed, if the q is absent from the integral in (6. 5)
(which would occur if there were a non-negligible

gap in E, or if K in /„»could not be ignored), then

the dispersion in c alone entirely obscures the
resonance. Taken together, the above effects make
it seem unlikely that (6. 5) will give a well-defined
resonance in realistic systems. The small-K con-
tributions from other tha, n the first and last sums
in (6. 2) are similar to (6. 5) except that the argu-
ment of the logarithm contains additional q-depen-
dent terms and thus the q integrals are even less
divergent that in (6. 5).

D. Isotropic Heisenberg antiferromagnet

The set of coupled integral equations for the n,
P two-particle Green's functions in the RPA, of
which (6. 1) is an example, holds with or without
anisotropy. Once again at low T, the +'" are ex-
panded for the appropriate small wave vectors. In
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the isotropic system, however, the +'" become
proportional to one or both of the small wave vec-
tors. Using these expansions of +'", the RPA
equations can be solved algebraically for the two-
particle Green's functions, and from them the
spin-spin Green's functions are formed. Because
of the complexity of this calculation, it has not
yet been fully carried out. The form of the results
can, however, be seen: The denominators of the
components of the spin-spin Green's-function ma-
trix will consist of unity plus a sum of products of
various momentum sums. These momentum sums
have the same forms as those in (6. 2) except that
many of them will have an additional power of q or
of its components in their numerators (cf. , ferro-
magnetic case in Sec. III). Such momentum sums
will diverge even less strongly than their counter-
parts for systems with anisotropy. Therefore a
zero-magnon mode is even less likely to exist in
the isotropic antiferromagnet than in the anisotropic
one.

A reservation should be made concerning this
discussion of the isotropic antiferromagnet: Be-
cause the calculation of the susceptibility matrix
has not been fully carried out, it remains possible
that some unexpected cancellation or combination
of terms might occur in the momentum sums in the
denominators of this matrix which could change
the behavior of those sums from that stated above.
This, however, seems quite unlikely.

VII. CONCLUSION

The question of the existence of a zero-magnon
mode in the low-T Heisenberg ferromagnet was

treated by obtaining and evaluating the RPA longi-
tudinal susceptibility in systems with and without
exchange anisotropy for large and small wave vec-
tor. The zero-magnon mode, which was found in
the RPA susceptibility at large wave vectors in
systems with an exchange anisotropy which en-
hances the repulsion between spin-wave densities,
was shown to be suppressed by spin-wave damping
(except possibly in certain two-dimensional sys-
tems).

The analysis was extended to the low-tempera-
ture antiferromagnet with exchange anisotropy, for
which it was shown that a well defined mode is not
expected except possibly in certain two-dimensional
systems. An argument was given which suggests
that the zero-magnon mode is not expected in the
isotropic antiferromagnet either.

The author has also examined the question of the
existence of a zero-magnon mode in magnetic in-
sulators at higher temperatures throughout their
ordered regimes (outside of the critical region),
where the spin-density fluctuations are greater. It
has been found that a well-defined mode does not
exist in the three-dimensional ferromagnet or anti-
ferromagnet at these temperatures. These results
will be presented in a separate publication.
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