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Conduction-electron polarization, spin densities, and neutron magnetic scattering in ferromagnetic Gd

metal were studied using the spin-polarized augmented-plane-wave (AP%) method in a
warped-mufin-tin-potential formulation. The spin-up and spin-down bands were found to be very similar

in shape to the bands from a paramagnetic calculation, with the exchange splitting proportional to the

amount of d character in the bands. It was also found that the conduction-electron spin density

determined from the AP%' wave functions is of mostly d character. This dominance of the d-like

wave functions for the spin-dependent interactions is explained by (i) the much greater overlap of the

4f states with the d-like wave functions as compared to the s-p wave functions; (ii) the nearly

complete d character of the bands in the region of the Fermi surface. The magnetic form factor was

calculated from the conduction-electron spin density and compared with the recent neutron

magnetic- form - factor measurement of Moon, Koehler, Cable, and Child. The calculated spin density

was found to have the same shape as the "diffuse" density derived by Moon et al. {including a nega-

tive but much smaller in magnitude spin density at the c site in the unit cell). After the inclusion

of core-polarization effects we conclude that hrge nonspherical contributions with Y 3 Y3 3 and

Y~ angular dependence are needed to explain the experimental results.

I. INTRODUCTION

The rare-earth metals are distinguished by their
unique and rather unusual magnetic, electric, and

optical properties. ' Extensive studies during the
last decade have provided a fairly deep understand-
ing of their electronic structure and properties. '

The open shell of atomiclike (highly localized) 4f
electrons are responsible for their large magnetic
moments and their exotic magnetically ordered
structures. However, since there is negligible
overlap of the 4f shells on neighboring lattice
sites, the ordering of the 4f moments is believed
to be accomplished through their exchange inter-
action with the conduction electrons. The coupling
between the conduction electrons and the local 4f
states is responsible for resistivity anomalies near
the magnetic ordering temperatures, and also
gives rise to the magnetic polarization of the con-
duction electrons which affects a variety of other
properties. '

The conduction-electron band structure of the
rare-earth metals has been determined in a num-

ber of band-structure studies. ' The first-band cal-
culations' ' showed that the band structures for
these metals were similar to those of the transition
metals, with high d-band density of states and with

Fermi surfaces unlike those expected for nearly
free electrons. ' There is now sufficient evidence
to indicate that the augmented-plane-wave (APW)

method, using a muffin-tin potential and the Slater-
exchange approximation, yields a very reasonable
energy band structure for the rare-earth metals.
The anisotropies in the shape of the calculated
paramagnetic Fermi surface have been confirmed
by positron annihilation and by resistivity mea-
surements"; also, the nesting features of the
Fermi surface, as calculated using the relativis-
tic-APVf method, have been found to correlate well
with the observed magnetic ordering. ' Until re-
cently the difficulty in preparing very pure samples
of these metals has prevented detailed comparison
of the theory with precise measurements, as, for
example, could be obtained from de Haas-van
Alphen experiments. Thus the neutron magnetic-
form-factor measurement of Gd by Moon, Koehler,
Cable, and Child is of great signifieanee, since it
is the first precise experiment to give direct in-
formation about the conduction-electron magnetiza-
tion densities in the rare-earths. Gadolinium or-
ders ferromagnetically below 293 K, with a total
magnetic moment of 7.55', ~/atom in high fields.
The 0.55pe/atom above the 7pe/atom expected
from the seven unpaired 4f electrons is due to the
polarization of the conduction electrons. In the
analysis of their experimental results, Moon et al.
separated from the total form factor a spherical
contribution representing the localized 4f electrons
and obtained a form factor which is presumably
due to the diffuse distribution of the polarized con-
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duction electrons. A principle motivation for our
work is to understand from ab initio calculations
this diffuse form factor, the conduction-electron
spin density, and the 4f-conduction-electron inter-
actions responsible for it. The lack of previous
investigations into the ferromagnetic nature of the
conduction-electron wave functions in the rare-
earth metals necessitated an exploratory approach
to these interesting questions. For this reason,
detailed agreement with experiment was not a goal
of these calculations, nor -was it expected.

The spin-polarized APW method was chosen for
computation of the spin density for several rea-
sons: (i}The ferromagnetic band structures of the
transition metals have been successfully obtained
using this method; (ii) the APW paramagnetic
Fermi surfaces have been shown by experiments
to be reasonable; (iii) the nonrelativistic paramag-
netic band structure of Gd '.s in essential agree-
ment with the relativistic result; (iv} spin is main-
tained as a good quantum number in the nonrelativ-
istic regime. We computed the bands, wave func-
tions, and densities using two different values of
the Slater exchange parameter o. . Since the best
agreement with experiment was obtained with the
a = 1 calculation, we describe the results obtained
using that value of exchange and only briefly men-
tion the results from the n = 3 calculation. For
details of all these calculations the reader is re-
ferred to Ref. 5.

In Sec. II we describe the character of the spin-
polarized bands and wave functions, and in Sec. III
we discuss and compare the theoretical and ex-
perimental spin densities and form factors. Ad-
ditional contributions to the magnetization density
and the magnetic form factor are considere~ in
Sec. IV and conclusions are then given in S~& . V.

od have been given, " "only those aspects of the
method important for obtaining and utilizing wave
functions wi11 be presented in this paper.

The APW method has considerable intuitive ap-
peal. As is mell known, the one-electron states
of the crystal are expanded in atomiclike functions
for regions near the atomic sites, and in plane
waves for regions in the unit cell away from the
atomic sites. This basis is physically reasonable
and results from considering the crystal potential
in the muffin-tin approximation. In this approxi-
mation the unit cell is separated into two regions
by nonoverlapping spheres surrounding each atomic
site. Inside each sphere the potential is assumed
spherically symmetric, and appears quite atomic-
like; outside the spheres the potential is assumed
constant. It is easy to avoid this last assumption
and include the general potential outside the
spheres. This so-called warped-muffin-tin (WMT)
potential" is easy to incorporate into the APW
formalism and has been used in our calculations
(see the Appendix).

A crystal wave function is expanded in augmented
plane waves as

i

with the coefficients A, (k) to be determined varia-
tionally. The sum is over a set of reciprocal-
lattice vectors g;, mhere we have written k, for
k+K;. An APW has the fo1,lowing representation:

outside the spheres,

V», (r) = (1/Wg)e'"~',

where Q is the volume of the unit cell;

inside the vth sphere,

Il. ENERGY-BAND AND W'AVE-FUNCTION

PROPERTIES OF FERROMAGNETIC Gd METAL

The electronic band structures of the rare-earth
metals in general and Gd metal in particular have
been determined' first by means of nonrelativis-
tic' ' and later by relativistic energy-band cal-
culations. ' These extensive studies showed that
the conduction bands in these hcp metals are iden-
tical with those of the 3d transition metals having
the hcp structure, namely, overlapping s-like and
d-like bands which are strongly hybridized. In all
these investigations, the APW method' was em-
ployed to determine the band structure, density of
states, and Fermi surface of the paramagnetic
metals. The spin-polarized version of the APW
method has also been successfully used to calculate
the band structures of the ferromagnetic transition
metals. ' Since excellent reviews of the APW meth-

where R„is the radius of the sphere, and r„is the
vector to the center of the sphere.

The A, are chosen so that each APW basis func-
tion is continuous at the sphere boundary. This
guarantees that the crystal wave function will be
continuous; there mill remain, however, a slope
discontinuity since we are limited to a finite ex-
pansion. The R, ~.( p) are the radial solutions to
Schrodinger's equation inside the APW sphere.

The 8J g I( p) must be regular at the origin, but
unlike the atomic case there is no boundary condi-
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tion at infinity and hence there exist solutions for
all values of E~. The proper creation of the poten-
tial in this equation is of the utmost importance if
physically meaningful results are to be obtained.
The wave function and eigenvalue are determined
by the Rayleigh-Ritz variational procedure as
solutions of a standard eigenvalue problem. As
discussed in Refs. 10 and 11, the APW secular
equation can be solved by finding those E, which

satisfy

det (H(E, ) -E,.S
~
=0.

This procedure is useful for finding the eigenval-
ues, but is not as convenient for obtaining wave
functions. One problem with obtaining eigenvec-
tors is that the normalization is over the region
outside the spheres and not over the unit cell.
Since we are primarily concerned with obtaining
normalized wave functions, it is best to employ
the linearized form of the APW method as given

by Koelling" to solve the equation

H(E,)~ =ES(E,)A, S = total overlap matrix. (6)

The procedure is to pick an Eo and evaluate the
resulting eigenvalues E„bythe method discussed
below. If one of the E, is equal to E, then the wave
function is evaluated. If E, does not equal any E„
then E, is set equal to one of the E, found, and an
interation performed. In practice this procedure
converges very rapidly. "

Equation (6} is solved by using Cholesky factor-
ization of the overlap matrix, "

S=LL

sities were determined from a self-consistent spin-
polarized Hartree- Fock-Slater calculation with the
assumed atomic conf iguration 4f ~, 5 di', 5dt',
6s'. {When the atomic configuration 5d~ "', 5dj'",
6s' was picked to represent the metal with a net
magnetic moment of 0.55'~/atom, it was found

that with the full Slater exchange this configuration
gave much too large a band splitting. } Since the
wave functions were found to be sensitive to non-
muffin-tin corrections, we used the so-called
warped-muffin-tin potential (see the Appendix}.
For each of the potentials considered, the spin-
polarized energies and wave functions were cal-
culated on a v/4a, v/2c mesh in the irreducible

4 of the Brillouin zone.
The calculated spin-up and spin-down bands

were found to be nearly identical to the nonrelativ-
istic paramagnetic band structure of Dimmock,
Freeman, and Watson, ' and, as these authors
found, the bands were rather insensitive to changes
in potential. The relative positions of the two sets
of bands caused by the ferromagnetic exchange
splitting is shown along the T symmetry line in

Fig. 1. An important feature to note is the smal-
ler splitting of the s-like band near F, as com-
pared to the splitting of the bands with strong d
character. Also present, but less obvious, is the
increase of the splitting for the d bands as the en-
ergy eigenvalue increases. (The spin-up and spin-
down bands obtained from the n = 3 potential were
also found to be very similar in shape. The rela-
tivistic paramagnetic band structure, ' except for
fewer band crossings caused by symmetry, like-

The new eigenvalue equation is then

(L 'HL ) (L A) =E(L A)

or

H'X'=EA'.

The new matrix H' is reduced to tridiagonal form
using the Housholder-Givens method, "and a
Sturm sequencing procedure is used to evaluate
the needed eigenvalues. Usually only the 6-10
lowest eigenvalues are obtained. If the whole

spectrum (actually 25/p of the eigenvalues or more)
is needed it is more efficient to employ a QI. al-
gorithm instead of the Sturm sequence procedure.
Once the eigenvalues are determined, the eigen-
vectors are easily obtained by back transforma-
tions. These procedures are fully discussed by
Wilkinson, "and are available through the EISPAC

set of subroutines.
The crystal potentials for the spin-up and spin-

down bands were obtained by using Mattheiss's
prescription of superimposing atomic charge den-
sities from neighboring sites. " The atomic den-
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FIG. 1. Spin-up (solid curves) and spin-down (dashed
cu~es) energy bands in ferromagnetic Gd metal plotted
along I'to A.
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FIG. 2. Spin-up and spin-down density of states for ferromagnetic gadolinium.

wise resembles the nonrelativistic structure.
Again one may conclude, as did Dimmock et ai. ,

'
that the general features of the band structure are
insensitive to potential changes. )

The density of states for the n =1 potential is
shown in Fig. 2. Here too, there is great simi-
larity between the spin-up and spin-down density
of states, and the paramagnetic relativistic and
nonrelativistic density of states (the s band density
is slightly lower in energ. y for the relativistic den-
sity of states). ' The Fermi level shown in Fig. 2

was determined by filling the bands with six elec-
trons per unit cell. There were 3.72 spin-up elec-
trons and 2.28 spin-down electrons yielding a net
magnetic moment of 0.72ps/atom. This is 0.17ps
above the experimental value and indicates too
large an exchange splitting near the Fermi energy.
It is also possible that calculating the energies on
a higher density mesh would yield a slightly dif-
ferent density of states and Fermi level. This
could change the net magnetic moment, but it is
doubtful that the moment would change by more
than 0.05'.~. Since the band shape was relatively
insensitive to the potential changes, a new calcula-
tion w'ith an improved potential was not performed.
Rather, the spin-up bands were rigidly shifted by
0.012 By and the spin-down bands by 0.006 By to
obtain the experimental moment of 0.55'.~/atom.
An average splitting before shifting was about 0.8
eV, and after shifting 0.57 eV. Optical experi-
ments indicate the splitting to be about 0.7 eV. At
this experimental splitting the calculated magnetic
moment would be too large; however, this could be
because the calculation is nonrelativistic ~ The true
relativistic bands may have some spin admixture
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FIG. 3. Spin-polarized 5d orbitals and the spin-up 6s
orbital of atomic gadolinium.

and thus require larger splittings to obtain the
same moment. It is also possible that the orbital
moment of the conduction electrons points in the
direction opposite to the direction of the spin mo-
ment. Then if the conduction-electron orbital mo-
ment due to spin-orbit coupling were large, the
bands would be split more than would be predicted
by the measured saturated moment. Small shifts
in the band splitting will affect the magnitude of
the spin magnetic moment, but should not change
the magnetic form factor appreciably.

Consider now the resulting eigenfunctions and
spin densities. For comparison with the band re-
sults and because it gives some insight into the
behavior expected (and found) for the wave func-
tions in the solid we show in Fig. 3 the spin-po-
larized 5d radial functions obtained from an atomic
calculation for Gd. (Also shown in the figure is
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FIG. 4. APW spherical charge and spin densities of
ferromagnetic gadolinium.

the spin-up 6s orbital and the position of the sphere
radius. ) The peak in the well-localized 4f density
is located near r =0.7 Bohr radii, well inside the
outer maximum of the 5d function. The spin-po-
larized radial functions in Fig. 3 follow the ex-
change-polarization rules observed by Freeman
and Watson. " Here the 5d spin-up function expe-
riences a net exchange attraction to the spin-up
4f electrons which pulls them radially inward. The
5d spin-down functions have a zero exchange inter-
action with the 4f electrons in Gd and are not so
affected. What is clear from Fig. 3 is that the net
Sd radial spin density (spin-up density minus spin-
down density) is negative in the outer regions

(large r values) in a free atom for which the up-
and down-spin orbitals are equally occupied.

The spin density for the crystal was obtained
from the spin-up and spin-down charge densities
which were calculated from a sum of occupied
wave functions. The spherically averaged den-
sities are shown in Fig. 4. The increase in the
char ge density near the sphere radius is from the
l=0 and l=1 character of the wave functions, while
the large shoulder (at the maximum of the atomic
5d function) comes from the l=2 character of the
states. Subtraction of the two densities nearly
removes the l=0 character and gives a spin den-
sity of predominantly d character.

The nonspherical contributions to the charge
density are shown in Figs. 5-7. Here the charge
density has been expanded inside the APW sphere
as
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FIG. 5. The l = 2 nonspherical charge distributions for
Gd metal.

FIG. 7. The L = 4 nonspherical charge distributions
for Gd metal.
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The Z, (r) are lattice harmonics and are defined
in the Appendix, where me also discuss the sensi-
tivity of the density to small improvements in the
potential. For calculating the wave functions, me

have used the warped-muff in-tin approximation
since the aspherical densities were found to be
sensitive to the nonflat potential in the interstitial
region. The C, C„,and C„densities did not
give contributions as large inside the spheres and
are therefore not shown. These figures indicate
that the largest nonspherical contribution to both
the total charge density and the spin density has
l=3 character. The /=3 contributions to the den-
sity result from the mixed /=1 and /=2 character
of the wave functions (not from /=2 and l=3 char-
acter as might be expected for a system with f
electrons. All the wave functions were found to
have less than go l=3 character. ) The large l=3
term and the significant /=4 term cause the spin
density around each atomic site to point toward
the nearest-neighbor site.

Although the spin density of Fig. 4 mas found to
be of predominantly d character it does not closely
resemble the atomic 4 radial function of Fig. 3.
This is easily explained by Fig. 8 where me plot
the /=2 radial density for several different ener-
gies. At the Fermi level the occupied d bands are
very extended, and only when the energy is raised
mell into the unoccupied states does the l =2 radial
function begin to resemble the atomic 5d radial
function.

The greater splitting of the d bands as compared
to the s-like bands can be understood from Fig. 9
where we plot the radial function for a typical d
state at the Fermi energy, and for the F, s-like

I 4—

I 0—

04—

02—

I 0 2.0
RAD I 0 S lg. u.l

FIG. 9. Typical radial densities of s-like (I'& state)
and d-like wave functions, showing overlap with the 4f
states.

state. The overlap of the d state with the 4f
orbital is obviously greater than that for the s-like
state, and as the energy is increased (Fig. 8) the
d 4f overlap -will increase and cause greater ex-
change energy spiittings. The greater 4f dex--
change interaction is also obtained from atomic
calculations and confirmed by atomic-spectroscopy
measurements. The strong 4f dinteraction an-d

the large amount of d character at the Fermi level
suggest that the indirect exchange interaction which
couples the 4f local moments is dominated by d
electrons —a conclusion borne out by the following
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calculation.
The strength of the 4f-conduction-electron ex-

change interaction can be calculated exactly by
evaluating the following exchange integral'.

III. NEUTRON MAGNETIC FORM FACTOR

A. Experiment

The experimental form factor as obtained by
Moon et al.' is shown in Fig. 10 together with the

IO
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Moon et ol

where n, n' denote the band indices. This integral
is familiar from Ruderman-Kittel-Kasuya- Yosida
(RKKY) theory, but has never before been eval-
uated using ab initio Bloch wave functions. By
taking advantage of the fact that the 4f radial func-
tions are essentially zero in the interstitial re-
gion, the integral is easily evaluated inside the
muffin-tin spheres using APW wave functions.
Note that the Slater exchange approximation can-
not be used to estimate this integral since separa-
ting the 4f density out of the total density is in-
correct for a nonlinear operator like p' '. %'e

find that Z„„(k,k) ~ 0.5 eV for a pure d state on
the paramagnetic Fermi surface, and J„„(k,k)
=0.2 eV for the 1", s-like state. This confirms
our previous qualitative arguments concerning
the relative strengths of the 4f-s and 4f dinter--
actions. Detailed calculations of J„„(k,k') and the
generalized susceptibility are in progress; results
will be reported in a future publication.

form factors derived from the Hartree-Fock"
and the Dirac-Fock" densities calculated for
gadolinium. The theoretical curves represent the
contribution expected of the 4f electrons assum-
ing the 4f radial functions are unchanged by the
solid environment. This figure shows that for
large scattering angles (where the contribution
from the diffuse conduction electrons is expected
to be negligible) the relativistic atomic calculation
is in excellent agreement with experiment. The
relativistic corrections cause the inner core or-
bitals to contract and thus shield the nuclear
charge more effectively. This in turn causes the
4f radial function to expand and is reflected in
the contraction of the form factor.

Moon et al.' devised a consistent and clever
method to subtract the 4f contribution from the
total form factor and thus obtain the conduction-
electron form factor. They assumed, however,
that the 4f radial function was spherically sym-
metric in the solid. Although a spherical 4f dis-
tribution seems very reasonable, and is undoubted-
ly nearly correct, any nonspherical contribution
which changed the 4f form factor by 1% would be
attributed to the conduction electron form factor
as a 13/q effect. This is because the ratio of the
total 4f moment (7ps/atom) to the conduction
electron total moment (0.55ps/atom) is 13:1.
Figure 11 shows the separation of the measured
form factor into a local form factor (the straight
line) andadiffuse form factor (shown in the inset),
which is nonzero for only the first three reflec-
tions. The first reflection [k=(1, 0, 0)] is respon-
sible for the magnitude of the derived spin density
in the basal plane. It may be helpful to think of
the net magnetic moment [k=(0, 0, 0)] of the con-
duction electron as determining an average value,
and of the first reflection as producing a cosine
modulation, with the amplitude given by the value
of the first reflection. If one assumes along with
Moon et al that a rea.sonable empirical 4f local
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FIG. 10. Comparison of atomic form factors derived
from Hartree-rock (Ref. 18) and Dirac-Fock (Ref. 19)
calculations with the Noon et aE. P,ef. 4) experimental
data.
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FIG. 11. Separation of the measured form factor into
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form factor has been obtained and subtracted, then
the challenge is to understand the diffuse form
factor and the conduction-electron polarizations
responsible for it.

Inverting their derived form factor for the con-
duction electrons, Moon, Koehler, Cable, and
Childi obtained the spin-density projections shown
in Fi . 12.in ig. . There are large regions of negative
density in the unit cell farthest from the atomic
sites. The negative density reaches a maximum
of -0.037ps/A' at the c site (in fcc stacking the
layers are ordered ABCABC. .., but in the hcp
structure the ordering is ABABAB. .., with the c

derive
sites unoccupied). Moon et al,. comment th t th

erived spin density is not as expected for either
an atomic 5d or 6s electron.

0.8

0.6

0.4

0
1,0

B. Theory

Contours of the calculated spin density in the
basal plane are shown in Fig. 13. The expansion
ofthes i
APW
o e spin density (in plane waves) outs'd th

W spheres has been extended inside the spheres
(the shaded regions), where the continuity of the
wave functions and their near co t tn Inul y in slope
make this expansion a good representation for the
basal lane. It '

p . is not, however, a good represen-
tation close to the atomic sites. The shape of the
spin density shown in Fig. 13 is essentially the
same as the experimentally derived den 't f
Fi . 12 &Z=0.5g. ( =

~ ~„but the magnitude is considerabl
smalleraller. For example, the calculated d *ty at

' era y

the c site is -0.002* ' — .002'~,~A . The spin-up density at
this site is 0.043 ps/A' and the spin-down density
is 0.045ps/A' implying that a major shift of
charge is required to obtain the experimental
value (-0.037p~,~A '. The general agreement in
shape is, however, a good indication that it is the
spread out d-like conduction electrons which are
contributing most to the neutron magnetic-form-
factor results.

The wave-function character at the paramag-
netic Fermi surface is the most significant factor
in determining the character of the spin density
because as the bands are split the spin-u t tin-up s a es
a e ermi surface are no longer compensated

states in gadolinium all have over 90/0 d character
with some P and a little s character as well. This
helps explain the predominant d character of the
spin density, but by itself could not explain the
r.egative density region.
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FIG. 12. Derived experimental spin-d 't,yenslty projections
(from Ref. 4). The units are 0.01@~/A .

FIG. 13. Calculated spin density in the basal plane in
units of 0.01o . p, ~/A . The shaded regions are inside the
APW spheres.
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The negative density is a result of the radial
exchange splitting for the compensated spin-up
and spin-down wave functions. This is essentially
the atomic picture shown in Fig. 3. However, the
spin density one might expect from these atomic
5d orbitals does not resemble the spherically
averaged spin densities of the metal (Fig. 4),
since the occupied d states are at the very bottom
of the d bands. The l =2 radial dependence for
various energies was shown in Fig. 8. At the
lowest energy E =0.25 Ry the spin-up bands are
just beginning to be occupied. At E =0.35 Ry we
are near the Fermi energy, so this is the l =2
dependence of the uncompensated states and close-
ly resembles the spherically averaged spin density
of Fig. 4.

The contribution from inside the AP% spheres
to the calculated magnetic form factor was ob-
tained using the expansion of the spin density
given in Eq. (10) for l up to 6. The contribution
from outside the spheres was easily obtained
since the spin density is expanded in plane waves
in this region. The calculated form factor is
given in Table I for the calculation using full
Slater exchange (a =1) as well as for the calcula-
tion using the Kohn-Sham-Gaspar value of ex-
change (n =';). Both calculated form factors
are much smaller at non-zero-scattering angles
than the form factor derived by Moon et a/. This
could be expected by comparing the spin densities,
since the smaller changes in magnitude of the cal-
culated spin density imply smaller scattering for
(sin&)/Av0. The form factor from the n=-', calcu-
lation has very little scattering for (sine)/Aw0 be-
cause the lowered exchange does not split the
(more expanded) 5d radial functions as much as

for a =1 calculation and hence the spin density is
more uniformly spread through the unit cell. Thus
the form factor is contracted, and, except for the
first reflection, we are now looking at the tail of
the form factor as it falls below zero. In spite of
this expansion of the & =-', spin density, the shape
remains pretty much identical to the & =1 density,
and the d character is still dominant. The nega-
tive regions have disappeared, with the magnitude
of the spin density at the c site being +0.003ge/A'.
Possible reasons for this lack of agreement in
magnitude are discussed in Sec. IV.

IV. ADDITIONAL CONTRIBUTIONS TO THE
MAGNETIZATION DENSITY AND NEUTRON

MAGNETIC FORM FACTOR

Our ab initio determination of the conduction-
electron spin density in ferromagnetic Gd metal
yielded a form factor which differed from the ex-
perimental value. The magnitude of the "diffuse"
spin density derived by Moon eI, al.' was found to
be larger than the magnitude calculated from the
APW wave functions, although the shapes of the
two spin densities agreed very well. Since neu-
trons scatter from the total magnetic-moment
density, effects such as core polarization and
spin-orbit mixing could give rise to important
contributions to the form factor. In this section
we discuss aspects of the magnetic-moment den-
sity which were not considered previously.

A. Core polarization

The net magnetic moment in gadolinium is De-

termined by the number of uncompensated valence

TABLE I. Comparison of the gadolinium conduction-electron form factors for the first ten
reflections.

Reflection sin 0

(hkl) A, expt. expt, 2
3

with
n =1 core pol.

A spherical
contributions
o. =1 o. =1

Z;)'.) Z40

(000)
(010)
(002)
(011)
(012)
(110)
(013)
(020)
(112)
(021)
(004)

0.000
0.159
0.173
0.181
0.235
0.276
0.304
0.319
0.325
0.330
0.345

1.000 1.000
0.930 0.770
0.428 0.218
0.096 -0.064

—0.103
-0.051
-0.014

0.244

0.64
0,14

1.000
0.184
0.048

-0.009
—0.063
—0.057
-0.050
—0.056
-0.071
-0.072
—0.029

1.000
0.385
0.263
0.140
O. O49

0.022
0.004
0.005

-0.027
-0.022

0.016

1.000
0,531
0.431
0,293
0.194
0.145
0.098
0.092
0.053
0.043
0.070

0.000
0.040
0.000

—0.011
0.018
0.000

—0.002
0.025
0.000
0.005
0.000

0.000
0.004
0.014

—0.004
-0.010

0.014
-0.002

0.016
-0.007

0.005
0.044

~ Estimated from Fig. 5 of Moon et al. (Ref. 4).
~ Obtained by subtracting the Freeman-Desclaux (Ref. 19) local form factor from the mea-

sured form factor.
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electrons and their orbital angular momentum (if
any). The spin density, however, has contribu-
tions from the core electrons as well. The large
exchange interaction with the local 4f states pulls
spin-up orbitals towards the peak in the 4f den-
sity, as shown in Fig. 8; the radial densities of
spin-up and spin-down core electrons are thus
split, and contribute to the spin density. "'"

The 5s and 5p radial functions are peaked out-
side the high-density region of the 4f electrons
and extend to some degree into the interstitial
region. The other core states in gadolinium are
more localized than the 4f states, so their spin
distribution only affects high-angle reflections in
the form factor. Since 5s and 5p states from
neighboring lattice sites overlap, they actually
form bands in the solid with a band width of about
1eV. Thus their spin density may be calculated
using the AP%' method.

The 5s and 5p wave functions were calculated
using the o. =1 potential. The spin density was
found to be negative in the interstitial region, but
very small (-0.001gs/A' at the c site). Figure 14
shows the spin-polarized 5P densities for the
metal and illustrates the amount of exchange
splitting. The calculated atomic 5s and 5p mag-
netic form factors are shown in Fig. 15. In this
figure the 5p form factor should be multiplied by
three to obtain the total for all six 5p electrons.
The form factors for the solid were slightly re-
duced. They are not shown because they exist
only at the Bragg scattering angles and a better
understanding of them can be obtained with the
continuous atomic form factor.

The 5s and 5P core-polarization corrections
have been added to the conduction-electron form
factor from the & =1 potential and the result is

0.4—

0.03

0.02

O. OI

O. I 0.2 0.3
SIN 8 /X

0.5

FIG. 15. Contributions to the magnetic forxn factors
from the 5s and 5P states in ferro~~~netic Gd metal.

shown in Table I. Since the 5s and 5p form factors
are rather broad, their main effect is to uniformly
raise the conduction-electron form factor for the
smaller reflections. Although these changes are
hardly noticeable on the scale of the total magnetic
form factor, the corrections are significant on
the scale of the "diffuse" form factor. Table I
shows that the & =1 form factor with core polar-
ization included is in, better agreement with Moon
et al. ,

' but that the calculated first reflection is
still too low.

B. Relativistic effects

The need for including relativistic effects in the
calculation of 4f spin density and form factor has
been discussed earlier. In the relativistic calcu-
lation the inner core states contract and the re-
sultant increase in screening allows the 4f den-
sity to expand. An estimate of the changes in the
conduction-electron densities caused by these in-
direct relativistic effects can be made by compar-
ing the atomic relativistic Dirac-Slater radial
densities with the nonrelativistic Hartree-Fock-
Slater results. This comparison is made in Table
II. The relativistic corrections cause the 5d den-
sity to expand in a manner similar to the 4f re-

03—
O

lD

0.2—
Q

HERE
D I US Orbital (~2) f/2 ( y4) 1/4 (~6) 1/6

Hartree-Fock-Slater

TABLE II. Radial expectation values (a.u. ) for relativ-
istic and nonrelativistic atomic calculations of Gd.

6s
5d
4f

4.52
2.62
0.87

Dirac-Slater

5.12
3.15
1.09

5.74
3.74
1.34

1.0 3.0

RADIUS ( ou)

FIG. 14. Spin-up and spin-down radial density for the

5p states determined from the spin-polarized APW cal-
culation for Gd metal.

5d'"
4f 7/2

4f 5/2

4.25
2.77
0.92
0;91

4.83
3.38
1.17
1.15

5.43
4.06
1.46
1.43
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suit, and the 6s density to contract. Similar be-
havior is expected in the solid, since the core
region, where direct relativistic effects are im-
portant, is little changed in the metal. A very
small expansion of both 5d-up and 5d-down wave
functions would cause the form factor to eontraet,
but the change would be small and of little signifi-
cance. (Recall that we are dealing with the differ-
ence of two charge densities, both of which are
affected similarly by these indirect relativistic
effects. )

Spin-orbit coupling is another relativistic cor-
rection which can affect the magnetic-moment
density. The crystal field normally quenches the
angular momentum of the conduction electrons,
but spin-orbit coupling causes the spin to "drag
along" some orbital moment. The amount of
orbital mixing is found experimentally by mea-
suring the g factor of the conduction electrons.
The percent of orbital mixing is then given by
2(g-2). It is difficult to decide on ag value for
the conduction electron since most measurements
are dominated by the 4f shell and its magnetic
interactions. Some orbital contribution to the
magnetic-moment density can be expected, but
we have been unable to determine how much.

The general shape of the orbital form factor for
the metal can be inferred from atomic Hartree-
Fock calculations. Both the spin and orbital form
factors for the atomic 5d state are shown in Fig.
16. The difference is also plotted, and indicates
that if the percent of orbital contributions were
significant, the smaller reflections could be raised
above the spin-only values. These atomic 5d form
factors should be approached with some caution,
however, since the shape of the occupied d states
in Gd (Fig. 8) does not resemble the shape of 5d
atomic states (Fig. 8). If one assumes that the
conduction-electron g factor in Gd is the same as
the g factor of the ferromagnetic transition metals
(g~ 2.2), then there would be a 10@ orbital con-
tribution. This would raise the first 10 reflections
given in Table I by about 0.02. This is a rather
small amount and indicates that orbital mixing
would have to be quite large to make a significant
contribution (at least at the precision of the pre-
sent measurements). As noted previously, the
direction of an orbital moment could be opposite
to the spin-moment direction as happens in L-S
coupling for less than half-filled shells. This is
an interesting possibility and could lead to signifi-
cant contributions. The size of the conduction-
eleetron orbital moment is thus quite important if
the orbital contributions to the form factor are to
be determined.

Perhaps the best way to obtain the orbital con-
tribution would be to use relativistic APW wave

functions for which spin-orbit coupling is treated
in a natural way. The problem with this approach
is the creation of a suitable ferromagnetic poten-
tial in the relativistic formalism where spin is no
longer a good quantum number, and L-S coupling
for the 4f states is no longer valid.

We conclude that while indirect relativistic ef-
fects are not important for the conduction elec-
trons, spin-orbit effects could be important, but

only if the orbital mixing is rather large.

1.0

0.8

0.6

f (K) 0.4

0.2
CE

—O. l

0. 1 0.2 O. 3
S1~e ~~

0.4 0.5

FIG. 16. Spin and orbital form factors for the atomic
5d wave function of gadolinium together with their differ-
ence.

C. Interband mixing

Interband mixing has been suggested as a mech-
anism to explain the apparent negative electron
polarization for a number of rare-earth metallic
compounds. ' The APW method should in prin-
ciple be able to describe interband hybridization
effects properly; however, there are a number
of practical aspects which cause difficulty. First
and foremost is the description of the highly local-
ized 4f states as bands. The neglect of the Cou-
lomb correlation makes the location in energy of
the 4f states unreliable in an APW calculation.
The location in energy of these states is further
complicated by their extreme sensitivity to
changes in the Slater exchange sealing parameter
n For .example, the spin-up 4f energy was -0.8
Ry using o =1, but was raised to -0.15 Ry (0.25

Ry below the conduction bands) using o = —', . With
the o =-', potential the 4f spin-down bands are
lowered to an energy just above the Fermi level.

The amount of l =3 character in the spin-up
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wave functions was found to never be more than

3% for both the n =1 and n =-', calculations. There
was some l =3 character in the occupied =-',

spin-down wave functions due to the proximity of
the 4f spin-down bands to the Fermi energy
Since photoemission experiments place the oc-
cupied 4f levels in Gd at 6eV below the Fermi
energy (approximately the energy level given in
the & =-*, calculation), we conclude that in Gd
metal there is no significant interband mixing with
the 4f spin-up states. The effect of the 4f spin-
down interband mixing observed for the n = 3 cal-
culation was to pull spin-down density out of the
interstitial region and into the core region. This
is understandable since some of the occupied
spin-down states now have significant l =3 char-
acter. The l = 3 spin-down radia1. function near
the Fermi level is only slightly expanded relative
to the 4f spin-down states; hence, the states with
mixed l =3 character give up some diffuse char-
acter in return for localized l =3 character.
Since the experiment of Moon et a/. ' indicated
large amounts of negative density in the intersti-
tial region we can assume that there is little
interband mixing with 4f spin-down states. We
conclude therefore, that interband mixing with
the 4f states is insignificant in gadolinium metal.

D. Nonspherical contributions

C,.(R) = S(R)Z,„(R}d'r,

where S(R) is the spin density at the muffin-tin
radius derived from the form factor of Fig. 10.
These C, 's are compared in Table III, with the
C, 's calculated using the APW spin densities.
The experimental C»(R) and C«(R) are exception-
ally large, as might be expected from the steep
slope in the form factor for the first three reflec-
tions. That they are 3 to 4 times the calculated
values is surprising.

The potentials used to calculate the charge and
spin densities were formed by overlapping the
atomic charge densities from neighboring sites.
These potentials do not have the large aspherical
spin dependence that is calculated from the wave
functions. Hence a general self -consistent po-
tential which avoided all muffin-tin approxima-
tions would be expected to further increase the
nonspherical densities. Since most of the d-like
wave functions have about 60% of their charge
inside the APW spheres, it is especially important
to include nonspherical contributions inside the
APW sphere (not just in the interstitial region as
is done with the warped-muffin-tin approximation).
Judging from the changes in the nonspherical con-
tributions to the charge density caused by the ad-

The spin, orbita1. , and core-polarization form
factors shown in Figs. 15 and 16 are derived from
spherically symmetric densities and vary smoothly
from (sine}jA. =0 to high reflections. However,
the first three reflections of the experimental
data in Fig. 11 indicate a very large change in the
form factor over the relatively small difference
in scattering angles of the first three reflections.
Such a precipitous drop cannot be understood as
arising from spherical densities as obtained from
atomic form factors.

The nonspherical terms of the spin density have
been included in our calculations, but as discussed
in the Appendix, these contributions to the density
are most sensitive to potential approximations.
The contributions inside the muffin-tin sphere to
the form factor for terms proportional to Z»(r}
and Z«(r} are included in Table 1. These are for
the n =1 warped-muffin-tin potential. It can be
seen from the table that the Z»(r) terms act to
shift the first three reflections in the direction ob-
tained experimentally, but these changes are not
large enough by themselves to give the observed
shift. An idea of how large the nonspherical spin
density must be to obtain the form factor of Fig.
10, may be obtained by calculating the following
qua tity:

MT
Charge density

WMT
1

down up down down

0 0
2 0
3 3
4 0
5 3
6 0
6 6

10.300
—0.021

0.411
0.170

-0.137
0.061
0.058

7.990
-0.066
-0.493
-0.284
—0.312

0.090
0.071

10.291
—0.038

0.822
0.397
0.031
0.027
0.016

8.094
0.055
0.073

—0.036
—0.122

0.065
0.031

11.484
0.180
0.717
0.175

-0.147
0.154
0.066

8.264
—0.002

0.046
-0.133
-0.345

0.142
0.053

l m

MT
Spin density
WMT WMT
A =1 Q 2

Moon
et al.

0 0
2 0
3 3
4 0
5 3
6 0
6 6

2.316
0.045
0.904
0.454
0.175

—0.029
-0.013

2.197
-0.093
—0.749

0.433
0.153

-0.038
—0.015

3.220
0.182
0.671
0.308
0.198
0.012
0.013

2.055
0.000
2.918
1.193
0.554
0.148

-0.159

TABLE III. Effects of warped-muffin-tin potential on

C, (R) [Eq. (A1)j. The C& (R)'s have been multiplied by
the volume of the unit cell, Note the large nonspherical
terms for the spin density of Moon et al. (Ref. 4). The
units are 440el/a. u. (Ref. 3).
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dition of only the warped-muffin tin corrections in
the interstitial potential, we believe that a full
general self -consistent potential would be the
most important consideration for improving our
results.

The large anisotropy of the conduction-electron
spin density could also cause the core and 4f spin
densities to assume a small amount of asphericity.
Thus, separating out a form factor due to a local
spherical moment as was done by Moon et a/. may
not be a valid procedure. As stated earlier, a 1%
aspherical contribution from the local moment
would be interpreted as a 13% aspherical contri-
bution from the conduction electrons. The deter-
mination of aspherical local-moment contributions
must await the development of a general (non-
muffin-tin) self-consistent potential.

Finally, we should emphasize that the "true"
conduction-electron polarization and spin density
is produced not by a simplified p' ' spin polariza-
tion but by the much more complex (and nonlocal)
J(k, k') exchange interaction [e.g. Eq. (11)]. Our
preliminary calculations using our AP% band
eigenfunctions of the 4f and 5d electrons in the
paramagnetic state show that Z(k, k') is strongly
dependent on k and k' and on the band indices n, n'.
This highly anisotropic exchange interaction could
well produce ferromagnetic magnetization densi-
ties showing the right amount of asphericity and a
higher first reflection could well result. Such a
band-type calculation using the correct Z(k, k')
is, however, not easily accomplished at the pre-
sent time.

V. CONCLUSIONS

Highly precise experiments, such as the neu-
tron-magnetic-scattering experiments of Moon
etal. , on the rare-earth metals, which measure
physical phenomena requiring wave functions as
opposed to eigenvalues for their description, are
relatively new; furthermore, the interaction be-
tween theory and experiment has only just started.
Eigenvalues and energy bands are not as sensitive
as wave functions to potential approximations and
are therefore less likely to provide as much de-
tailed knowledge of electronic interactions in

solids. Thus the study of phenomena requiring
wave functions for their description may mell be
the key to assessing the limits of the single par-
ticle model and to understanding the role of many-
body effects.

This paper was concerned withunderstanding
what considerations are important for an accurate
single-particle description of the spin density of
gadolinium. The comparison of the AP%' calcula-
tions with the experimental results has provided

insight into the conduction-electron interactions.
Before such comparisons can be made, however,
the quality and properties of the wave functions
must be known. This is the reason for the im-
portance of the investigations presented in the
Appendix and in a previous publication. '4 The
rapid convergence found for matrix elements cal-
culated using APW wave functions (for a fixed
potential) is important for saving computer time
and space. The sensitivity to potential found for
the nonspherical part of the wave functions is also
important for comparing theory with experiment.
In addition, the sensitivity of the nonspherical
part of the mave function may explain why self-
consistent muffin-tin calculations can give good
eigenvalues (eigenvalues depend primarily on the
spherical density) but can give poor charge den-
sities.

The most significant discovery to come from
these calculations is the prominence of the d elec-
trons in determining the magnetic properties of
the rare-earth metals. The nearly complete d-like
character of the wave functions found at the Fermi
level accounts for the I =2 character of the con-
duction-electron spin density, and helps explain
the poor electrical conductivity of the rare-earth
metals. The d character at the Fermi surface
and the dominant 4f dexchange -interaction found

by the calculations imply that the coupling of the
4f local moments below the ordering tempera-
ture, is solely determined by d electrons.

It was found that the splitting of the compensated
spin-up and spin-down radial densities is respon-
sible for the negative spin density at the c site m
the unit cell. The radial densities of s-like elec-
trons are split very little because of the smaller
4f sexchange int-eraction. The exchange inter-
action of the s electrons with the other conduction
electrons can be large, but the exchange interac-
tion from the diffuse density of the conduction
electrons does not "push" or "pull" in any parti-
cular direction. Thus there is very little s-like
character to spin density.

Although the calculated spin density has the same
shape as the "diffuse" density of Moon et al. , ' the
magnitudes of the two do not agree. Part of this
difference was shomn to be from core-polarization
contributions, and much of the remaining differ-
ence can be attributed to nonspherical contribu-
tions. Since the angular part of AP%' wavefunc-
tions was found to be sensitive to anisotropies in
the potential, a calculation using a better potential
would increase the calculated nonspherical terms.
Also, the nonspherical terms of the "diffuse"
density of Moon et al. , could be reduced, if, as
seems likely, there is a small nonspherical con-
tribution which could be attributed to the local
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density. These large nonspherical densities found
for a hexagonal-close-packed metal imply that for
calculating charge and spin densities the muffin-
tin potential must be approached with caution.
This will be particularly true for calculations
describing experiments which stress wave-function
properties, such as positron annihilation distribu-
tions, Compton profiles, and crystal-field effects.
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APPENDIX

The convergence properties of APW eigenvalues
are fairly wel1. known, but the wave-function prop-
erties have not received as extensive a study.
We have commented on the convergence proper-
ties of APW wave-functions for a given fixed po-
tential in a previous publication'4 and will be con-
cerned here only with the sensitivity of the wave
functions to small changes in the potential. In
particular we wish to point out how the wave func-
tions change when warped-muffin-tin corrections
are included in the APW secular equation.

The standard muffin-tin approximation assumes
a spherically averaged potential inside the spheres
and a zero potential in the interstitial region. The
warped-muffin-tin approximation still assumes a
spherically averaged potential inside the spheres,
but uses the actual potential in the interstitial re-
gion. Since the APW basis set in the interstitial

Q.OI5i

Q.QIQ—

region consists of just plane waves, the matrix
elements are easily expressed as

M. = e '"&'V (r)e'"y'd't'

or

M(, = V(ki, ),

p(R)= pC, (R)Z, (R), (AS)

where R is the sphere radius and the Z, (R) are
related to the usual spherical harmonics by

~00 00& 20 20&

Z„=(1/v2)(1;,-&, ,), Z„=&„,
Z„=(I/&2)(&„-V, ,),
Z,.= (I/&2)(&..+ V. ,)

(A4}

We have tabulated these C, (R}'s in Table III for
both muffin-tin and warped-muffin-tin potentials.
As seen in the table, C„(R)is insensitive to this

where

V „(r)=o,
and k, &

=k& —k, is a reciprocal-lattice vector.
The construction of VvMT(r) and its use in the

AP%' method are described in Ref. 13. For fcc
and bcc metals the changes in eigenvalues induced
by including the warped-muffin-tin corrections are
on the order of 0.005-0.01 Hy. For gadolinium
the energy changes were also in this range and
were not large enough to significantly change the
occupation of the bands for the mesh used.

To determine to some extent the changes in the
wave functions we have looked at changes in the
total charge densities for both sets of bands. The
charge density can be expanded as in Eq. (10) only
at the sphere radius:

Q 005—
cp

cu

0.000~—~~:
TABLE IV. Effect of warped-muffin-tin potential on

C(K~) [Eq. (A5)]; the C(K~) have been multiplied by the
volume of the unit cell. The units are 440el/a. u. {Ref.3).
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FIG. 17. The l =3 nonspherical charge distributions
obtained in the APW calculation using the muffin-tin
potential.

000
100
110
200
101
002
102
114
211

2.678
0.316
0.119

—0.012
1.774
0.322

—0.314
—0.124

0.191

2.539
0.037
0.162

-0.017
1.904
0.210

-0.498
-0.099

0.188

1.816
0.909
0.085

—0.039
1.068
0.312

-0.052
0.051
0.071

1.956
0.486
0.115

-0.058
1.415
0.316

-0.2 75
0.041
0.100
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correction. The spherically averaged char ge
density calculated with the warped-muffin-tin
wave functions was essentially identical to the
muffin-tin density. The total charge inside the
spheres was increased by less than 1%. This kind
of insensitivity is not observed for the other coef-
ficients. In particular the C»(R) gives dramatic
evidence that the nonspherical components of the
charge density can be completely wrong, using
the muffin-tin approximation. In Fig. 17 we show
C»(r)r' for the muffin-tin potential. Comparison
with the warped-muffin-tin results of Fig. 6 shows
the dramatic shift in charge, the spin-down coef-
ficient showing a reversal in sign. %hat is happen-
ing is that the warped-muffin-tin potential is rather
like a landscape with hills away from the atomic
sites and valleys between them. The angular de-
pendence of the wave functions are quite sensitive
to these variations which cause the highest density
to settle into the valleys. The muffin-tin potential
did not yield this standard text book picture of
higher density between the nearest atoms.

To see these effects in the interstitial region,

we consider changes induced in the C(K, ) expan-
sion coefficients. These are defined in the inter-
stitial region by

p(r) = QC(K, )SK (r), (A5)

where S-„(r)is a symmetrized plane wave. The
Ks

C(K,) for the two potentials are given in Table IV.
Again the C(0) is not greatly affected, but those
coefficients with strong I = 3 dependence [e.g. , K
= (I, 0, 0)] are changed considerably.

Corrections to the potential inside the spheres
can be expected to enhance these changes in non-
spherical densities, although based on the eigen-
value shifts we would expect these corrections to
be less important. We conclude that although
energy eigenvalues and spherical charge densities
are adequately handled for gadolinium with the
muffin-tin approximation, the nonspherical parts
of the density require a potential which includes
correction in the interstitial region, and may
require correction inside the spheres as well.
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