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The effect of the local atomic environment on the formation of magnetic moments is studied by a
model calculation using an extension of the coherent-potential approximation which includes
local-atomic-environment effects. The calculation shows that, depending on the d -electron number, the
local atomic environment may both enhance as well as decrease the magnetic moment of an atom.

Recently, many experiments have studied the
effect of the local atomic environment on the for-
mation of local magnetic moments.=® In many
cases the interesting dependence of the magnetic
moments on the surrounding atomic environment
occurs in concentrated alloys. It is observed that
the local atomic environment may enhance as well
as decrease the local magnetic moment.* For ex-
ample, in the case of Ni in CuNi alloys the Ni
atoms help each other to obtain a magnetic moment
while in the case of V in disordered Au,V the V
atoms help each other to quench their local mag-
netic moment they possess in ordered Au,V.

There exist only a few theoretical studies®® of
the dependence of the local magnetic moments on
the interaction among the magnetically active im-
purities. However, these theories are limited
to dilute alloys. Since local environment effects
frequently appear most dramatically in concen-
trated alloys, alloy theory valid for concentrated
alloys needs to be used.® Recently, Brouers et
al.'® and Aoi'! have extended the single-site co-
herent-potential approximation (CPA) in order to
include local-atomic-environment effects.

In the following we shall study the effect of the
atomic environment on the formation of local mag-
netic moments by further extending the theory by
Aoci'! to include the effect of Coulonib interactions
between d electrons with different spins. Thus,
the present work presents an extension to con-
centrated alloys of the papers by Alexander and
Anderson® and others % on the impurity-impurity
coupling. We use for the d electrons the Hamil-
tonian
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where C} and C; are the usual creation and anihila
tion operators for d electrons with spin ¢ at the

site 7, and ky; denotes the hopping matrix element
between the atomic sites ¢ and j. We assume that
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h;; is independent of the type of atoms at the sites
zand j. The d-electron energy e? takes either of
the values €4 or €% depending on whether an atom
of type A or B occupies the site i. U, is the Cou-
lomb interaction potential between electrons with
different spins at site ;. The local Green’s func-
tion for a d electron at site 7 with spin ¢ is then
given by
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where G ;; is the CPA Green’s function, ® and the
T matrix has the form
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Here, the spin-dependent ¢-matrix ¢,, is given by
tju:(ijo-z)/[l_(Ejo_z)cjjo]’ (4)

where Z denotes the CPA self-energy. Within
Hartree-Fock approximation one has

€,,=€‘,’+U, (n_g) (5)

and (for low temperatures)
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Clearly, the number of d electrons with spin 7 at
site 4, (n;,), and therefore €;, depend on the local
atomic environment as well as on the species of
atom at site j. The local magnetic moment at site
i is given by

my=kp((ng)=(ny)) . (7)

We determine now (n;,). For this T,, is cal-
culated by breaking up all the scattering paths at
various atomic sites into elementary paths.'! In
the following we shall specify the local atomic en-
vironment around the site 7 by giving the number
n, and ng of A and B atoms in the first atomic shell
around ¢ and by assuming that sites beyond the first
shell are treated by the CPA medium. Then,
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taking into account only the most important scat-
tering processes involving the first shell, which
are shown in Fig. 1, we obtain
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where Gy =G ;; with 7 and j referring to nearest-
neighbor sites and where

Vo=Nalaetnplp,. (9)

Furthermore, in the following we assume that
atoms in the first shell are surrounded by the CPA
medium, and therefore drop the spin dependence

o of y. Then given the quantity § = (€, —€g)/W,

one can determine ¢, for sites j in the first shell
by carrying out the conventional CPA calculation.
Here, W is the half-bandwidth and

€,=€%+U,((n.), L=A,B (10)

with ({(n)) denoting the expectation value of the
electronic occupation number of the atom of type
L which is surrounded by the CPA medium.

Since the numerical calculation of G, for a realis-
tic model density of states is complicated, we shall
calculate G, for the case of the simple cubic lat-
tice and the corresponding tight-binding-model
density of states.

Shown in Fig. 2 is the local density of states of
a nonmagnetic atom for various configurations and
for §=0.45 and C,=0.2. This calculation is not
fully self-consistent since €,, is approximated by
€, as given by Eq. (10).'? It should be pointed out
that for the atomic configuration A(0A) there is
only one peak in the local density of states, while
for A(64), A(5A), and A(4A) the peak splits into
two. Here, A(6A) denotes an atomic configuration
where the atom A is surrounded by six nearest-
neighbor A atoms. The above splitting in p(€) is
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FIG. 1. Electronic scattering processes contributing

to the local density of states and involving the local atomic
environment. The central site under consideration is ¢
and j, k, I, ... are nearest-neighbor sites of 7. The
open circles represent the ¢ matrices at indicated sites,
and the solid lines with arrows are the CPA Green’s func-
tion.
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FIG. 2. Local density of states for sites occupied by
nonmagnetic A atoms with n, A atoms in the nearest-
neighbor sites.

the covalent splitting which is caused by hybridiza-
tion of the energy level of the A atom at the central
site with those of the nearest neighbors. In order
to demonstrate this more clearly, let us consider
the case where all of the nearest-neighbor sites
are occupied by A atoms. The energy levels, in
the presence of hybridization # between the central
atom and each of the nearest-neighbor atoms, can
be obtained by diagonalizing the (N +1) X(N +1) ma-
trix:

€4 h h h
h €, 0 0
h 0 € 0
R 0 0 ... €4

The resulting eigenvalues are €, [(N - 1) degener-
ate] and €, +N'/2h. Furthermore one can show
that the eigenstates which correspond to the (N —1)
degenerate levels do not refer to the Wannier state
at the central site. Thus the energy spectrum at
the central site consists of two & functions at €,
+NY2y. Inthe present case these two levels mix
with the CPA medium, giving rise to two broadened
levels in the local density of states. As a conse-
quence of this splitting the local density of states
for A(ny A) at € /W~0.5 increases with decreasing
values of n,. Therefore, if the Fermi energy €
is at ~0.5W, the A atom acquires more easily a
local magnetic moment when it does not have A
atoms on its nearest-neighbor sites. On the other
hand if €;/W~0.8, A atoms which have more A
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atoms in the nearest-neighbor sites are more like-
ly to be magnetic. The former case might be the
situation for Au,V, while the latter case might be
the situation for CuNi alloys. There are more
holes in the electron band in Augy gV, , than in

Cug gNig,,. Thus, € is lower for Au,7 than for
CuNi relative to their band edges.

The result of a self-consistent calculation for
Uy=0.65W, Ug=0, and €z=0.4W is shown in Fig.
3. This simulates presumably the situation for
Ay V. Plotted in Fig. 3 is the density of states for
both spin directions for the atomic configuration
A(0A). For these values no magnetic moments
appear for other atomic configurations than A(0A).

In Table I we summarize the results for the de-
pendence of the magnetic moments on the atomic
environments for Uz =0 and various values of U,
and €;/W. The cases with €,/W=0.75 should
simulate the situation in Cuy gNiy,,. For U=2.8W,
local magnetic moments appear for configurations
A(BA) and A(54), and no moments appear for other
configurations. This value of U, is larger than the
accepted value for nickel, but for smaller values
of U, we do not obtain moments. This discrepancy
is due to the fact that we have used an oversim-
plified model density of states rather than a realis-
tic band corresponding to Cu or Ni. It is well
known that in 3d bands, there is a sharp peak near
the upper band edge. Furthermore, the coordina-
tion number for the face-centered-cubic lattice is
12 as compared to 6 for the simple cubic lattice.
Both of these facts help real systems to form for
smaller values of U, larger local magnetic mo-
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FIG. 3. Self-consistent local density of states for up
and down spin directions for the atomic configuration
A(A). The dashed curve refers to the nonmagnetic A
atoms.
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TABLE I. Local magnetic moments m 4 in unit of the
Bohr magneton for an atom A which is surrounded by n,
nearest-neighbor A atoms. The Fermi level is assumed
to be 0.4W and 0.75W. The former is to simulate
Auy 3V, and the latter, Cug gNig ;. my is calculated for
6=0.45, C,=0.2, and Ug=0 and for various values of
U,s. Note that the appearance of local magnetic moments
is in accordance with the criteria [— U, (8{n;,)/9€;,) 1>1.

€p/W=0.4 €x/W=0.75
na|l Uy/W=0.6 0.65 0.70 2.7 2.8
0 0.14 0.35 0.45 0 0
1 0 0 0.21 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0.08
6 0 0 0 0.09 0.13

ments for particular atomic configurations. Never-
theless, our model calculations show clearly es-
sential aspects of the formation of the local mo-
ment.

The present theory for the local-atomic-environ-
ment effects is similar to previous theories. 1o
However, in contrast to Brouers, Cyrot, and
Cyrot- Lackman®® we find no peak in the local densi-
ty of states for the A(64) configuration at the ener-
gy where A(0A) has a peak. As already discussed
above we believe that because of the covalent split-
ting there should be a dip, rather than a peak, at
this energy.

Note that our theory'! can include local-environ-
ment effects due to scattering processes of the
type t;G;;t,G;nt;, wherel and m are nearest
neighbors of . In the above numerical calcula-
tion, however, we have not included such terms.
This is because we have used a simple cubic lat-
tice and for this lattice structure the above scat-
tering processes include at least one Green’s func-
tion involving next-nearest-neighbor hopping.

Since we are assuming a tight-binding band and are
specifying only the nearest-neighbor atoms while
neglecting entirely the next-nearest-neighbor hop-
ping, such terms need not be considered here.

In conclusion, we find that the local atomic
environment plays an important role for the ap-
pearance of the local magnetic moment when the
average medium is almost magnetic, and that a
certain local environment can enhance as well as
decrease the local moment depending on the posi-
tion of the Fermi level.
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YFor a fully self-consistent calculation it is necessary
to specify €p, because otherwise (n; ;) cannot be deter-
mined. However, the fully self-consistent density of
state is very similar to those shown in Fig. 2 for the
same values of 6 and Cy.



