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Theory for the effects of the local atomic environment on the formation of magnetic
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The effect of the local atomic environment on the formation of magnetic moments is studied by a
model calculation using an extension of the coherent-potential approximation which includes
local-atomic-environment effects. The calculation shows that, depending on the d-electron number, the
local atomic environment may both enhance as well as decrease the magnetic moment of an atom.

Recently, many experiments have studied the
effect of the local atomic environment on the for-
mation of local magnetic moments. In many
cases the interesting dependence of the magnetic
moments on the surrounding atomic environment
occurs in concentrated alloys. It is observed that
the local atomic environment may enhance as well
as decrease the local magnetic moment. For ex-
ample, in the case of Ni in CuNi alloys the ¹i
atoms help each other to obtain a magnetic moment
while in the case of V in disordered Au&V the V
atoms help each other to quench their local mag-
netic moment they possess in ordered Au4V.

There exist only a few theoretical studies' of
the dependence of the local magnetic moments on
the interaction among the magnetically active im-
purities. However, these theories are limited
to dilute alloys. Since local environment effects
frequently appear most dramatically in concen-
trated alloys, alloy theory valid for concentrated
alloys needs to be used. Recently, Brouers et
al. ' and Aoi" have extended the single-site co-
herent-potential approximation (CPA) in order to
include local-atomic-environment effects.

In the following we shall study the effect of the
atomic environment on the formation of local mag-
netic moments by further extending the theory by
Aoi to include the effect of Coulomb interactions
between d electrons with different spins. Thus,
the present work presents an extension to con-
centrated alloys of the papers by Alexander and
Anderson and others ™on the impurity-impurity
coupling. We use for the d electrons the Hamil-
tonian
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where C~& and C; are the usual creation and anihila
tion operators for d electrons with spin 0 at the
site i, and h&& denotes the hopping matrix element
between the atomic sites i and j. We assume that

h, &
is independent of the type of atoms at the sites

i and j. The d-electron energy E; takes either of
the values E& or & ~ depending on whether an atom
of type A. or 8 occupies the site i. U, is the Cou-
lomb interaction potential between electrons with
different spins at site i. The local Green's func-
tion for a d electron at site i with spin cr is then
given by
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where Q,&
is the CPA Green's function, and the

T matrix has the form
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Here, the spin-dependent t-matrix t&, is given by

ti, = (ei, —Z)/[1 —{&i,—Z) G i;,],
where Z denotes the CPA self-energy. Within
Hartree- Fock approximation one has

l i~
= 6 i + Ui (n q)

and (for low temperatures)

Clearly, the number of d electrons with spin i at
site i, (n;, ), and therefore e„depend on the local
atomic environment as well as on the species of
atom at site j. The local magnetic moment at site
i is given by

m, = xiii((n, , ) —(n, , )) .

We determine now (n;, ) For thi. s T» is cal-
culated by breaking up all the scattering paths at
various atomic sites into elementary paths. In
the following we shall specify the local atomic en-
vironment around the site i by giving the number

n& and n~ of A and B atoms in the first atomic shell
around i and by assuming that sites beyond the first
shell are treated by the CPA medium. Then,
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taking into account only the most important scat-
tering processes involving the first shell, which
are shown in Fig. 1, we obtain

G;;t; +2G;;Gjy, t;,+G y

t f'. fy3'(

where G& =—G;,. with i and j referring to nearest. —

neighbor sites and ~here

=&a~~ +&at3

Furthermore, in the following we assume that
atoms in the first shell are surrounded by the CPA
medium, and therefore drop the spin dependence
g of y. Then given the quantity 5 = (&z —& s)jW,
one can determine t& for sites j in the first shell
by carrying out the conventional CPA calculation.
Here, 8' is the half-bandwidth and
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with ((nz)) denoting the expectation value of the
electronic occupation number of the atom of type
L which is surrounded by the CPA medium.

Since the numerical calculation of Gj for a realis-
tic model density of states is complicated, we shall
calculate G& for the case of the simple cubic lat-
tice and the corresponding tight-binding-model
density of states.

Shown in Fig. 2 is the local density of states of

a nonmagnetic atom for various configurations and

for &=0. 45 and C„=0.2. This calculation is not

fully self-consistent since &„, is approximated by
e„as given by Eq. (10).' It should be pointed out

that for the atomic configuration A(OA) there is
only one peak in the local density of states, while
for A(6A), A(5A), and A(4A) the peak splits into
two. Here, A(6A) denotes an atomic configuration
where the atom A is surrounded by six nearest-
neighbor A atoms. The above splitting in p(t)is'

FIG. 2. Local density of states for sites occupied by
nonmagnetic A atoms with nz A atoms in the nearest-
neighbor sites.

h h ~ ~ y h

h 0

the covalent splitting which is caused by hybridiza-
tion of the energy level of the A atom at the central
site with those of the nearest neighbors. In order
to demonstrate this more clearly, let us consider
the case where all of the nearest-neighbor sites
are occupied by A atoms. The energy levels, in
the presence of hybridization h between the central
atom and each of the nearest-neighbor atoms, can
be obtained by diagonalizing the (N+1) x(N+ I) ma-
trix:

(i o ~ ~ e

+ I ~ ~

o= 6

FIG. l. Electronic scattering processes contributing
to the local density of states and involving the local atomic
environment. The central site under consideration is i
and j, k, I, ... are nearest-neighbor sites of i. The
open circles represent the t matrices at indicated sites,
and the solid lines with arrows are the CPA Green'sfunc-
tion.

The resulting eigenvalues are e„[(N—1) degener-
ate] and e„+N h. Furthermore one can show
that the eigenstates which correspond to the (N —1)
degenerate levels do not refer to the Wannier state
at the central site. Thus the energy spectrum at
the central site consists of two 5 functions at &&

V. In the present case these two levels mix
with the CPA medium, giving rise to two broadened
levels in the local density of states. As a conse-
quence of this splitting the local density of states
for A(n„A) at &lW 0. 5 increases with decreasing
values of n„. Therefore, if the Fermi energy &~
is at -0. 5$', the A atom acquires more easily a
local magnetic moment when it. does not have A
atoms on its nearest-neighbor sites. On the other
hand if ez/W-0. 8, A atoms which have more A



10

atoms i e near
y tobe mag

the situat
4 while the jatt

g be the

ua ion for Cu
er cas

holes i
uNi alloys. Th

might be

u. N

ctron ba„d.
re more

in the ele
ere a

08 10 Thus
in Au 8+0 p than in

CuN»clat
~ F is lower fo A

in

h

th r band d
u4& than for

e result of
e ges

U~-0 65~ U

consistent c0 a

3 Th.
' & ~ andy 0

tion for

imu ate
is sh

u4V. pl tt
p esumably th

.
n Fig

o ted in Fig
e s'

bo th sp» d

' » the dens't

A(pg)
tione for th

.
7 o gtateg fo

For th
e atomic

a
ese values

+'gu»ti

PPear for othe
s no magnet'

ion

e I we sum
guratjons th

pendencnce of the m n
e results formarize th

an g(pg).

environm
agnetic mom t

or the de-

~ents for U
ments on the

and e /~
a =0 and va .

e atomic

F . The cas .
various valu

»mutate & .
agee uith q /&

"eg of f/

local
' uation in C„. ' 75»ould

agnetlc
0 8 Nip

A(6g)
™omentga

' 0.2 For p

and A(5g)
PPear for co~.

configu»t'
d no moment

igurations

ions This
n s appear f

of U

value f
rg„is la

ut for smaller

p f d deldens
n cor res

es rather t

the
n hat in 3db nd

u or Ni.

- ubic latti

ft. f t
smallerer values of U

systems to f
„larger 1

orm for
ocal magn t'e ic mo-

TABLE I. Loc

1SV

Boh
gLocal ma ne

'

n oran
sm in

h A he Fermi level is

08 Op. mais cat

ppearance of lo
or ance with the

' — (g

e ic moments
e ' — „(S(n„)/a~,g ) & l.

~F/R =0.4

u„/v= 0.6

cF/8'= 0.75

0.65 0.70

0
1
2
3
4
5
6

2.7

0.14
0
0
0
0
0
0

2. 8

0.35
0
0
0
0
0
0

0.45
0.21

0
0
0
0
0

0
0
0
0
0
0

0.09

0
0
0
0
0

0.08
0.13

ues ments foror particular
the less ca

igu rations.

sential a
calculations

Never-

ment.

s ow cle
the format

The

ion of t
arly es-

he local mo-

he present theor f a -atomic-

OBo
c man wef

yrot and

t f th A 6A(6A) conf igur

above we b

ation at th e ener-
ready d s

ting there sh
b of th

t
s ould be a di

e covalent

his energy.

b split-

at our theor "
ff t d

type t 6

e ocal-
s cat ter ing

-environ-

fmq, t, G t
processes

ors of $.
an m are n

of the
nearest

ecause we
cu edsucht

e have used a
terms.

n or this lattic
a simple cubic

rocesses inc
re he abovee scat-

'
vo ving next-ne

as one Green'

Since we

-nearest-nei hb
en s func-

g o opp

th
w ile

uch terms n

arest-nei hbo
need not be

onclusion, we fi
considered here

en plays an im
ocal atom'

agnetic mom t
p-

t the

ocal environm
ne ic, and that

oca ent can enha as

tion of
e local

as well asnce as

%e

~

p go
i evel.

e posi-

e wish to thank P o"

is cusslons.
ssor J. Garlandn for useful

DOWN

05"

0
Energy

E f/W

FIG. 3. Self-co
talons for the t

e dashed cur
e a omic corxf

atoms.

xgurah. on
o the nonmnmagnetic A

THEO R~ HE EFFE

est-nei

TS OF

ighbor sites

THE LOCAL ATO

~ The f
are more 1.

OM(C



K. AQI, H. DEUI ING, AND K. H. BENNEMANN 10

*Research supported partly by DFG under Grant No. SFB
161.

'C. G. Robbins, H. Claus, and P. Beck, Phys. Rev.
Lett. 22, 1307 (1969); H. Claus, A. K. Sinha, and P.
Beck, Phys. Lett. A 26, 38 (1967).

T. J. Hicks, B. Rainford, J. S. Kouvel, G. G. Low,
and J. B. Comly, Phys. Rev. Lett. 22, 531 (1969).

~L. Creveling, H. Luo, and G. S. Knapp, Phys. Rev.
Lett. 18, 851 (1967).

P. Beck, iMetall. Trans. 2, 2015 (1971}.
S. Alexander and P. W. Anderson, Phys. Rev. 133,
1595 (1964).

S. Liu, Phys. Rev. 163, 472 {1967).
~T. Moriya, Progr. Theoret. Phys. 33, 157 (1965).

D. J. Kim, Phys. Rev. B 1, 3725 (1970); K. H. Benne-
mann and J. W. Garland, J. Phys. 32, C1-750 (1971).
P. Soven, Phys. Rev. 178, 1136 (1969).

' F. Brouers, M. Cyrot, and F. Cyrot-Lackman, Phys.
Rev. B 7, 4370 (1973); F. Brouers, F. Ducastelle, F.
Gautier, and J. Van Der Rest, J. Phys. F 3, 2120
(1973).
K. Aoi, Solid State Commun. (to be published).
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to specify &z, because otherwise (n;~) cannot be deter-
mined. However, the fully self-consistent density of
state is very similar to those shown in Fig. 2 for the
same values of g and Cz.


