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Effect of the thermal relaxation of a lattice mode on the Mossbauer radiation*
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The spectral distribution of the Mossbauer radiation emitted from a radiating nucleus when it is in

the excited vibrational level of a lattice normal mode has been considered theoretically. In obtaining the

results, the relevant correlation functions, which include the thermal relaxation of phonons, are
calculated in the harmonic approximation. Results are presented for the line shapes of the zero-, one-,

and two-phonon-assisted Mossbauer transitions. The "relaxation splitting" is absent in our results and

the narrowing of the zero-phonon Mossbauer line never exceeds -8% of the natural linewidth.

INTRODUCTION

The line shape of the Mossbauer resonance is an
incompletely solved problem; the nature of solid-
state interactions causing the perturbations of the
Mossbauer radiation a,re not exactly known. The
recent observations of phonon-assisted Mossbauer
transitions' have created a new interest in the study
of the line shapes perturbed either by an rf pumped
normal mode or by a localized mode; the continuum
mode of the lattice is considered as the normal
mode and the localized vibration around the impu-
rity (Mossbauer) nucleus is the localized mode. The
influence of these modes and their thermal re-
laxation on the spectral distribution of the Moss-
bauer radiation has been extensively investigated
in recent years. But the theories developed so far
have some inconsistencies which are summarized
as follows in the next paragraph.

In the theory of Kaufman and Lipkin the high-
amplitude localized mode associated with the radi-
ating nucleus would enhance the intensity of the
Mossbauer line in comparison with the usual Debye-
%aller factor. This enhancement is known in the
literature as the Bessel-function enhancement.
Lax and %aller~ have extended this theory to in-
clude the phonon-damping effect on the Mossbauer
radiation. However, the consequence of the Bessel-
function enhancement leads to the absurd conclusion
that the highly excited lattice mode should enhance
the recoilless factor. Therefore, the phonon-
damping effects as calculated by Lax and Wallers
will be of little value for the comparison of theo-
retical line shapes with experimental results.

In the theory of Dash and Nussbaum7 the radiat-
ing nucleus is in a highly excited vibrational state
of the long-lived localized mode and the thermal-
averaged mean-square vibrational amplitude is
assumed to decay to its equilibrium value with a
characteristic relaxation rate. The physical de-
scription of the phenomenon which involved calcu-
lations of the photon amplitude by using the posi-
tive square root of the time-dependent recoilless

fraction has also been the subject of criticism.
Further considerations of this theory, as shown in the
presentwork, give "negative intensities" in the Mbss-
bauer spectra which are unphysical in our opinion.

In an attempt to understand the 1attice-relaxation
phenomenon, Harris has given a quantum-mechan-
ical model which includes both nuclear radiation
and the lattice-relaxation processes. This model
predicts, besides the changes in line shapes, the
existence of an apparent "relaxation splitting" of
the Mossbauer line for a certain range of relaxa-
tion rates. The serious drawback with this model
is the conspicuous absence of the statistical aver-
ages for the phonons owing to thermal processes.
It is a fact that the Mossbauer spectrum represents
an ensemble average over many nuclei and in the
calculation of the Mossbauer cross section, a
thermal average over all the lattice modes is
called for. Therefore, one wonders in a statistical
ensemble, while calculating the Mossbauer line
shapes, whether the phase coherence between the
nuclear radiative transition and the lattice transi-
tion amplitudes is maintained. The splitting ob-
tained with this model is the consequence of main-
taining the phase coherence between the nucleus
and the 1attice transition amplitudes.

Abragam and Mishory and Bolef have derived
expressions for the relative intensities of side
bands produced in the Mossbauer resonance owing
to an excited lattice mode. This theory is adequate
so far as the rf pumped phonons are concerned but
certainly is not so for localized phonons: even the
very-low-excited vibrational amplitude of a local-
ized mode can cause considerable perturbation
on the Mossbauer radiation. Therefore in the fol-
lowing we have presented model-independent cal-
culations which give an adequate description of the
line shapes even in presence of thermally relaxing
phonons.

THEORY

In our treatment the excited vibrational state
may be a localized mode or a normal mode of the
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FIG. 1. Zero-phonon Mossbauer line shapes for vari-
ous values of the phonon relaxation rate in conformity
vrith the Ref. 6. Parameter Z is taken to be 3.0.
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lattice. The excited Mossbauer state of the nu-
cleus is generally created by the radioactive decay
of a parent nucleus which may be an impurity in the
lattice. In this decay process a large amount of
recoil kinetic energy is imparted to the nucleus,
leaving the localized mode in the highly excited
vibrational state. A particular continuum normal
mode can also be excited by applying external per-
turbation to the sample. The experimental tech-
nique to do this could be similar to that of Al-
banese ef, a/. ' Thus the highly excited vibrational
state will have the tendency to relax exponentially

Z 3.0
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FIG. 3. Zero-phonon Mossbauer line shapes as taken
directly from Ref. 8 (parameter n = —1). Parameters
a and n are related to the phonon relaxation rate p and Z,
respectively. The parameter X is given in units of I'.

to its thermal equilibrium value owing to the an-
harmonic coupling to the lattice. Thus our aim is
to investigate the effect of phonons and their ther-
mal relaxation on the frequency distribution of the
Mossbauer radiation.

Effect of an undamped lattice mode on the Mossbauer spectrum

In this section we calculate the effect of an ex-
cited lattice vibrational mode analogous with the
calculation of the self-correlation function for the
scattering of slow neutrons by the harmonic mode
in a periodic structure. " A representative mode
designated as q' mode, which is highly excited by
external means and for which the average number
of phonons is greater than the normally allowed
excitation numbers, has a special significance in
these calculations. The expression for the recoil-
less-emission cross section per nucleus for a y
ray can be obtained from the dispersion theory.
The result is

(~) ) o p f e-j)(E-Eo)-r1) I)'2—
y 0'o

6 8

(~~) in units of f

FIG. 2. Zero-phonon Mossbauer line shapes for vari-
ous values of the phonon relaxation rate as expected on
the basis of the theory given in Ref. 7 (Z= 3. 0).

)( (e-(k U()) e(k U(0))
T

where (. . . )r denotes the lattice thermal average,
U is the displacement of the radiating nucleus from
its mean position, p=k with 5=1, the linear mo-
mentum of the emitted photon, and I the width of
the decaying nuclear state, Expressing the U in terms
of normal modes it can be shown that for the har-
monic solid'
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(e "'""'e'"'""'),=san — Pn [(2», ~ i)(i —cosa, tl ~ isis&a t])
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p 2~~ +q 4f + 1 1 cos+4f t + i sin&, .t (2)

where the contribution of the q'th mode is separated
out. Following the argument given by Kittel' it can
be shown that the first exponential on the right-hand
side of Eq. (2) is the usual Debye-Wailer factor
f= e with the assumption that the contribution of
the q th mode to the f factor is negligible when the
mode perturbation is absent. The second exponen-
tial of Eq. (2) may be written in terms of Bessel
functions' and the final result is

(e "' &'&e"'"&'&) =e' e (Q t (Z)e&" ')T-
n*-~

elms ig

where

Z = k /2MN, Y= k /2M¹t)~.2n~~ + 1
(dpi

I„(Z) is the modified Bessel function of order n and

Z (Y) is the Bessel function of order m. Combin-

ing Eqs. (3) and (1}one obtains

a(E) =o, e '~e ~QQI„(Z) J„(Y)
ff~0 mK
1 p24X- j. ~

(E —E,~nor, , ~m&o, ) +4~

From Eq. (4) one finds that the effect of the ex-
cited mode is to give rise to an infinite set of pho-
non-assisted recoilless transitions. These results
agree with those of the earlier authors3 4 provided
Y-O, a situation applicable for the rf pumped pho-
nons; in the usual experimental configurations the
rf pumping of the phonons is done only for the con-
tinuum modes in which case the number N of the
participating atoms is of the order of 10 . How-

ever for the localized mode the number N of nuclei
participating in the mode is N-1; therefore, the
parameter Y can be of the order of unity and thus
the dependence of a localized mode on the Bessel
function Z (Y) becomes significant.

It may be interesting to compare these calcula-
tions with those of Kaufman and Lipkin wh~ found
that the presence of a localized mode causes t~e
absorption cross section c,(E) to be

o.(E) = o, e~~gf„(Z')

j. pP

(E —Eo +n(de } + ~ F

with

[n, (n, +1}]'~'
(2n, , +1)

Equation (5) resembles Eq. (4) but with some fac-
tors missing. The interpretation of Eq. (5) is as
follows, Since the Debye-%aller factor gives the
probability of those processes in which the initial
and the final states of the lattice are identical, the
product of the Bessel function for n = 0 represents
the contribution to the cross section from processes
in which the local-mode phonons are excited and
deexcited in all possible ways such that the net en-
ergy change of the crystal is zero. This in turn
will enhance the intensity of the zero-phonon Moss-
bauer line. However the presence of phonons also
increases the probability of those recoilless tran-
sitions in which net n phonons are either emitted or
absorbed and thus decreases the intensity of the
zero-phonon recoilless transition. Equation (4)
which incorporates these effects predicts a net de-
crease in the intensity of the zero-phonon Moss-
bauer radiation which is contradictory to the re-
sults obtained using Eq. (5). And thus the Bessel-
function enhancement does not really exist.

The experiments of Perlow'~ on the rf perturba-
tion of the Mossbauer hyperfine spectrum deserves
a special mention. The rf perturbation on the spec-
trum was thought to be due to rapid 180' wall mo-
tion. However it was suggested by us" and by
others' that these results could be understood in
terms of the magnetostriction model proposed by
Pfeiffer et al. Our explanation seeks to separate
the effects of domain-mall motion and magneto-
striction without recourse to additional experi-
ments. ' Since the number of induced phonons due
to magnetostriction coupling is proportional to the
rf energy density the rms Z parameter is propor-
tional to the square of the perturbing rf field. De-
viation from this relationship must reflect the ef-
fect of domain-mall motion, if present.

Effect of the thermal relaxation of phonons on the Mossbauer
radiation

In this section we calculate the Mossbauer line
shapes while the normal mode is relaxing from its
excited vibrational state to the lattice-thermal-
equillibrium state. Several authors have attempted
this problem to predict the effect of the relaxing
phonons on the Mossbauer line shapes. But, as we
will see in the following, none of these theories are
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decreasing relaxation rate. Further, when y = 0
Eq. (6) reduces to Eq. (5) which predicts that by
the increase of Z' (which is equivalent to an in-
crease in the number of the phonons in the mode)
the intensity of the zero-phonon Mossbauer line
should increase. This fact is in contradiction with
the experimental observations which may be in-
ferred from the temperature dependence of the in-
tensity of the Mossbauer line.

(ii) A semiclassical treatment' of this problem
for the line shape of the Mossbauer transition is
given by IE(&u) l where

fli
X
L4

a

4-

2

Z= 2.0

E((o) = [(f) ]' ' 1 exp(- Z e " ' )

xexp[-2f(E- Z, }——,
' r

~
f i]df .

The line shapes calculated with the help of the
above equation are shown in the Fig. 2. The width
of the Mossbauer line for all nonzero values of Z
and y, becomes less than the natural linewidth and
the Mossbauer intensity can also become negative I

For a given value of y, the linewidth decreases
with increasing value of Z and for very large values
of Z it may even reduce to zero. The narrowing of
the line is also accompanied by a substantial loss
in over-all intensity of the Mossbauer radiation.

(iii) A quantum-mechanical model for the Moss-
bauer line shapes in the presence of lattice relax-
ation has been attempted by Harris. Figure 3
gives the zero-phonon line shapes obtained on this
model as given by Harris. One can see that for
certain values of phonon-relaxation rate y (which
is related to a} and Z (which is related to (2) the
single Mossbauer line is split into two lines. This
splitting may be called "relaxation splitting"; it
has no relation to the hyperfine splitting.

It is now clear that the results obtained by differ-
ent authors are in conflict with each other. There-
fore, we would like to give our own theory for the
phonon- relaxation broadening of the Mossbauer

l

-2

(-40pQ+)in units of

radiation. '6 To determine the Mossbauer line
shapes in the presence of lattice relaxation we cal-
culate the correlation function (e "'""'e'"'"(2])r
by taking the average value of the creation and an-
nihilation operators for q th mode which is decay-
ing with time according to the prescription given
as~

((2') (f)) (oeq]'0 e )'lt ]/2 (n]' (0))

(n (f)} e ]kl+ ~ t e )'lt]/2
(& (0)}

(6)

As usual we calculate the correlation function by
expanding U(t} and U(0) in terms of normal modes.
Since the expectation value of terms like a~. a,. or
a,.a,. is zero we may write

FIG. 8. Line shapes of two-phonon assisted Moss-
bauer transitions for various values of the phonon relaxa-
tion rate (parameters Z = 2. 0 and F= 0. 0).

1
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(O)a ()) .'.(0),.(O).- [,,..(0) .'. (0). ..i)l ~ ].(~)]),) .
Now if the phonon-relaxation time is sufficiently large to satisfy the following conditions"

@y«gT, y«(d, ,

then we can write

(n,'(&)(2 (0)),=e " ' "e'""(s'(o)s, (0))»
(a,', (t) a, , (t))r =e " "(a,', (0) (2,, (0)}r

and the correlation function becomes

(e '""'e" "'2'& = e 2 exp[- —,'Z(1+e ""])+Ze "]" 2 cos(o .f] exp[1'e " " sin(d .f] .

(10)
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Therefore, combining Egs. (11) and (1) the expression for the emission cross section becomes

(z)=-,',re'"e*~'gg f xeg[-hatt& —&, +
ff=0 m=0

xexp(-'Ze " ' )I (Ze " ' +)J (Ye ' ' ')df (12)

For (pg +I ~

= 0, j, , 2, . . . Eq. (12) gives the intensity
distribution of the 0-, 1-, 2-, etc. , phonon-assisted
Mossbauer transitions.

Equation (12) is a general expression applicable
for the relaxation of both the rf pumped continuum-
mode phonons for which F-10 =0 and the localized
mode with F-1. For several values of In +m I, Z,
and y, Eq. (12) has been evaluated numerically us-
ing an IBM-1130 computer. The results are shown
in Figs. 4-9. In all the cases the natural linewidth
I' was taken to be V. 14x10 sec '.

Figure 4 gives the line shape of the zero-phonon
Mossbauer line for different values of the phonon-
relaxation rate y. It may be noted that as a result
of phonon relaxation the line shape no longer re-
mains a I.orentzian and the intensity of line never
becomes negative. The line splitting also does not
show up in the present calculations. This conjec-
ture is verified for the line-shape calculation using
several values of the Z and F parameters.

Figure 5 shows the variation of the zero-phonon
Mossbauer linewidth with the phonon-relaxation
rate. One can see that in most of the cases pre-
sented within the framwork of our theory the line
gets broadened while the result of others show that
the line always gets narrowed under the influence
of the phonon relaxation. For Z ~ 2. 5 the width of
the line first increases with increasing relaxation
rate but after a certain maximum value it starts
decreasing with increasing y and slowly approaches
the natural linewidth. The maximum value of line-
width increases with increasing Z but it has no up-
per limit as obtained by Harris. Around Z=2. 5
the linewidth becomes equal to the natural linewidth
and does not vary with relaxation rate. For Z & 2. 5,
the line becomes narrower than the natural line-
width but the maximum narrowing never exceeds
-8k of the natural linewidth. It is interesting to
note that the general feature of these curves is
similar to those obtained by Harris calculated on
the basis of an entirely different formalism.

Figure 6 gives the zero-phonon resonance line
intensity as a function of the phonon-relaxation rate

For Z =2. 5 the intensity of the line remains in-
dependent of y. For other values of Z the intensity
either increases or decreases with increasing y,
depending upon whether Z is less than or greater
than 2. 5. But for a given value of relaxation rate
the intensity always decreases with increasing Z

CONCLUSION

The main results of this work may be summa-
rized as:

(i) A general expression is derived for the inten-
sity distribution of the Mossbauer radiation per-
turbed by a normal mode. The formalism is ap-
plicable for both the rf pumped phonons and the
localized mode phonons. The thermal relaxation
of phonons affects the Mossbauer line shape with

2.5
l

I.5

or.

Z
O

I.O
0.0 0.5 I.O 1.5

PHONON LIFETIME in units of
2.0

FIG. 9. Linemidth of the one-phonon transition as a
function of y.

which is contrary to the results reported by others.
Figures 7 and 8 give the line shape for one-phonon
and two-phonon lines„ In this case the value of Z
is taken to be 2.0. In Fig. 9 the width of the one-
phonon Mossbauer line as a function of the phonon
relaxation rate is given. From these results and
other extensive calculations we conclude that the
width of the one-phonon and other higher-phonon
lines increases monotonically with the increase of
the phonon-relaxation rate. It may be noted further
that the relaxation broadening for the phonon-as-
sisted Mossbauer transition is much more pro-
nounced as compared to the zero-phonon Mossbauer
transitions.



10 EFFECT OF THE THERMAL RELAXATION OF. . . 1853

the effect being different for the continuum mode
and for the localized mode. This result is contrary
to the usual expectation.

(ii) Zero-, one-, and two-phonon-assisted
Mossbauer line shapes in the presence of the lat-
tice-mode relaxation become non-Lorentzian and
the effective linewidths in general are larger than

the natural linewidth.
(iii) The splitting reported by Harris of the

Mossbauer line owing to the excited lattice-mode
relaxation is not seen in our calculations. The
splitting may be attributed to the limited applica-
bility of the model proposed by Harris which is
discussed in an earlier part of this paper.
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