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A model is presented which describes the effects of phonon-exciton scattering on the coherent

migration of Frenkel excitons. The development is such that it provides for experimental verification

through the use of electron-spin-resonance techniques. Both qualitative and quantitative information on

the mode of exciton migration, the rate of phonon-exciton scattering, and the temperature dependence

of phonon-exciton scattering at low temperatures are obtainable from the model. One-dimensional triplet

excitons are considered specifically, although the treatment is applicable to other phenomena such as
impuriton migration. Three cases are treated. In the first, the exciton dispersion is taken to be much

smaller than the acoustic-phonon dispersion. In the second, the exciton and phonon dispersions are
taken to be approximately equal, and in the third case, the exciton dispersion is taken to be much

larger than the acoustic-phonon dispersion. In each case, the possibility of long-range energy migration

is considered and is related to experimental observables. In addition, multidimensional exciton
interactions in the spin-orbit-coupled singlet states, and multidimensional exciton interactions in the

triplet state are discussed.

I. INTRODUCTION

In order to describe the dynamics of exciton
migration in the Frenkel limit, it is not sufficient
to consider only the time-independent delocalized
stationary states of a crystal. Because of the ex-
plicit localization introduced into the stationary
states by phonon-exciton scattering, the electronic
states, the phonon states, and phonon-exciton cou-
pling must all be explicitly considered in terms of
the crystal states. ' Basically, the phonons mod-
ulate the intermolecular interaction which in turn
mixes the delocalized k states of the crystal and
results in a state that can be described as a linear
combination of the delocalized states. In the
Frenkel limit, this results in a partial localization
of the electronic excitation but still allows for the
excitation to propagate coherently as a wave pack-
et, provided the explicit linear combination of k

states remains unchanged for times exceeding the
time associated with the nearest-neighbor elec-
tronic intermolecular exchange. Indeed, it is the
average frequency at which the linear combination
of k states changes relative to the intermolecular
interaction time that determines the dominant
mechanism responsible for electronic energy
transfer in solids at both high and low tempera-
tures. At low temperatures coherent migration
occurs when the density of populated phonon states
becomes sufficiently small that modulation of/or
scattering between the exciton-wave-vector states

gaby

the phonons occurs much less often than inter-
molecular exchange. It is important to note that
in this limit the problem is not describable by the
stationary Bloch solutions of the Schrodinger equa-

tions,

((p) = ~Q e"""u{r),

but rather by a superposition of Bloch states with
a minimum spread bP restricted by the wave pack-
ets uncertainty in position:

~P -hy'hr .

For the coherent limit to be meaningful the mean
free path l associated with excitons formed from a
given superposition of Bloch states must be longer
than the uncertainty of position, hr, and hence long-
er than the lattice separation a. In such cases, a
coherent Frenkel exciton can be viewed as a quasi-
localized excitation propagating coherently as a
wave packet at a velocity characteristic of both its
energy and the linear combination of stationary
crystal kstates which describe the packet. This
velocity is given for the wave packets, which is
related to the energy dispersion q and momentum

P by

or is related to the wave vectors by

(S.4)

For a one-dimensional crystal, in the nearest-
neighbor approximation the energy dispersion of
the band, e(k), is given by

e(k) =Z +2P coska

and is taken to be associated with translational
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equivalent interactions along a direction a. 8 is
the electronic energy of the molecular excited
state and P is the effective intermolecular inter-
action in the nearest-neighbor approximation.
V (k) is then given by

V,(k) = sinka
2Pa

The distance l(k) which an exciton propagates in a
coherent fashion without changing its velocity is
given by the lifetime of the coherent state r(k)
times the group velocity of the wave packet, i. e. ,

l(k) = V,(k)r(k);

l(k) is thus equivalent to a mean free path, and

r(k) in the stochastic approximation' corresponds
to a lifetime or correlation time for the scattering
of the wave packet centered at k. Erem a dynamical
point of view, the important feature of coherent
migration is that excitons can propagate in the
crystal a variety of distances and at a variety of
velocities depending upon the particular population
distributions over the exciton and phonon bands
and the exact nature of phonon excito-n coupling

Appreciable energy migration in one-dimensional
crystals in the coherent limit requires a distribu-
tion over the non k =0 and +w/a states, preferably
in the center of the band since in t:he one-dimen-
sional limit the group velocity is zero at the top
and bottom of the band (k =0 and +((/a) but 2P /all
at the center of the bank (k= + v/2a). The extent
to which the various k states contribute to the
propagation of electronic energy is determined by
the temperature, the exciton bandwidth, and the
form of the distribution function. It is important
to recognize that, in principle, non-Boltzmann
distributions in the band can be established when
the decay time of the electronic excited state to
the ground state is shorter than the coherence time
r(k). If, for example, only the k= 0 state is pre-
pared, say via optical absorption from the ground
state at low temperatures, and the excited-state
lifetime is shorter than phonon-exciton scattering
to other k states, little exciton migration would be
realized due to the stationary nature of the top and

bottom of the band. If the time between phonon-
exciton scattering events is short relative to the
lifetime of the excited state but long relative to
the inverse of the intermolecular interaction ma-
trix element responsible for the exciton transport,
then the exciton band will be able to achieve ther-
mal equilibrium within the lifetime of the excited
state and coherent migration may still occur be-
tween the scattering events, although the scatter-
ing reduces the coherence time r(k). Only in the
case of an extremely narrow exciton band (i. e. , a
very small intermolecular interaction matrix ele-
ment) and a very short excited state lifetime will

One notes that very mobile states can be populated
at reasonably low temperature provided the band
dispersion is not too great.

The importance of the coherent nature of the
wave packet for energy migration is made apparent
by comparing coherent migration to diffusion limit-
ed random-walk migration which characterizes ex-
citon dynamics at high temperatures. %hen the
density of populated phonon or localized vibrational
states becomes sufficient to limit the coherence
lifetime of an exciton k state to that associated
with the nearest-neighbor exchange time by inelas-
tically scattering it to other states in the band,
wave packets formed from the delocalized Bloch
functions of the crystal are no longer appropriate
bases states for times exceeding (p) and the prop-
er description of the exciton states is a unitary
transformation of the k states to a set of orthogo-
nal, k-independent, localized %annier functions:

y(r) g e (g'0/)) q(-p)
1

(1.9)

In this limit, the exciton migrates in a random-
walk manner through a resonant interaction be-
tween %annier functions centered on adjacent lat-
tice sites. The velocity of migration of the exciton
is its rms deviation per unit time from its starting
position and is usually many orders of magnitude
slower than coherent migration. For a molecular
crystal with nearest-neighbor molecules having an
effective -intermolecular interaction of 1 cm ' and
a lattice spacing a of 4 3, the random-walk exciton
velocity is 10 cm/sec, while coherent states have
a group velocity at the center of the band of 10
cm/sec. The mean free path for random-walk
diffusion is 4 A while states migrating coherently
at the center of the band, for example, have a
mean free path dependent upon r(k) via

I (k =+v/2a) = (2Pa/h)r(k = s((/2a) . (1.10)

It is self-evident that the coherence length of the
states in the center of the band can approach mac-
roscopic dimensions if phonon-exciton scattering
is weak [t. e. , r(k) is long] and the excited states

thermal equilibration be inconsistant with coherent
migration. (For triplet excitons which are of pri-
mary interest in this paper, the long excited-state
lifetimes associated with the triplet state permit
both thermal equilibrium and long coherence
times. ) When a thermal distribution characterizes
the band, the number of excitons N(k) propagating
with a velocity V (k) is given by the Boltzmann fac-
tor for the k state divided by the partition function
for the exciton band:

D(k) e- (k6)/x r
(a)/~e
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are long-lived compared to r(k). In principle, r(k)
could approach the lifetime of the excited electron-
ic state at very low temperatures where the distri-
bution of phonon states approaches the T-0 limit.
At intermediate temperatures where v(k) is limited
by phonon-exciton scattering an exciton initially at
an energy &{k) scatters to other k' states at ener-
gies e(k') via phonon interactions in a time short
compared to the excited electronic state lifetime
but in a time long compared to intermolecular ex-
change. The net result is that the coherence time
is shortened, the mean free path or coherence
length is attenuated, and the k states acquire an
energy width I"{k), given by the reciprocal of the
coherence lifetime of the individual k states, i. e. ,

I'(k) =N[r{k)] ' . (1.11)

In effect, inelastic scattering of the excitons by the
phonons introduces a time and temperature-de-
pendent damping of the wave packet states. For
completeness, damping or localization of the sta-
tionary zeroth-order states by other processes
such as impurity or isotopic scattering ean be in-
corporated into this description by expanding the
delocalized unperturbed Bloch functions given by
Eq. {1.1) such that the coefficients in the expan-
sion forming the perturbed wave functions satisfy
difference equations associated with the perturbed
periodic potentia, l problem. ' In such cases, the
delocalized Bloch functions describing the pure
crystal states are partially localized by impurity
scattering and the impurity states themselves be-
come significantly deloealized. %'ave-packet
states can then be formed from a superposition of
perturbed states resulting from these scattering
proc esses.

It is clear that in addition to the stationary
states of the crystal a proper description of the
dynamics of exciton migration must include (a)
the group velocities of excitons, (b} the population
distribution over the k states of the band, and (c)
the coherence times for the individual k states and
hence an explicit model for exciton scattering
processes. This description views an exciton ini-
tially in a state characterized by an energy e {k)
as scattering to a state at g(k'} in a time on the
order of the coherence lifetime but it allows for
long-range propagation via coherent migration in
between scattering events.

In the first paper in this series we described
the importance of low-temperature coherent exci-
ton migration in providing a mechanism whereby
localized impurity states can be maintained in
Boltzmann equilibria with the delocalized band
states. The dynamics in this description were
based on an ensemble average over the coherent
wave-packet group velocities at a fixed tempera-
ture and hence information about scattering of the

individual wave packets was lost. In the following
we present an experimental method and its asso-
ciated theory based on electron spin resonance
which allows one to investigate properties of the
individual exciton wave-packet states and their in-
teractions with phonon states in the coherent limit.
This has been prompted by some initial observa-
tions on coherent wave-packet migration made
earlier by Francis and Harris (cf. Refs. 13-15).
Although the development is made for triplet exci-
tons in molecular solids application of the method
and theory to other problems such as low-tempera-
ture impuriton migration is straightforward.

II. ELECTRON-SPIN-RESONANCE ABSORPTION IN

COHERENT TRIPLET EXCITON STATES

From an experimental point of view, the above
cons ide rations require that ear eful at tention be
given to the relationship between the time associ-
ated with exciton migration and the correlation
time of the particular experimental approach being
employed. If, for example, the experimental cor-
relation time is much shorter than 7'{k) (as is the
case for optical absorption), only manifestations
of the coherent model are apparent from the data.
Similarly, when the experimental correlation time
is longer than v(k) for all k, only the random-walk
processes are displayed. A measure of phenomena
such as phonon-exciton scattering, V (k), and f(k)
which are related to both coherent migration and
diffusion-limited migration can only be determined
when the experimental correlation time is on the
order of v(k). It is on this basis that electron-
spin resonance ' provides a direct probe into the
dynamics of triplet excitons.

In the followi ng electron-spin-resonance theory,
the model adopted is a "one-dimensional" crystal
in which only translationally equivalent intermolec-
ular interactions along a single crystallographie
direction have finite magnitudes. Although the
electronic interactions are taken to be one dimen-
sional, the phonon structure of the crystal has the
usual three-dimensional nature. However, in an

phonon-exciton scattering event. , conservation of
momentum requires that only the component of the
phonon momentum parallel to the direction of the
exciton propagation will be allowed to change.
That is, only one of the phonon quantum numbers
will change during an phonon-exciton scattering
event, and it will be the quantum number which la-
bels states along the axis of the Brillouin zone cor-
responding to the one-dimensional exciton axis.
However, all of the phonon states must be consid-
ered when determining the phonon density of states.

The excited triPlet band is derived from inter-
rnolecular exchange coupling between the ground
singlet and excited triplet states and is restricted
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to nearest-neighbor interactions. In zero magnet-
ic field the triplet band is split by electron-spin
dipolar repulsions into three parallel spin sublevel
bands which will be designated as 7'„, v'~ and 7',.
These correspond to states where the electron
spins are correlated along the x, y, and z molec-
ular axes, respectively. This is illust, rated in
Fig. 1(a) where the effective intermolecular ex-
change interaction is designated by p, and the en-
ergy of the molecular triplet state in the absence
of intermolecular exchange is designated by E .
E is on the order of 30000 cm for aromatic
molecules in their first excited triplet states.
Zero-field splittings are typically tenths of wave
numbers while triplet-band dispersions, 4P, are
on the order of tens of wave numbers. ' In the lim-
it that no anisotropy of the zero-field splitting is
introduced by intramolecular spin orbital coupling
of the individual triplet spin sublevels to the sin-
glet manifold, the band-to-band electron-spin tran-
sition induced by a radiofrequency or microwave
H, field [cf. Fig. 1(a)] would be a. homogeneously
narrowed Lorentz line centered at the frequency
characterized only by the spin dipolar parameters
D and F-. The linewidth is taken to be that asso-
ciated with a "perfect crystal" spin-spin relaxation
time T~ at O'K.

(b)

I (0 I cm-I)
X (4p

0 cm-I)

hv hv
(50,000 cm )

,.L.,

So
v

I

vO

isolated
mol ecul e

I

+ w/2a + w/a
I

+vr/2a +vr/a

Triplet Spin-sublevel Bands
(a) without spin-orbit coupling

(b) with spin-orbit coupling

FIG. 1. {a) Energy dispersion of the three magnetic
sublevels v„, v'~, and v g in the triplet exciton band T& in
the absence of spin-orbit coupling. {b) Energy disper-
sion of the triplet magnetic sublevel bands including
selective spin-orbit coupling of v„ to higher singlet
states. The energy scale is purely schematic and is
used for illustrative purposes only.

A. Effects of group-velocity-dependent relaxation processes

1 1 1
T' Tf T(k) ' (2. 1)

where Tz(k) is weighted by the wave-packet's group
velocity V,(k); i. e. ,

Even when r(k) is long compared to I) additional
contributions to Tz might be expected in the coher-
ent limit when the temperature becomes finite.
This could be particularly true for phenomena such
as strong impurity scattering or other interactions
capable of dephasing the rotating frame magnetiza-
tion that depend upon SPacial characteristics of the
crystal. These might cause the spin ensemble to
dephase at different rates depending upon which
wave-vector states were populated at any particu-
lar temperature. Crystal inhomogeneities or other
phenomena that change the energy of the zero-field
splitting will be sampled faster by exciton wave
packets composed of a linear combination of k
states centered near the middle of the band (k
= av/2a) than those at the top and bottom (k = 0;
+ it/a) because of the crysta. l volume sampled by
the wave packet per unit time. Velocity depen-
dence can be included in Tz by associating with
each wave-packet state at energies e(k) a relaxa-
tion time T3(k). The total electron-spin trans-
verse relaxation time for a particular A state is
then simply

T2(k) = C (2P a/k ) sinka . (2. 2)

The constant C is taken to be proportional to the
change ~ in the Larmor frequency per unit vol-
ume sampled. Restricting T2(k)&r(k), the net re-
sult for a Boltzmann distribution of population
across the triplet band is to produce a tempera-
ture-dependent band-to-band transition which is
the weighted sum of the individual Lorentz lines
centered at coo each having a velocity weighted Tz.
Letting

1
w ( (r ,)'( —,)')' (2. 3)

be a single Lorentz line-shape function for one
k state, the line-shape function for a distribution
over exciton states at a temperature T would be

(2. 4)

where N(k) is the number of excitons at energy
c(k). For a thermal distribution,

Z (T) 1+ (T",)'(~ —(d 0)'

(2. 5)

where Z(T) is the partition function at temperature
T and is given by
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FIG. 2. Calculated ESR band-to-band transitions in
the absence of selective spin-orbit coupling for various
triplet bandwidths 4P. Each curve represents the sum
of contributions from a Boltzmann distribution over
the individual k states. Each value of k in the band-to-
band transition has associated with it an intrinsic line-
width 4I ~ and a group-velocity-dependent linewidth,

4F is listed for the states at the center of the
band (k = + ~/2a) for the various bandwidths illustrated.
&he igtensities of the spectra are adjusted to have the
same maximum height and are not normalized relative
to one another.

*ff a

2 (T) e-BBlt T+ 2e BB s()N)/B)K)-r (2. 6)

D(k) is the degeneracy of the k state and TBB is giv-
en by Eq. {2.1) and (2. 2). Substitution yields

))))) -B ( )f

)C ((o)=—
g(T)

X
yP2

)2))a/el)) nay le+))

(2Pa/Ctf) TBBsinka+ 1

(2. 7)

where D(k) = 1 if k=0 and 2 otherwise.
Several important features which could allow

this model to be verified experimentally emerge
when the line-shape function given by Eq. (2. 7) is
examined in detail. Figure 2 illustrates the line-
shape profile, G (u), for a band-to-band transition
as a function of bandwidth at a fixed temperature.
The parameters bE(k=+v/2a) illustrated in the

figures refer to the half-width at half-height of the
band-to-band transition associated with the Lorentz
component of k states in the center of the band hav-
ing the largest group velocities V,(ax/2a), while

~(k= 0; +)T/a) refers to the half-width at half-
height of the Lorentz component associated with
the stationary states at k=0 and k= +v/a. The lat-
ter is taken to be associated with T~& at the T =0 K
limit. The transition has been arbitrarily centered
at 3.000 0Hz.

First, it can be seen from Fig. 2 that to a large
extent the exciton partition function determines the
overall line sh-ape profile Fo.r Boltzmann distri-
butions the population of a given set of A states de-
pends upon the temperature-to-bandwidth ratio;
hence, as the bandwidth increases from 1 to 8 cm '
[Figs. 2(a)-2(d)], the contribution to the overall
width of the transition from the very mobile k

states near the center of the band decreases. This
is reflected in the band-to-band transition as a
pronounced narrowing with increasing band disper-
sion. This is also seen from the temperature de-
pendence of the band-to-band transition as illus-
trated in Figs. 3(a) and 3(b). The overall effect
of lowering the temperature is to narrow the elec-
tron-spin transition by removing population from
the highly mobile states in the center of the band.
The extent of the narrowing being proportional to
C(2Pa/h') depends implicitly upon the details of the
incoherent events that cause the spins to dephase.
This can be seen from a comparison of Fig. 3(a)
with 3{b). In the latter, the amount which the spine
dephase per incoherent scattering event is taken
ten times that illustrated in Fig. 3(a) and, thus, at
all temperatures the transition appears significant-
ly broader. Furthermore, there is a unique tern-
perature dependence of the line-shape profiles for
any given dephasing rate C(2Pa/h); hence, the band

dispersion in principle can be determined experi-
me ntally.

Second, it is interesting to note that the number
of tvave vector stat-es in the exciton band and con-
sequently the number of mofecules in a one dimen-
sional exciton chain also have a pronounced effect
on the line skaPe. This can be particularly infor-
mative in highly doped mixed-crystal systems.
A comparison of the line shapes in cases where
the number of molecules in a chain have been taken
as 1000 [Fig. 3(b) ] and 100 [Fig. 3(d)] clearly dem-
onstrates this feature. %hen the exciton band is
characterized by a high density of states per unit

energy [as is the case in Fig. 3(b)], most of the
width in the band-to-band transition comes from
the less mobile k state near k =0 or +v/a because
of the sharp peak in the one-dimensional exciton
density-of-state function at the top and bottom of
the band. However, when the number of A states
is reduced by restricting the exciton chain length,
the contribution of these less mobile states be-
comes proportionately smaller relative to the
states near the center of the band. Hence, the
line-shape profile acquires a broad baseline char-
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id~~=rgo+f4p coska, (2 9)

where the reduction factor f is related to the de-
tails in the difference of spin-orbit coupling in the
spin sublevel bands' and (do is the transition fre-
quency in the center of the band. In such cases
different Larmor frequencies can be associated
with different k states, and the proper representa-
tion for electron-spin-resonance absorption in
terms of the Bloch formalism is a set of mag-
netic Bloch equations, one for each k state in the
band, whose frequency components +ok are coupl. ed

by phonon-exciton scattering.

9. Effects of phonon-exciton scattering on electron-spin

relaxation

The presence of a weak oscillating rf field of the
form

X(f) = -yH, .S,cosidt (2. 10)

connecting, for example, 7„with v„spin sublevels
via the electron-spin operator S, results in an in-
phase u, and out-of-phase e, component of a com-
plex moment Gk given by~6

Gk =Ok+ W)k (2. 11)

Representing w as the applied microwave frequen-
cy and ufo as the resonant microwave frequency
associated with the spin sublevels of the kth state
in the band, the complex moments obey the follow-
ing Bloch equations (one equation for each k state
in the exciton band):

dt
+

T (k
-t(M0-M) Gk=-fear'1M0. {2.12

Mo should be related to the exciton density of
states function and the particular form of distribu-
tion function characterizing the population in the
exciton band. For a Boltzmann distribution

field eigenstate via spin-orbit interactions. The
shift is different, however, for each of the three
spin sublevels. Moreover, since the triplet band
dispersion is usually much less than that asso-
ciated with the singlet band which is mixed into the
triplet sublevel via spin-orbit interactions, there
is a greater spin-orbit perturbation in the zero-
field splitting at either k = 0 or k = + v/a depending upon
the relative signs of the intermolecular interaction
responsible for the band dispersions of the singlet
and triplet, respectively. The importance of spin-
orbit coupling cannot be underestimated, for it is
precisely this which gives rise to a k dependence
of the Larmor frequencies for the band-to-band
electron- spin transitions. This is diagrammatical-
ly illustrated in Fig. 1(b). As has been shown by
Francis and Harris the resulting k dependence
of the Larmor frequency, &o, reflect the band dis-
persion on a reduced scale and is given by

D{k)[g &
-& (k)/ET P+-I"(ii)/rrj

Mo=,(2. 13)

D(k )e
- I (k ) / E1'

Z(T)
(2. 14)

where C „is the difference in populations of the
mth and nth spin sublevels. q(k) and Z(T) are giv-
en by Eqs. (l. 5) and (2. 6), respectively. It is
important to note that spin alignment in the lab-
oratory frame is equivalent to magnetization in
the rotating frame, and thus, Eq. (2. 12) is valid
in zero field even though no magnetization exists
in the laboratory frame. It will be assumed that
T2(k)'s are homogeneous. The weak field modi-
fied Bloch equations are

'+ [1/T2{k)jG, —f(id(~) —id)G,

D(k)e '(~&///rC

Z(T)
(2. 15)

There are X linear equations corresponding to the
X molecules making up a single linear exciton
chain.

The effects of phonon- exciton scatter ing in the
band can be incorporated into these equations
through a scattering matrix which completely
spans the basis states of the Frenkel excitons.
Let (v'». ) represent the probability per unit time
for scattering of an exciton initially in a state hav-
ing energy & (k) to a final state having an energy
e(k ), each state having associated with it a Lar-
mor frequency uo and ~o, respectively. Further-
more, assume that spin-phonon coupling is negli-
gible, which implies that phonon-exciton scatter-
ing is spin independent. Under these conditions
the N modified Bloch equations are written as

dt"
+

)
G~ —i(&uo —u)G„

dt T,(k

D(k)e 'o'v rrC „
Z(T)

+
k' ~k'k 7kk'

(2. 16)

The form of Eq. (2. 16), however, places several
restrictions on the form of phonon-exciton scatter-
ing. It assumes that the averaging of the Larmor

where P and P„are the populations of the mth and
nth spin sublevels which are being coupled by the
microwave field and Z(T) is the partition function
for the triplet exciton bands. Since selective spin-
orbit coupling results in only very small differ-
ences in the dispersions of the individual sublevel
bands, the exponential factors in Eq. (2. 13) are
effectively equal. Thus, to a high degree of accu-
racy Eq. (2. 13) can be rewritten as
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components +~0 via phonon-exciton scattering is a,

stochastic V~rkoffian' process and thus (a) the
time for the actual scattering process from k to k

is much shorter than the lifetime of a particular
k state; (b) the difference in energy between the
initial and final exciton k states in a scattering
event is larger than the energy associated with the
uncertainty width of the individual k states; and
finally, (c) there is no spin memory between the
Larmor components ~0~ and ~0' corresponding to
scattering from the exciton states k to k' via pho-
non interactions. Kith these restrictions in mind
we display (r».) or the probability per unit time
for an exciton being scattered by a phonon from k
to k as a "golden rule" rate

1
(r v) '=p(k )I 1 t'')') *(,)I ))t, a, a' e

x
I
(kq

I
ff.". Ik'q') I'6(k+ q k'+q') .

(2. I'7)

p, (k') and p~{q') are the exciton (subscript e) and
phonon (subscript P) density-of-states functions
evaluated at the energy of the wave vector k and

q, respectively. X is the index which runs over
the phonon branches and E"(q) is the energy of the
qth wave vector of the X phonon branch. The sum
over phonon states q and q is restricted to scat-
tering events that conserve both the total energy
and momentum of the initial and final exciton-pho-
non states (kq ~

and (k q ) and H," is the exciton-
phonon coupling Hamiltonian. In weak oscillating
rf fields and steady state,

dG„
dt

(2. 18)

and the electron-spin-resonance line-shape func-
tion G(v) is given by the sum over k of the imagi-
nary components of the complex moment G~, i.e. ,

G {(u)= Im QG „. (2. 19)

The importance of Eqs. (2. 16)-(2.19) cannot be
underestimated for they provide in principle a di-
rect means of obtaining from experiment both qual-
itative and quantitative information on the mecha-
nism of triplet exciton migration in the coherent
limit, the random-walk limit and, in fact, in the
region intermediate between the two. Although the
latter requires the unwieldy solution of many simul-
taneous equations, the two extreme limits can be
readily solved. 3~

The first will be termed the strong scattering
case and occurs when (ufo —~o )v)~ «1 and corre-
sponds to the random-walk limit. In effect, phonon-
exciton scattering results in a, rate of change of the
exciton states (k- k') fast compared to the differ-

ences in the corresponding Larmor frequencies
(&uo —)do ); thus, the effective electron-spin transi-
tion frequency becomes the average of coo and uo .
If for all k, (&uo —~~0)7», «1, the band-to-band
transition will appear as a homogeneously narrowed
line centered at some weighted average of all the
frequencies. This is expected at high tempera-
tures and is essentially the same as derived and
expanded upon by McConnell and co-workers from
a different approach.

The second or ~eak scattering case results when

((do —(dp )T» » 1. This corr sponds to the limit in
which phonon-exciton scattering ca.uses the linear
combination of triplet exciton states to change on
a time (7». ) slow compared to the differences in
the I.armor frequencies (~0 —&uo ). In such cases
the coherent nature of the individual k states of the
triplet band can be sampled by the rf field, and the
spin-resonance line shape becomes the sum of the
individual transitions at +0 each having a width
corresponding to an effective Ta(k) given in Eq.
(2. 15) and each weighted by the population distri-
bution N(k), evaluated at an energy e(k). It shouid
be noted, however, that in this limit, the width of
each Lorentz line centered at (do includes a lifetime
broadening term introduced by inelastic phonon-
exciton scattering through Eq. (2. 16). Hence,
Ta(k) is given by

T,(k) '= (T~a) '+ [r(k)] ', (2. 2O)

Consequently, specific features of phonon-exciton
scattering can be discerned from the electron-spin
band-to-band transitions line-shape function since
the Lorentz linewidth at each ruo is given essentially
by 7'(k) when phonon-exciton scattering rates ex-
ceed {Tz~)

' This point c. an be better illustrated
by considering models for phonon-exciton scatter-
ing in various limits. We mill restrict the dis-
cussion, however, to cases where the population
of the band states is characterized by a Boltzmann
distribution function. In these cases the intensity
of the band-to-band transitions evaluated at vo
are weighted by M~~given by Eq. (2. 14).

1. Phonon-exciton scattering in the narrow band coherent limit

The first case in the weak scattering limit me
will consider is when the exciton dispersion is nar-
row compared with the dispersion of the phonon
branches populated at any particular temperature.

where T~ represents the homogeneous relaxation
time at O' K. The relationship between phonon-ex-
citon scattering and the lifetime of a k state is given

simply by the sum over all decay channels or the
individual scattering rates ~». , i. e. ,

r(k) '=Q (~». ) '.
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Sk+5q = 5k'+5('' (2. 22)

e (k)+E(q) =e (k')+ E(q') (2. 23)

must be satisfied. Consider first the region of the

acoustic phonon dispersion that is near linear in

energy as illustrated in Fig. 4{a). When the dis-
persion of this portion of the acoustic band is large
relative to the exciton band, the phonon group ve-
locities are many times those of even the most
mobile exciton states. In order to conserve both
momentum and energy in the scattering process,
the derivation of g (k) with respect to initial state
k must be the same as the derivative of E(q) with

respect to the phonon wave vector q for all ener-
gies c (k) at which scattering occurs, i. e. ,

se (k) sE(q)
8k Sq

(2. 24)

The left- and right-hand sides of EiI. (2. 24) are
simply the exciton and phonon group velocities

Restricting the discussion to very low tempera-
tures (1-10'K) where the primary limitation on

the coherence time will be exciton scattering with
the acoustic phonons (the population of higher-en-
ergy phonons being very small), the individual
scattering rates v~~. can be displayed in an ex-
tremely simple form when the scattering events
are limited to events in which a phonon with wave
vector q and an exciton with wave vector k interact
to produce final states which are single phonon and
single exciton states having wave vectors q' and

k, respectively. [Another possible exciton scat-
tering mechanism is an exciton state spontaneously
decaying into another exciton state accompanied by
the creation of a phonon. Energy and momentum
must be conserved, therefore an exciton in state
k will only undergo this type of scattering process
if the slope of the exciton dispersion at k matches
the initial slope of the acoustic phonon dispersion.
This imposes similar restrictions on the efficiency
of the exciton-fission mechanism as those dis-
cussed in the text for the phonon-exciton mecha-
nism. Since the fission process unlike phonon-
exciton process does not depend on a highly-tem-
perature-sensitive phonon population, its contribu-
tion to the scattering rate will be temperature in-
dependent. The effect. of exciton-fission scattering
is therefore included in the parameter Tz~. If in a
particular system this is dominant scattering pro-
cess in some temperature region then T~z& r(k) and
therefore Tz(k) will be temperature independent in
this region. ] Naturally, such scattering events
must simultaneously conserve both the total mo-
mentum and energy of the initial and final states.
That is,

o
Narrow Band Limit

b

Intermediate Bond Limit

k=o + e/o k=0 + 7r/o k= 0

FIG. 4. Relative magnitudes of the exciton and
acoustic phonon dispersions. (a) Narrow exciton band
limit where the phonon group velocity matches the ex-
citon group velocity in the nonlinear region of the
phonon dispersion. (b) Intermediate region where the
phonon group velocity in the linear region of the phonon
dispersion matches the exciton velocities around the
center of the exciton band. (c) Broad-band limit where
the phonon group velocities match the exciton velocities
near the top and bottom of the exciton band.

(2. 25)

It should be noted that the rate of scattering exci-
tonsby phonons in the nonlinear region is enhanced
by the fact that it occurs between phonon states q
and q' whose density-of-states functions p(q) and

p(q ) are large. When the exciton band dispersion

multiplied by 8, respectively. When there are
large differences in the phonon and exeiton disper-
sions, this condition cannot be easily satisfied,
and it is only in the limit of 6k-0 and ~ 0 that
scattering can conserve both momentum and energy
between initial and final states. Such is the case
for acoustic phonons in the linear region of their
dispersion. However, when the phonon dispersion
becomes nonlinear, the group velocities of some
phonon states can match the group velocities of the
exciton states, and both the total energy and mo-
mentum can be conserved between init:ial states
(kq I and final states (k q

'
I . Adopting the hyjothe

sis that phonon-exciton scattering shortens the co-
herence lifetime of an exciton k state only when the
group velocities of the excitons are approximately
equal, EiI. (2. 17) is greatly simplified. In such
cases, the scattering rates, (r».), are simply
proportional to the number of phonons populating
the quoth phonon state, whose group velocity matches
the group velocity of the exciton state k, times the
density of final exciton and phonon states. The
number of phonons, however, is given by the

Planck distribution; hence,

(r„.) '= p{q')p{k')[e " ' —1] '
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becomes much less than the acoustic band disper-
sion, the variation in the range of states capable
of scattering with k states becomes progressively
more restricted to fewer q and q' states, and there-
fore the difference between p{q') and p{q) becomes
smaller. Furthermore, since p(k') approaches a
k-independent constant in the zero exciton band
dispersion limit, the scattering rates (r», ) must
become uniform in the narrow exciton band limits,
at which point the exciton k-state coherence life-
times r(k)'s would become equal for all k. The
temperature dependence of r(k) becomes simply
the Planck distribution function evaluated at the
energy of the acoustic phonon state that has the
lowest group velocity. Denoting the energy of this
state as E"(q ), the exciton's coherence time is
given by

r(k)-1 ( rg)-1[ es(c )/rr 1]-1 (2. 26)

where {r~) is an effective scattering time given
by the temperature-independent term

(2. 27)

The summation over k is restricted to the interval,
around the initial k value, in which the phonon and
exciton group velocities match. This interval is
narrow in the narrow exciton band limit, and there-
fore an exciton can only scatter to states whose k
values and group velocities do not differ greatly
from that of the initial state. Thus, scattering
may not greatly impede the long-range migration
of excitons. When T «E"(q'), as is usually the
case at temperatures below the Debye tempera-
ture, r(k) is given by

r (k )-1 (rg)-1 e-s"(e )/ r r (2. 28)

and hence the excitons coherence time vs temPera-
ture appears as a k-independent exponentially de-
creasing function with increasing temPerature:

where

T2(T) 1,(2. 30)Gl+ T2(T)l'(~ —&8)'k '

1 1 1
Ts(T) T2 r(k) ' (2. 31)

Finally, the difference in the Larmor frequencies
between ~0~(k=0) and &uz(k= +v/a) due to selective

250

200

l50

and. (o~, given above, is different for each k state.
Since G (/d) is normalized by the one-dimensional
exciton partition function Z{T), line shapes at var-
ious temperatures may be compared. Provided
that either T~& is known or 1/T~z& 1/r{T), the func-
tional dependence of Ts{T) with temperature pro-
vides an experimental test of this limit. G (&o) is
similar to the line-shape function arrived at by
Francis and Harris from a phenomenological
point of view valid at a single temperature in the
limit that the number of k states in the exciton band
is large.

The general features of the line-shape theory in
the coherent narrow-band limit are illustrated in
Figs. 5 and 6. In all cases, we have chosen 20
cm for E"(q~}, the energy of the acoustic phonons
having the slowest group velocity, which is a rea, -
sonable value for molecular crystals. ' Additional
parameters in Eqs. (2. 28) and (2.31) were set as
follows:

T~~ = 10 sec

v~ = 8. 9X10 sec .

(T) ' = r{k}'' . — (2. 29)

The principal manifestation of the electron-spin
band-to-band transition in this narrow band limit
at a given temperature is to give all frequency
components (do the same effective widths. Thus,
the line-shape function represents the sum over
N independent Lorentzian absorption curves, each
centered at &uo with a linewidth related to r(k) at
a temperature T. In zero magnetic field the area
under each transition is proportional to the prob-
ability at a given temperature that the exciton 0
state is populated. For a Boltzmann distribution
across the exciton band, the line-shape function
is given by

D(k)e-28 cosaa/KT

G 4o)=Q g(T)

~ (00
U
Op

CL

50

0
2.985 2.990 2.995 3.000 3.005 3.0IO 3.0(5

GHz

FIG. 5. Calculated ESR triplet exciton band-to-band
transitions for several exciton bandwidths with selective
spin-orbit coupling. The exciton and phonon dispersions
are in the narrow-band limit and a Boltzmann distribu-
tion characterizes the population. The shape of each
of the curves reflects the exciton bandwidth, exciton
density-of-states function, and the rate of phonon-
exciton scattering. The total area under each of the
spectra has been normalized.
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i ht of the individual wave-vec r sto tates comprising the exciton band.

th
' t t Th

tempera res.
effect due to increased phonon-exciton scattering wi iThe spectra show the broadening effect due incre

total area under each of the spectra has been normalized.

spin-or i eoub't pling has been taken as 20 MHz, a
value near that experimentally found in 1, ,
tetrachlorobenzene for the D —IE I band-to-band
transition. n ig.I F' 5 the band-to-band transitions
have been calculated using Eq ,2. 30, for a series
of bandwi s,dth 4P. All transitions are calculated

T=4 1'K Several features are important.for
First, the ratios of the peak heights near &

=

(k = /a) are related to a Boltzmann distribu-
t eighted density-of -states maxima a
and k= +w/a. Hence, if Tz(T} is measured or

the band dispersion immediately followsknown, e an i
f the ratio of the transition intensi y arom e

t of kk=+ v/a. Second, the width of any packe o
states which can be prepared by the microwave
f' ld is proportional to [Tz(T)] '; hence, selective

netic spin sublevels can be produced by microwave
lses at the appropriate frequency. ThisThis allowspu ses a e

other k-dependent phenomena such as bibimole cular
exciton anihilation, exciton-trapping, etc. , to
be experimentally investigated in the coherent lim-
it. Third, when Tf»7(k), Ta(T) is the coherence

lifetime of the wave-vector states having velocities
V~(k); hence, e, th k dependence of the mean free
path /(k) follows from

E(k) = V,(k)T,(T) . (2. 32}

In Fig. 6 the exciton band-to-band transition has
been calculated using Eq. 2. 3 o2. 30 for several band-
widths 4P and for various temperatures g'es iven the

sE, ' " T', andabove values for the parameters q
v*. The lowest temperature used in the ealeula-
tion, 3. 1 "K, was chosen such that the contribution
to Tz(T) from Tz~ and from phonon exciton scatter-
ing v(T) are egua .l At this temperature, broaden-

f th transition due to exciton-phonon scat-
tering is beginning to become significan .
4. 1 'K, the population of phonons having energy
E"( ) is greatly increased and 7'(T) becomes the
major contribution to T~(T . This r esults in fur-
ther broadening of the transition and a shift in

of the band-to-band t.ransition maxima.
As the transition becomes increasingly broa, e
use of the ratio of the intensities of the maxima to
determine the exciton bandwidth without explicitly
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considering Ta(T) becomes an increasingly less
valid approximation. By 5. 1 'K the contribution
to Tz(T) from exciton-phonon scattering has broad-
ened the individual k-state transitions to the extent
that the exciton band-to-band transition has lost
its two-peak structure, and the system is becom-
ing progressively farther removed from the weak
scattering limit, (+o —&uo )r», & 1.

It is important to note, homever, that the effects
of elastic scattering or damping which can result
in a significant reduction in l(k) are not manifest
in the above theory. This is because physical
phenomena that localize the band by simply mixing
+ with —k states are not detectable by the broad-
emng of the band-to-band electron-spin transition
because of the equality of the Larmor frequencies
~o and &uo'. l(k) given above can only be regarded
as the mean distance between inelastic scattering
events. Other experiments, such as the dynamics
of exciton trapping, are necessary to establish
l(k) in the presence of phenomena such as isotopic
or impurity localization.

Finally, the effects of an oriented magnetic field
on the line shape in the narrow-band coherent lim-
it can be anticipated from behavior of the spin
Hamiltonian with a magnetic field. At each value
of the wave vector k, the zero-field spin Hamil-
tonian consists of a k-independent spin-spin term
and a k-dependent spin-orbit term, and consequent-
ly, the zero-field eigenvalues are different for
different values of k. A Zeeman perturbation mill
result in a shift of ~&relative to co~ that under
certain circumstances gives rise to a field-depen-
dent (&ut —&uo ) difference for the three electron-
spin band-to-band transitions. A difference
[&oo(k= 0) —&uo'(k'= av/a)j for two or more of the
zero-field band-to-band transitions is sufficient
to ensure that the {coop—~~o )'s are field dependent
for all k and k'. Selective spin-orbit coupling of
the spin sublevels with excited singlet states pro-
vides the necessary differences in the Brillouin-
zone boundary electron-spin band-to-band transi-
tion frequencies. The effect of a magnetic field
is simply to change the overall spin-orbit-induced
width of the zero-field band-to-band transitions
and shift the center frequency wo (k = ax/2a) to a
new value determined by both the zero-field and
Zeeman Hamiltonians. In the weak phonon-exci-
ton scattering limit, the line shape should remain
essentially unchanged with field except for a dif-
ferent overall width. In the intermediate scatter-
ing region, however, the (&oo —vo )7'». 's are on the
order of unity. Since (too~ —&uo ) is field dependent,
it is expected that at certain fixed temperatures
the band-to-band electron-spin transitions can be
obtained both in the meak and strong scattering
cases by varying the magnitude of the applied field
and thereby effecting a change in (uo~—&oz ) without

affecting the phonon-exciton scattering probabili-
ties {r»,) . Thus, in principle, one can experi-
mentally sample the phonon-exciton correlation
time without changing phonon-exciton scattering
Per se. It is expected, given enough experimental
data, that only one set of scattering parameters,
7»., and hence a single model for phonon-exciton
scattering, should be capable of fitting all the data.
at a fixed temperature.

2. Effects ofphonon-exciton scattering in the intermediate
bandwidth region

The second region of interest is where the
acoustic phonon dispersion is approximately the
same in its linear region as the exciton disper-
sion. The salient difference between this region
and the narrow-band region is that there are al-
ways acoustic phonons in the linear region which
can scatter with certain exciton states and simul-
taneously conserve the total momentum and energy
in the overall process. If, for example, the group
velocity of the exciton states in the center of the
band match the group velocity of the compression
wave associated with acoustic phonons in the linear
region, r(k) would be severely attenuated for exci-
ton states in the center of the band (-k= + v/2a),
while the top and bottom of the band would show
characteristics similar to the narrow-band case.
It is important to note that the most mobile exciton
states in this case suffer the greatest phonon scat-
tering and consequently have the shortest 7 (k).
From the point of view of energy migration ap-
proaching macroscopic dimensions, at first sight
this case may seem unfavorable. Such is not the
case, however, because the slopes of the exciton
and phonon dispersions mill only match over a
small region of k space; hence, an exciton initially
having quantum number k can only scatter to a
final state k' which is in the small region around
k where the slopes of the dispersions match. An

exciton traveling with some initial velocity V, (k)
will scatter to a new state with almost the same
velocity V~(k'). Thus, phonon scattering of coher-
ent excitons at reasonably lorn temperatures will
not greatly impede the exciton's migration although
it will average the Larmor frequencies of the k

states involved in the scattering. (The conserva-
tion of k does not apply to impurity scattering of
the excitons since k will no longer be a good quan-
tum number due to the rapid variation of potential
near the impurity. )

The band-to-band electron-spin-resonance tran-
sitions could appear very unusual depending upon
the strength of the resonant scattering in the cen-
ter of the band. If it is sufficient to result in the
strong scattering limit, (wo~—u&0 )r». & 1 for k and
k states near a v/2a, then those spin transitions
mould appear exchange narrowed while the transi-
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tions at the top and bottom of the band would re-
main in the weak scattering nonexchange limit
(a)0 —

&oo )r~, & 1. The net effect is for the band-to-
band transition to have an exchange narrowed Tz
near &uo(k-+v/2a) and a nonexchange narrowed
longer Tz at vo(k-0~ av/a) with intermediate dis-
tributions of Ta's at values between the k = 0 and
k=+v/a wave-vector states. As the temperature
is raised two features would be apparent. First,
the outsides of the band-to-band transitions would
broaden and diminish in intensity relative to the
transitions at &uo(k

-+ v/2a). Further increasing
the temperature would cause the center &uo(k-+ v/2a) region to broaden slightly via increased
phonon-exeiton scattering with increased tempera-
ture. %hen phonon-exciton scattering became
sufficiently strong, the central region would nar-
row and the &uo(k- 0; v/a) transition would com-
pletely disappear by virtue of the strong scattering
limitation,

(COO —(do )T,l,e & 1 (2. 33)

being achieved for all k states. The important
qualitative point about this region is that the exei-
ton states should show a pronounced k dependence
in the scattering which can result in the strong
scattering limit at the center of the band at much
lower temperatures than would be required to
have k states at the top and bottom of the band in
the strong scattering limit.

3. Effect ofphonon-exciton scattering in the broad-buggd

coherent limit

A third case of interest is when the triplet exci-
ton dispersion becomes greater than the acoustic
phonon dispersion. In such cases, in a one-di-
mensional model, there will always be a region of
exciton wave vectors which will have the same
group velocity as the acoustic phonons in their
linear region. Accordingly, strong resonant scat-
tering is expected. However, as illustrated in
Fig. 4(c), the wave-vector states of the exciton
band that are scattered in this limit are in the
proximity of k=0 and +v/a, and consequently, only
the relatively immobile excitons, say k', suffer
a short coherence time v (k ). In this limit, the
highly mobile exciton states in the center of the
band should only be weakly scattered. Further-
more, because only slower phonon states become
populated in the nonlinear region, increasing tem-
perature should not result in an appreciable in-
crease in phonon-exeiton scattering in the center
of the band. States near the top and bottom of the
band, however, will be progressively more strong-
ly scattered with increasing temperature. Exten-
sion of our scattering model to these states is
straightforward. v(k') for exciton states which
have group velocities equal to the group velocities

1
&'t& ) F, «, »* &) (2. 34)

It is important to stress that the k dependence
in Eg. (2. 34) is restricted to only those few exci-
ton states whose group velocities match the phonon

group velocity over some energy span given by the
sum over q. Figure V illustrates the dependence
of the coherence time of these states as a function
of temperature. The values for curves labeled
1.25, 2. 5, 5, 10 and 15 cm correspond to the
scattering events that span the indicated energy in-
crement of the phonon dispersion. For example,
the curve labeled 5 cm ' is v(k')'s for phonon-ex-
citon scattering in which the exeiton group velocity
V (k) equals phonon group velocities from phonon
energies 0 to 5 cm along the linear region of the
phonon dispersion. One notes that the function-
ality of 7'(k ) is given principally by the Boltz mann
factor and is moderately insensitive to the extent
to which the group velocities match. Moreover,
r(k), to a first approximation, is almost linear
with temperature, particularly when kT & Z(q).

I
I

I I f

cm-'

cm I

0 2 4 6 8 IO
Tem pe ra tur e ( 8 )

FIG. 7. Exciton coherence time 7 {k'}as a function of
temperature in the broad exciton band limit for the
exciton state k' which has its group velocity V~ {k'}equal
to the group velocity of phonons in the linear region of
the phonon dispersion.

of the scattered phonons is simply proportional to
the total number of these phonons available at a
given temperature. Using the Planek distribution
function for the number of acoustic phonons q at
energies E(q) for which V~(q) = V, (k), r(k), is given
by
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The important qualitative point is that when the
exciton dispersion is greater than the acoustic dis-
persion r(k) should be constant in the center of the
band at all temperatures. Hence, long-range en-
ergy migration in the coherent limit is greatly
favored providing the temperature is sufficient to
populate states near k= +v/2a to a significant ex-
tent but low enough to allow coherent migration.
Obviously, one wants a crystal where the phonon
dispersion is extremely small and where the trip-
let band is narrow. Meally one would like the
acoustic phonon dispersion bp to be on the order
of kT but less than the exciton bandwidth. Whether
or not this can be realized for low-lying triplet
bands is highly speculative.

The manifestations of this limit on the electron-
spin band-to-band transition are clearly indicative
of the model. Strong resonant scattering with k
states near the top and bottom of the exciton band
could result in the strong scattering condition:

0
) (2. 35)

to be satisfied while most k states in the center of
the band could be in the weak scattering limit.
Consequently, the effective T2 at k-av/2a would
be long while Tawould be short at the values of k
near k=0 and+ v/a. As the temperature is raised,
exchange narrowing of the k-state microwave tran-
sitions near 0 and +v/a would be expected; conse-
quently, the wings of the exciton ESR line would
become progressively sharper while the region at
the center of the band would remain broad.

In summary, one notes that the effects of phonon-
exciton scattering on the electron-spin band-to-
band transition in the coherent limit show distinct
qualitative and quantitative differences in the line-
shape functions in both the narrow-band and broad-
band limit and in the region intermediate between
the two. Next, we consider additional interactions
which are static in nature but which also affect the
appearance of the electron-spin band-to-band ESR
transition.

C. k-dependent broadening via two-dimensional translational

equivalent and nonequivalent interactions

Up to now we have only considered explicitly the
spin resonance of excitons associated with near-
est-neighbor one-dimensional translational equiva-
lent interactions. When two-dimensional bands
are considered we must clearly delineate precisely
which features we wish to treat.

1. Effects of two-dimensional dispersion in the singlet band

To begin with, we consider the case where the
txiP/et band extends over two dimensions both be-
ing associated with translational equivalent inter-
actions. Furthermore, let there be a nearest-
neighbor intermolecular exchange interaction P,

principally along one of the two directions, say
a. In the absence of spin-orbit coupling the trip-
let band dispersion, in such cases, appears as
three parallel "ribbons", each ribbon being split
from the other by spin dipolar repulsions. The
coordinates are taken to be associated with wave
vectors along the two translationally equivalent
directions. If the singlet band that is mixed with
a specific triplet spin sublevel band via spin-orbit
interactions has dispersion in both directions a
and b, then the energy separation between the sin-
glet and triplet bands is dependent upon the singlet
wave vectors g and k~. The net result of two-di-
mensional dispersion in the singlet band is to in-
troduce a k, and k~ dependence into the zero-field
splitting of the triplet spin sublevel bands via intra-
molecular spin-orbit coupling. Hence, a single
microwave frequency ~0 will generally connect
spin sublevels at two points on the triplet band sur-
face, one at k,kb and the other at k,.k~, . The only
exception in this twofold k dependence is for Lar-
mor frequencies corresponding to the maximum
and minimum energy separation between the two
triplet bands. These points have associated with
them only one coo. Naturally this approach can be
extended to three dimensions with the correspond-
ing increased functional convolution of ~0 on the
k states. As far as the microwave transitions are
concerned, there are several complexities which
arise but as we shall see, they are fairly easy to
deal with under most circumstances.

The principal effect of two-dimensiona1. band
dispersion in the singlet states and one-dimension-
al band dispersion in the triplet state is to have
associated with the wo's two contributions to the
Lorentz linewidths, one from v(k, k~) and the other
from r(k, ,k~, ) It is expec. ted, however, that these
coherence times will be virtually identical because
the small energy shift from spin-orbit coupling
along b is hardly enough to provide a change in the
phonon-exciton scattering rates along a. In other
words, 7» are the same for a given k, regardless
of the value of k~. A further complication arises,
however, from two-dimensional singlet dispersion
that directly affects the vo dependence of states
possessing a given group velocity V,(k). This can
be illustrated by the following cases. Consider
first the effects of spin-orbit coupling contributions
to the zero-field splitting when the singlet disper-
sion along b is much greater than along a (b,~'"
& 6~'~); further suppose for the point of illustra-
tion that the singlet and triplet bandwidths are
identical. Under these circumstances there would
be no anisotropy in the zero-field splitting along
a but only along b. Since the triplet band disper-
sion along b is taken to be zero, the group veloci-
ties V (k) along b would all be the same [excluding
the extremely small perturbation due to spin-orbit
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(S. O. ) couplingj; hence, p(k) along b is a constant.
The line-shape function under these circumstances
would essentially be k independent, and is given

f(&u) = f'„f p(c, )e '"o'i &fe, , (2. 36)

where f„ is the k~-dependent S.O. coupling pertur-
bation to the zero-field splitting along b. %'e see
that depending upon the magnitude of contributions
to the line shape from examples approaching the
above limit, the observed band-to-band transition
can be broadened by an entirely static effect which
is independent of phonon-exciton scattering.

Next consider the case where b,,""&b&'". In
this case, the principal k, dependence of vo is re-
tained and as before there are points kg~ and

k,.k~. of equal zero-field splitting and a single &0
having associated with it two r(k)'s, v(k,k„) and

r(k, kk, .) How. ever, the points kp, and k,.k, , can
correspond to quite different regions in the triplet
band. In particular, they can have considerably
different group velocities. Therefore, r(k,k,) and
v'{k,.k~.) might be significantly different in this case.
The effective width associated with &uo(k) is related
to

r(k) = r(kg&) +r(k, kk&, k) (2. 37)

and consequently the transition at +o(k) appears to
be homogeneously broadened by phonon-exciton
scattering at two points in the Brillouin zone. This
is not a serious limitation on the interpretation of
the observed linewidth, since it cannot average
Larmor components in a significantly different
manner than what has already been described. The
principal qualitative features of the transitions are
maintained. Only the quantitative evaluation of
v'{k} will be in error. r{k}could appear experi-
mentally shorter than it is in reality. From the
interpretation of the ESR line-shape function, one
errors on the side of less coherence, not more,

2. Effects of two-dimensional dispersion in the triplet band

When an addit. ional intermolecular exchange in-
teraction associated with the translationally equi-
valent direction b in the triplet band acquires a
significant value (the largest being along a), the
separations between any two of the three triplet
spin sublevel bands in zeroth order are equal at
all values of k, k~ and k,.k~. . The electronic energy
of spin sublevel surfaces, however, varies in both
directions a and b. As an example, consider the
case where the band dispersion along a, 4P' is
larger than along b, 4P, P'&g . In such a case,
when a Boltzmann distribution describes the popu-
lations the largest population is to be found at
k„k~ = (0, 0) for a negative dispersion along both
directions. The smallest populations are to be

D(k k ) e « k'(k&+«(ky)ll l&T
a&

D(k k )(k &k&&ak kk&()kJI (T&

e(k, ) and e(kk) are given by

e(k, )= 2P, cos (k, a)

and

e(k, ) = 2P, cos (k,b) .

(2. 38)

(2. 39)

(2. 40)

Selective spin-orbit coupling between singlet and

triplet spin levels will not change the energies of
spin sublevel e(k„k&,) sufficiently to effect a change
in the population e(k„k~); however, the populations
perturbed by a given microwave frequency,
~o(k„k(k), is more complex than in the simple one-
dimensional case. Indeed in order to fully describe
the effects, again knowledge of the two-dimension-
al spin-orbit interaction is required. Several
limiting cases, however, are relatively easy to
deal with.

First, when spin-orbit coupling along kb can be
neglected, the separation between triplet spin sub-
level bands along k, for any one value of k, is con-
stant, and hence (k(0(k„k~) is constant for a given

In the weak-scattering limit the population
perturbed by a microwave field of frequency
uo(k„k~) is simply the sum over the states k, eval-
uated at k, :

k(( )= Q(k(k„k ( (2. 41)

Thus, the intensity of a microwave transition at a
frequency ~0(k k&, ) is given simply by the total
population along one wave-vector direction k, from
the bottom of the band to k, = + «/b.

Second, when spin-orbit coupling results in an

anisotropy in the zero-field splitting along both
directions a and b, the intensity of the microwave
frequency becomes the convolution of populations
at many points on the kP, surface. Generally
speaking, u will be constant between spin sublevels
along some curved contour which is a complex
function of both the two-dimensional spin-orbit and
intermolecular interactions. If the spin-orbit in-
teraction along b is small compared to along a, the
contour of equal (kk(kp, )'s across the surface kp,
is relatively constant in the k, density-of-states
function and the line-shape function reflects prin-
cipally the functionality in the density-of-states
function along k, . Obviously when the spin-orbit
coupling along a and b becomes comparable and

found at the four points on the first Brillouin zone
boundary k„k~= (+v/a, +&&/b) .The general form
of the Boltzmann population distribution for all
l{„k~is given in the nearest-neighbor approxima-
tion by the two-dimensional function N(k„kk} where

N(k„k&, )
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4P~ —4P„ the line-shape function can no longer
give easily interpretable results. It is important
to note that in all the above cases no additional
width z(k) is introduced explicitly by the two-di-
mensional interactions via averagingof the micro-
wave frequencies since the electron-spin orienta-
tion is conserved for all translational equivalent
exchange interactions.

III. SUMMARY

(i) We have attempted to explain the effects of
phonon-exciton scattering on the migration of co-
herent Frenkel excitons and have related these ef-
fects to experimentally observable phenomena.
Specifically, we have derived expressions for the
zero-field ESR line-shape functions for triplet ex-
citon band-to-band transitions. In one- dimension-
al crystals these depend intimately upon the details
of phonon-exciton scattering. The problem has
been considered in three regions which are deter-
mined by the relative magnitudes of the phonon and
exciton dispersions. In the narrow-band limit the
exciton dispersion is taken to be smaller than the
phonon dispersion and at low temperatures where
only the acoustic phonon branch is populated, it
was found that the exciton bands suffer uniform
scattering insofar as the scattering has no depen-
dence on the exciton wave vector. Furthermore,
the magnitude of the scattering was found to be
dominated by the population of the phonon states
which have the slowest group velocities and whose
group velocities match the exciton velocities. Al-
though the scattering reduces the coherence length
of the excitons uniformly for all k states, long-
range energy migration might not be greatly im-
paired since scattering was found to occur only to
nearby A states. The temperature dependence of
the scattering in this limit is given by the Planck
distribution function for the slowest phonon states.
Uniform scattering of the exciton k states results
in a uniform contribution to the electron-spin T2
of the individual wave-vector states comprising the
band-to-band transition. As the temperature is in-
creased, the increased scattering results in broad-
ening of the entire exciton band-to-band transition

in a manner that depends on the exciton bandwidth,
the energy of the slowest group velocity phonon
states, and on the exciton and phonon density-of-
states functions.

(ii) In the intermediate region, the exciton and
acoustic phonon dispersions were taken to be ap-
proximately equal. In this case, the group velocity
of the phonons in the linear section of the phonon
dispersion will match the group velocity of excitons
around the center of the exciton band, resulting in
a large scattering rate for the excitons around
k = + w/2a. States near k = 0 and s v/a were found
to behave in a manner similar to those in the nar-
row-band limit. In terms of long-range energy
migration this may prove most unfavorable since
the fastest states are scattered the most frequently.
However, in this case as above, scattering can
only occur to nearby 0 states, and therefore long-
range transport of energy may still occur although
the coherence length is significantly reduced. In

terms of the electron-spin exciton band-to-band
transition, at temperatures in which the linear
part of the phonon band is highly populated, the
center of the band-to-band transition can be ex-
change narrowed while the wings can remain broad.

(iii) In the broad-band limit, the dispersion of
the exciton band was taken to be greater than the
dispersion of the acoustic phonon branch. In this
case, no phonons with group velocities equal to
the exciton group velocities near the center of the
band are available; hence, the fastest excitons
suffer the least scattering although exciton states
near k = 0 and + m/a are rapidly scattered. From
the point of view of long-range energy migration,
this case is the most favorable. The exciton band-
to-band transition will have very sharp wings due
to exchange narrowing caused by rapid scattering
near k = 0 and + v/a.

(iv) Finally, additional factors which affect the
exciton band-to-band transition have been con-
sidered. These include the effects of intramolec-
ular spin-orbit coupling, an external magnetic
field, multidimensional exciton interactions in the
spin-orbit coupled singlet states and multidimen-
sional exciton interactions in the triplet state.
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