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A transport equation for the density operator of' the Landau quasiparticle in the presence of a
constant magnetic field is derived using the generalized self-consistent field (GSCF) method, An

appropriate matrix representation in k space is introduced. The resulting transport equation for the
Landau one-quasiparticle density matrix is gauge invariant and not restricted to the long-wavelength

limit. In the long-wavelength limit the GSCF transport equation becomes Silin's phenomenological
transport equation. The role of exchange and correlation is discussed. It is shown that to a good
degree of approximation, the quasiparticle velocity can be replaced by the bare particle velocity, and the

Lorentz-type term involving the fluctuation of the self-consistent-field potential can be neglected.

I. INTRODUCTION

The transport equation for a system of interacting
electrons has long been a subject of interest and

controversy. The Boltzmann equation of electrical
(and therma. l) transport has been widely used to
calculate, in the free-electron approximation,
transport coefficients in metals and semiconduc-
tors. ' Quantum-mechanical derivations of the
Boltzmann equation have appeared in the literature.
Transport equations for the interacting electrons
in solids, treated within the framework of Landau's
theory of the Fermi liquid, 3 were introduced by
several authors. Silin' proposed a semiclassical
equation which he used to study oscillations of the
degenerate electron fluid. ' He predicted the exis-
tence of paramagnetic spin waves, later on ob-
served by Schultz and Dunifer in alkaline metals.
Abrikosov and Dzialoshinskii extended these results
to ferromagnetic metals. Extension of the theory
in order to be applied to antiferromagnetic materi-
als or to materials with a more complex magnetic
ordering, was proposed by de Graaf and Luzzi,
and elaborated in detail by Cohen, being from then
on identified under the name of the generalized
self-consistent field (GSCF) method. This method
was applied to the study of equilibrium and nonequi-
librium processes. The GSCF method can also
be a convenient one to describe, in a unified way,
light scattering from a Fermi liquid since the
scattering cross section can be related to the
imaginary part of a transport coefficient (or gen-
eralized susceptibility) through the fluctuation-dis-
sipation theorem.

A most interesting case appears when the elec-
tron fluid is embedded in a constant magnetic field.
Quantum-mechanical derivations of transport equa-
tions in a uniform magnetic field have recently
been presented by van Zandt and Weisenthal and
de Graaf. These authors obtained an equation for
the transverse spin magnetization of a paramag-
netic electron gas. They compare their equations

with the phenomenological equation of Platzman
and Wolff ' used for the interpretation of the ex-
periments of Ref. 6. Conflicting results are re-
ported concerning the character of the velocity en-
tering the Lorentz -for ce -type term and on the role
of the (self-consistent) exchange energy. The time-
dependent Hartree-Fock calculation of %eisenthal
and de Graaf reproduces the results of Platzmann
and Wolff when the range of the exchange interac-
tion is smaller than the cyclo&ron radius.

Two main problems have generally plagued a
quantum-mechanics derivation of a transport equa-
tion in a magnetic field, namely, (a) the restriction
to long-wavelength perturbations and (b) gauge de-
pendence. Here we present a derivation of a
transport equation for the Landau quasiparticle
density operator within the framework of the GSCF
method. The treatment by the GSCF method is in-
herently valid for short-wavelength excitations
thus removing restriction (a) and, furthermore,
the use of an appropriate representation makes the
Liouville-Landau equation gauge independent, and
there is the additional advantage of using Bloch
band one-electron wave functions.

The GSCF -Landau-Liouville equation is derived
in Sec. II, and their principal characteristics are
discussed and next summarized in Sec. III. In Ap-
pendix 8 the collision operator is briefly consid-
ered.

II. GSCF TRANSPORT EQUATION

Let us consider a charged Fermi fluid embedded
in a uniform constant magnetic field HO=Has, in
the presence of a random distribution of impurities,
and subjected to an external perturbation charac-
terized by a potential V(r, f) We assume t.hat the
charged fermion system is described by a self-
consistent single quasiparticle density operator P.
The GSCF single-guasiparticle Hamiltonian «[ p],
i. e. , the first variational derivative of the average
field energy of the whole many-body system with
respect to p, is a functional of p, which in turn
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depends on 0 itself, thus stablishing the self-con-
sistency condition. ' The time dependence of p
in nonequilibrium situations is given by Liouville
equation ' '

i—„&rs I
p«)lr"'& = &Fs

I
[~[p]+ I' p]lr's'& (1)

where r and s are the spatial and spin coordinates
(h = 1 throughout this paper).

We write p= pa+ p1, where po is the unperturbed
( V = 0) density operator and R[ p] = to+ 5i+ 6, where
6o = f [po]& 58 is the variation of the self -consistent
potential induced by the external perturbation (po-
larization effect), and 0 is the potential due to the
impurities. The linearized Liouville equation is
then

i —&Fslpglr s &
—&rsI [Co, pg]lr s

—&rsl [~i~ pollr's'& =&rsl [I' po]lr's'&

+(rs
I
[tv, p, ]lr's'& . (2}

The last term in Eq. (2), due to scattering by
the impurities, is separately studied in Appendix
B.

The uniform constant magnetic field in the z di-
rection can be described in the most general way
by the vector potential A(r) = Ao(F)+ Vg(F), where
Ao(r}=-,'(Hox F) and g(F) is any twice differentiable
function. Because of the presence of the magnetic
field we find convenient to introduce the following
representation for an operator &rs I A I Fs'&:

(knolA.
I

'k'no'j= f d rd r'&rslAIr's'&

x exp[iA(r, F')]0„"„,(F)pf.s, (r'), (3)

A(rr') = 2(e/cg ~ Ao(R)+ (e/c)[g(F) —g*(F')],

with R= o (r+r') and t'= r —r'. Similar transfor-
mations to that of Eq. (3) have been proposed by
several authors to study different transport prob-
lems 2, 1v, 18

The choice of Eq. (4) renders Eq. (2) gauge in-

(4)

where the f,' are one-quasiparticle SCF Bloch func-
tions characterized by the wave number k, the
band index n, and spin index o. The phase function
A is defined as

variant, as will be shown below (cf. also Appendix

A). Furthermore, the band Hamiltonian is diagonal
in the representation defined by Eq. (3), i. e. ,

[k n~ el ~olk'~ n'~ o'l = o(" " o)~f,f ~~~ ~« ~ (3)

where e(k, n, a) are the single-quasiparticle self-
consistent-field (SCF) Bloch band energies. In

what follows we will omit the band index and,
everywhere, k will represent the pair of indexes
fw.

Taking matrix elements, as defined by Eq. (3),
in Eq. (2) and introducing the notation

(knlA Ik'n') =A(kn, k'n'),

we obtain

i —{knl p, lk'n']=i —p, (kn, k'n')

for the first term in Eq. (2).
The second term becomes

(knl [&o p&] 1k'n') =(&(kn)

—(ie/2c)[Hox (uf +&a'a )]

(vf+ Vf, )] pi(kn, k'n'),

where uf is the quasiparticle (SCF) velocity.
We next turn to the third term in Eq. (2). Ac-

cording to the GSCF method one has

x [&R'cr', rs
I
4

I

r's ', Ro&

—(R'o', rsl@IRo, r's'&],

where 4 and 4 are the direct and exchange con-
tributions to the Landau interaction function, '

i. e. , the second variational derivative of the whole
SCF energy of the many-particle system with re-
spect to the one-quasiparticle density operator.
Whereas these quantities can be written in terms
of a two-quasiparticle potential, that is to say,

4 = v, (r —R') 5(R' —R) 5 (r —r ') 5„.5„. , (8a)

4' = v„(r —R'}6(R' —F') 6(R —r) 5,...5„, (Bb)

one gets

&k II&~, rolIIT'~')=&. . (&~. -A'..)I (i&II .Il~'~ &.,(r~..-~~ I f~ ~ ( R). -

where

x""'"' "'e.-,.(F)of*,.( ')e.-*.( )~f,.(R)y;,.(")
(F')Ng p&(k~n, kon')+ same term with F~ r',

&(F, F', R) = (e/2c) Ho[(F'-R) x(r -R)] . (1O)
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Use was made of the fact that

po(p» 0'&') = &Ho&H-, &oo

Ng~ being the Fermi-Dirac distribution function.
Finally, the term involving the driving potential V becomes

(kol ~&, pojlk'o')=(&' - -&g-) &»l 1'lk'o'& .
Collecting the contributions of Eqs. (6), (7), (9), and (12) and the scattering operator of Appendix B one

obtains the GSCF transport equation for the Landau single-quasiparticle density matrix. We omit writing
the cumbersome resulting equation, and give it later [cf. Eq. (13)] in a more convenient way. We first ob-
serve that the GSCF transport equation just derived is gauge independent and not restricted, since k and k'
could be any vector in the first Brillouin zone, to the long-wavelength limit.

Neglecting spin, putting 5e =0 and e(kn) =k /2m, and introducing the new variables k=k+ —,'q, k'=k ——,'q,
the GSCF transport equation becomes, in the small q limit, the Boltzmann equation, once the identification

(k+Hql pilk-Hq)= fd'&e*'"f(k R ~)

is made, and where f(k, R, t) is the Boltzmann distribution function.
An important point already stressed by Weisenthal and de Graaf should be brought to note. Because of

correlation effects the potential e„ is screened. ~9 If J, is the inverse of the range of this potential, and X,
is the magnetic length I bc/eHol ' one can observe that when X,J,«1, the contribution from the exchange
term in Eq. (9) will tend to cancel out because of the rapidly varying phase factor. On the other hand, if
X,J,» 1 what implies either small fields or short-range interaction, the expansion e'"-—1+ iX. can be made.
Under such conditions the GSCF transport equation becomes

i ——x(H ) ~ x(k' ') ~—(H, x(;,~;...)f. (N; ~ v„..)))k(HN, k' '} (N; N; ). -...2c

x g (pp) kul v,
l

k'n', p —k'+kp')5». |)oo. fo&(pp, p —k'+kp')
yS,y'8'

i e ~Ng~ 8Nj",.
(N„, —N;... ) ~ —(H~x-(H„-, H;...)f '

N, ' v, .)2Q 8~k o 8~IT' a'

x g (k(2) pp v, lk c( p'-'k, '+kp')|), o |) o.p&(pp, p —k'+kg')
y&oy'8'

= (&r "—&f.)«&
I vl k'&')+~..)) (P) . (i3)

When n= 0, e'= 4 and k'=k+-,'q, k=k ——,'q and in
the long-wavelength limit, Eq. (13) becomes the
Platzman-Wolff equation for the transverse mag-
netization of an electron gas. In case of a contact
exchange interaction, i. e. , v„(r —r') = U5(r —r'),
clearly, ~= 0 and no Lorentz-type term involving
&e appears, and for gxHo=0 one recovers the re-
sults of Ref. 11.

Equation (13) is then the basic equation to obtain
response functions (or generalized susceptibilities)
of the Fermi fluid. Let us recall that Eq. (13)
corresponds to the case of short-range interaction
between quasiparticles. Let us write

e(ka) = e (ku)+ v(kn)

mation Vfv(kn) presents a logarithmic singula, rity
at k= k+. However, Hedin' has shown, by means
of a new method for calculating the one-electron
Green's function at metallic densities, that cor-
relation effects could make v(ko) almost 0 indepen-
dent and therefore it represents a very short-range
potential in direct space. This implies that u„"

= V„-e(Rn) = Vfeo(ko) or uf, = k/m in the plane-wave
representation. Hence, the quasiparticle velocity
in the transport equation can l e replaced by the
bare particle velocity. Furthermore, the Lorentz-
type term involving 6e is also small and can be
neglected in first approximation.

III. CONC LU SION S

for the quasiparticle energy, where e is the (bare)
one-electron Bloch band energy and v(kn) the ef-
fective exchange and correlation potential for
quasiparticle states. In the Hartree-Fock approxi-

Within the framework of the generalized Landau
quasiparticle picture we have derived a transport
equation for the Landau quasiparticle density oper-
ator in the presence of a constant uniform magnetic
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field. An appropriate representation for the oper-
ators entering the Landau-Liouville equation was
introduced. This representation has the advantages
of making diagonal the SCF-Bloch Hamiltonian and
of allowing to work in the R space. The transport
equation obtained in this way is gauge invariant and
not restricted to the long-wavelength limit. The
Landau one-quasiparticle density matrix solution
of the transport equation provides all necessary
information to determine, in the linear approxi-
mation, any space, spin and time-dependent gen-
eralized susceptibility of the interacting Fermi
fluid. This generalized susceptibil. ity can, through
the fluctuation-dissipation theorem, be related to
a correlation function thus allowing comparison
with measurements,

APPENDIX A: CHOICE OF THE PHASE FACTOR

Pursuing an analysis similar to that used on
studying the Schrodinger equation for a particle in
a magnetic field described by a vector potential A, ~

we write

(Al)

where A is an arbitrary twice differentiable func-
tion of r and r'. Substituting Eq. (Al) into Eq.
(2), at V and ur zero, produces

+ [v;.A+ (e/c)X*(r')] ~ v; —[v;A

—(e/c) A(r)] ~ V;. . (A3)

Requiring that the first term on the right-hand
side of Eq. (A3) be zero, one gets the following
equation for the correction to the action:

(v; —v;, )A —(e/c) [Ao(r) + Ao(r ')]

+ (e/c)[v;g(F) + v;.g*(f")]= 0;
the solution to Eq. (A4) is

(A4)

A(] R)
'

id( . Ao(R)

+ — d$'' V(. g R+~ ' -g* R —~$'
(A5)

(0), R] IF'& —f (f', f")&r
I
R

I

f"'&

(A2)
where C(0) is the single-quasiparticle Hamiltonian
with A = 0 and, after a convenient rearrangement
of terms

I.(F, F') = [[V; —V;] A —(e/c) [A(F) + A*(F')]] ~ (V;+ Vp. )

which is just Eq. (4). It is verified that A(rr)=0
as it should, and using solution (A5) the operator
L becomes

L(F, F')=-,'[ff,xt] v;.
This is the gauge independent Lorentz-type term

of the transport equation. Let us remark that rep-
resentation (3) for j5 is equivalent to take matrix
elements between Bloch states of the operator A.

APPENDIX B: SCATTERING OPERATOR

In this Appendix we consider the collision oper-
ator [s8, p&], i. e, , the scattering due to the random
impurity distribution. Using the representation
defined by Eq. (3) one gets

&.ax [pk = [knl «, Pi] Ik'n'k

= g [(kn
l wl pP) p~(pP, kn')

yB

-&pal ~1k'n'& p (kn, p~)].

Assuming a time dependence of p~ as e'"', and
using a method Of calculation similar to the method
used previously, ~~'~ one obtains

1(k I u I p& I

&&Pn)+-.g n )+f.

x [p, (kn, k'n') —p, (pn, k' —k+ pn')]

I (pl 9lk'& I~ (d —e (kn) + E (p n ) + fs

x [p~(kn, k'n') —p, (k —k'+ pn, pn')], (B2)

where 9 is the single-impurity potential and n the
impurity density.

In deriving Eq. (B2) it was supposed that Ik-k'l l
«1, where l is the electron mean free path, what
implies that p~ is in direct space essentially con-
stant over regions much larger than the volume per
impurity. This allows the average to be taken over all
possible arrangement of impurities (Ref. 18, p.
329). The real part of Z„„can be thought of as a,

renormalization of the single-quasiparticle ener-
gies. The imaginary part, under isotropic con-
ditions, can be rewritten in the form of the Boltz-
mann collision operator in the relaxation time ap-
proximation, ~ used for example in Ref. 15 (cf. also
Refs. 11 and 22).
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