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Electron tunneling through thin insulating films~

Elias Lopez Cruz and J. S. Hclmaa
Departarnento de Fssica, Centro de Investigacion del Instituto Politecnico Nacional, cMevico l4, D. F. , ~Mexico

(Received 5 February 1974}

It is shown by means of an exactly solvable one-dimensional model for a symmetric

metal-insulator-metal structure, that the heuristic method [based on a modified WKB (MWKB)
approximation] recently proposed by Kurtin, McGill, and Mead to determine the dispersion relation

F. -k' within the gap of the insulator from empirical data of tunneling current, gives reliable results.

The reason is that the MWKB method reproduces the exact tunneling probability in order of
magnitude for aII energies in the gap. It is also shown that the usual WKB method applied to the

trapezoidal model underestimates the tunneling probability by orders of magnitude.

INTRODUCTION

Recently Kurtin, McGill, and Mead' have pro-
posed a new analytical technique for determining
the energy-momentum dispersion relation E-k
within the forbidden gap of a solid, and they suc-
ceeded in understanding quantitatively the tunneling
current observed in GaSe in terms of this F.-k re-
lation. The technique is based on the calculation
of the tunneling probability T using the WKB ap-
proximation3 with the attet uation factor K replaced
by the complex wave vector k within the gap of the
insulator. The theoretical foundation for applying
this procedure, which hereinafter we call the mod-
ified %KB (MWKB) method, remained however on
a heuristic basis.

Here, we study an exactly solvable one-dimen-
sional model for the electron tunneling in a sym-
metric metal- insulator- metal (MIM) structure
which allows us to test the adequacy of the MWKB
method by comparison of the exact and approxi-
mate transmission probabilities through the insu-
lator. We conclude that although the MWKB method
reproduces the exact T only in order of magnitude,
it can be considered a rather good approximation
from the point of view of determining the E-k re-
lation from empirical data of the tunneling current.

MODEL

The insulating thin film is described by a finite
succession of 5-function-type potentials equally
spaced, which if continued indefinitely gives rise
to a band structure simulating that of the bulk in-
sulator. The distance between the 5 functions, a,
represents the lattice constant of the insulator and
Na its width, where N is the number of 5's (Fig.
1). The metal is described by a constant potential
whose zero coincides with that of the insulator;
thus we avoid unnecessary complications with the
matching of the wave functions at the interfaces
whose only effect is to give rise to reflections that
are irrelevant to our problem. 3 If the zeros do not

coincide, this introduces only a preexponential
factor in the transmission probability.

Finally, the potential describing the MIM struc-
ture is

V(x}=P nV,h(x-»a),

where Vo is a parameter which measures the
strength of the potential.

TRANSMISSION PROBABILITY

A. Exact solution

A solution of the Schrodinger equation in the in-
tervai na & x& (n+ 1}a can be written in the form

with k= (2rnE jh )', where yn is the electron ma. ss
and F. the electron energy. A„and B„are integra-
tion constants to be determined in such a way that

V(x)}i
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I IG. 1. Model potential for a symmetric MIM struc-
ture. The vertical arrows denote equally spaced 6-
type potentials. The horizontal arrows denote an incom-
ing electron from the left metal with energy E and ampli-
tude 1 which is reflected with amplitude y- and transmitted
through the insulator with amplitude t. A„and B„are the
amplitudes of the forward and baclavard plane waves,
respectively, in the interval ».
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the wave function g(x) is continuous everywhere
and such that4

g„'(na) —p„',(na) = xg„(na)

for n= 1, . . . , N, where g„(x) denotes the deriva-
tive of P„(x) with respect to x and X = 2maVO/k~.
We are interested in the boundary conditions Ao= 1,
Bo = 'Y A ~ = t, and B~ = 0 corresponding to an inci-
dent plane wave coming from the left metal with
unit amplitude which is reflected with amplitude x
and transmitted through the film with amplitude t.

The recurrence relation between the integration
constants in two subsequent intervals can be writ-
ten in the matrix form

ANALYTICAL RELATIONSHIP BETWEEN T AND TM~Kg

Let

+11 +12
R=~

+21 +22

be the matrix that diagonalizes P, that is,

p-
p=RPR '=

I

~0

01

where the eigenvalues of P can be written in the
form

where

and

("- l

P B ~ t Afta

(4)

(s)

P'a
p

W a (i4)

with k given by Eq. (10).'
If R diagonalizes P, then it also diagonalizes any

power of P

((1—xi/2k)e'" —(xi/2k)e'" )
(1+ Xi/2k) e""f

or

PN g-1 pN' P

Hence, for a succession of N 5 functions, we have
and from this equation we obtain

(pe) pe 1-(P /f. ) ~
22 +

pe with p=r, &ra, /r„r2z. From the case X= 1 we have

that is,

(fefklFa tt

& 0 /' &"/

s ///g///

which leads to the transmission probability

Ellllll/E Ill~
where (P")„, is the (h, j) element of the matrix P
to the Nth power.

B. MWKB approximation
F////l//l/////ill//l/////l//////////////////////////////////////////////////////i!

When the succession of 5 functions is extended
indefinitely (X-~), the resulting periodic poten-
tial gives rise to the band structure of the bulk in-
sulator (Fig. 2). The electron dispersion reiation
E-k within a forbidden energy region is given bye

METAL ';-=

iNSULATOR

='; METAL

Xa sin ka I
+ cos ka = cosh k a

2 ka (io)

In the MWKB approximation, the transmission
probability becomes

-2e'a
&MWKS = ~

FIG. 2. Energy-band relations at the metal-insulator-
metal interfaces with no bias applied. The band struc-
ture of the insulator, cal.culated with the parameters giv-
en in the text, is indicated with the dashed regions cor-
responding to allowed energy bands. Ez is the Fermi
energy of the metal and E& is the energy gap of the insu-
lator. The heavy line represents the square potential
barrier used in the trapezoidal model.
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-P22 P'+

pa2-P- ' (is)

and from Eqs. (S), (ll), and (17) we obtain the
following analytical relation between the exact and
approximate transmission probabilities through
N 5's:

E-k (MWKB)

.E-K( WKB)

I-(p/p, ) u
1 —p,

(iS)

Not very nea, r the edges of the forbidden energy
regions p, » p and we can write

(20)

NUMERICAL RESUI TS

The band structure calculated from Eq. (10)
using the values a= 6. 12 A and Vo= 8 eV (to give
@2v~/2~@ = I eV and )a=av) is shown in Fig. 2.

The transmission probabilities T and TM„„~
were calculated from Eqs. (S) and (11), respec-
tively, for the case of five 5 functions and for en-
ergies within the forbidden energy region 9.0-12. 5

eV. These values were chosen to correspond with
a typical insulating film of 30-A width and a,n en-
ergy gap of 3. 5 eV. The results a.re shown in Fig.
3. The E-k characteristics obtained from Eq.
(10) for the same gap are given in Fig. 4.

%e have also calculated the transmission prob-
ability T~K~ given by the "trapezoidal model""
in the usual %KB approximation. This model,
commonly used to describe the work functions at
interfaces with insulators, considers the forbidden
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I IG. 4. Dispersion relation within the energy gap.
E-k' characteristics of the insulator from band struc-
ture, Eq. {10):full line; E-y relation from usual WKB
approximation, Eq. (22): dashed line.

gap of the insulator as a simp! e potential barrier.
In our case, for a square potential as shown in
Fig. 2, we have~

-1oxg
TwKa = e

with

(2i)

~a = v(12. 5- E)' ~' (22)

where E is in eV (Fig. 2). For comparison with

the dispersion relation used in the M%KB method,
the relation (22) has also been plotted in Fig. 4.
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FIG. 3. Transmission probabilities calculated with the
parameters indicated in the text. T:full line; TM~&.
dashed line; T~z. point line. (Notice the change of
scale in ordinates. )

DISCUSSION

The M%KB method reproduces the exact trans-
mission probability T in order of magnitude for all
energies in the gap (Fig. 3). In Eq. (20) the fac-
tor TM„„~ contributes overwhelmingly since, a.c-
cording to Eq. (11), it depends exponentially on the
F.-k relation. The preexponential factor I 1 —p, I

2

is a slowly varying function of the energy of the
order of 1. It is for this reason that the MWKB
method is a rather good approximation to derive
the F.-k relation of the insulator within the gap
from the empirical T obtained by means of tunnel-
ing experiments.

From Eqs. (11) and (21) and the data of Fig. 4,
it is apparent that T&KP, results are several orders
of magnitude smaller than TM„KP, . For instance,
for X= 5 and an energy 0. 35 eV below the bottom
of the conduction band, we obtain TM~KB == 3. 5& 10
and T~~ =—10 . That is, the usual WKB method
applied to the trapezoidal model strongly under-
estimates the transmission probability (Fig. 2).
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Since electron tunneling through an insulating
film is essentially a one-dimensional problem, we
think that the conclusions derived from our one-
dimensional model would not be seriously modified
when the three-dimensional nature of the actual
processes involved in the tunneling are taken into
account.
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