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A self-consistent approach is used to study the coherent pairing of Frenkel excitons produced by a
resonant electromagnetic field in molecular crystals. In the presence of the resonant electromagnetic

field the effective energy gap is equal to the difference between the transition frequency and the

frequency of the field and vanishes at resonance. A dielectric energy gap is induced by the

electromagnetic field that depends on the oscillator strength of the electronic transition in question. It is

shown that under resonance or near resonance conditions and at temperatures below some value T„
the existence of a bound biexciton state with zero total wave vector is possible, provided that the

dielectric gap is less than that for the biexciton state. The excitation spectrum is formally analogous to
that of a superconductor but the new state is not expected to carry current because of the neutrality of
the electron-hole pairs. A splitting of the excitation spectrum occurred arising from the existence of the

dielectric gap. The contribution to the ground-state energy of the crystal arising from the coherent

pairing of excitons is calculated and the possibility of observing the biexciton spectrum is discussed.

I. INTRODUCTION

Light absorption by a crystal of organic mole-
cules leads to the formation of molecular (or
Frenkel-type) excitons. ' In a tight-binding model
of a molecular crystal, a Frenkel exciton may be
viewed as a tightly bound electron-hole pair mi-
grating through the crystal. Considerable interest
has arisen in the behavior of exeiton systems at
high densities where interaction effects between
excitons become substantial. This interaction
has a pronounced effect on the emission spectrum
of semiconductors at low temperatures. Such
emission lines have been observed in Si, Ge, CdS,
ZnO, and CuCl. ~ ' Haynes~ proposed that the
emission lines in Si and Ge were due to the biex-
eiton decay, while it is now generally believed
that they arise from droplets of a metallic elec-
tron-hole plasma. ' Electron-hole pairs in such
systems as Si and Ge undergo a gas-liquid-type
transition at low temperatures and as a function of
density. '

Thus the formation of electron-hole metallic
liquids' as well as the appearance of biexcitons"
in semiconductors has been confirmed as arising
at low temperatures from the interaction between
large-radius (or Mott-type) excitons. In the case
of organic crystals, where the excitons are of the
molecular (Frenkel or small radius) type, the
formation of a biexciton state at low temperatures
may be possible if the attractive interaction be-
tween the excitons predominates.

The aim of the present study is to examine the
possibility of the formation of a biexciton state
arising from coherent pairing of excitons in the
presence of a resonant electromagnetic field in
molecular crystals consisting of aromatic organic
moleeules. The Hamiltonian for a two-level sys-

tern of a molecular crystal is developed in Sec. II
in the F renkel-exciton representation including
exciton- exciton interactions. Then the coupling
with a transverse resonant electromagnetic field
is considered and the equations of motions for the
exciton Green's functions are derived. To con-
sider coherent pairing between the excitons a
decoupling approximation is used which is valid
in the high-density limit and a set of coupled equa-
tions for the exciton Green's functions is obtained.

The excitation spectrum is discussed in Sec. III,
which is formally analogous to that of a supercon-
ductor'~&' as well as to that of the excitonic insu-
lator of semimetals and semiconductors. ' ' The
dielectric energy gap, which is induced by the
electromagnetic field and depends on the oscillator
strength of the electronic transition in question,
causes a splitting of the energies of excitation.
The integral equation for the gap function 4(k)
arising from the coherent pairing of excitons is
solved at zero temperature. Under resonance
conditions, the gap function h(k) is finite provided
that the induced dielectric gap p, is much less than
that of 4(k). The parameters that appear in the
expression for 4(k) are the exciton density, the
effective mass of the exciton, and the strength of
the attractive exciton- exciton interaction. Since
d (k) arises from the coherent pairing of neutral
excitons, the biexciton state, if it exists, is bound

to be electrically neutral.
The contribution to the ground-state energy of

the crystal arising from the coherent pairing of
excitons is calculated in See. IV. The derived ex-
pression for the ground-state energy is similar
in form to that of a super-conductor but with differ-
ent parameters. The possibility of observing the
biexciton state in molecular crystals is discussed
in Sec. V.
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II. FORMULATION OF THE PROBLEM

The Hamiltonian of a crystal with an undisplaced
lattice is taken as'~s'

K, =Q L(f,f )est as

possess only two electronic states 0 and v, the
ground and excited state, respectively. For a
two-level system, the relation

QgpQgp+ Qg„Qg„= 1

is satisfied; then

(6)

S,f gyf' sf'~

&fulfil vlf ~fi&~s4rs~~s', ~s' ~ ~lo4rno= W~lfv~ ~aviv = brvbifv ~

t f„ t

and hence
where f= (n, i, s), n being the lattice site andi and

s designate the electron state and the spin com-
ponent of an electron (+ —', ). The creation and an-
nihilation operators e& and n& satisfy Fermi anti-
commutation relations

~os os 4-bss' to's ~s'1 -I-~s ~s'1. -0 ~

The matrix elements of L(f,f ) are

L(f,f )=&fILIA'&

b;„be„+bit„bs„= 1,

where b-„=a~„a@ and bg„= a&pa- are the Frenkel-
exciton creation and annihilation operators, re-
spectively. Thus for the two-level system under
consideration, ~ the exciton operators anticommute
when they are located at the same lattice sitewhile
they commute at different lattice sites.

Using Eqs. (6)-(8), we write the Hamiltonian (1)
in the tight-binding approximation and for a two-
level system of a molecular solid in the form

xmas (r;.)d7,

where V(rg —r, ) is the periodic potential of an
electron at the lattice site n. The matrix ele-
ments

(2)

'Ry V Rmn

+ —Q'Z(no, molnv, mv)(b;„b- +bl bl„)

X, = const+QE„oh~&„bg„+P JI'n0, mv
I
nv, m0) be„bs,

&f foal vlf fi&

r r —r- g~ r gg r d7'~d7~ ——g U(n, m);„b;,bulb. (9)

V(r; —r. ) = e /I r; —r- I, (8)

correspond to the potential energy of the electron-
electron interaction" and e is the square of the
electronic charge divided by the dielectric con-
stant of the substance. The g's are the Wannier
functions describing the electronic states and r&

and r~ are the position vectors of an electron at
the lattice sites n and m, respectively. The
matrix elements satisfy the following symmetry
relations:

&f,f i I
vlf', f i&

= &fi, fl vlf'i, f'&,

&f,fi I
vlf', f 4&* = &f'i, fl vIfi, f& .

The system of units with 5= 1 is used throughout
and the overlap between the wave functions is ne-
glected.

We adopt a simple tight-binding model for a
molecular crystal consisting of neutral molecules
in an undisplaced lattice having one molecule
(atom) per unit cell. There are N molecules
(atoms) in the crystal volume V; the effects of the
electron spin are discarded and only spin-allowed
transitions will be considered. We shall also
assume that the molecules (atoms) in the crystal

where
Rmi

E„o= L(nv, nv) —L(n0, n0) +g Uo(n, m),
&aE

U(n, m) = Uo(n, m) + U„(n, m), (1la)

U, (n, m) = J'(n0, tv
I n0, m v) —J(n0, m0

I n0, m0), (1lb)

U„(n, m) =- J(m v, n0
I
mv, n0) —J(nv, m v

I
nv, m v), (1lc)

&fi fo lfo, f4) =-&A fo IVlfo, f4& -&f»fo I
V If„f,&, (lid)

R-;= r- —r; and the prime in the sum indicates that
the term with R-,»= 0 should be omitted. The cou-
pling functions in the second and third term of Eq.
(9) are responsible for the formation of the Frei&el
excitons while the functions Uo(n, m) and U„(n, m)
involve interband as well as intraband interactions
and may be attributed as arising from the valence
and excitation band, respectively. The coupling
function U(n, m) is responsible for the formation
of Mott-type excitons (loosely bound electron-hole
pairs) in semiconductors. This is due to the fact
that in view of Eqs. (6)-(8), the relation

(ba bl.)(%.bs. ) = (4.~so)(efo~B,.)
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holds as well.
Going into the momentum representation by

means of the transformation

transition 0- v defined as"

f)bbbb= PQ 8 «f)ebb

where k is a wave vector in the first Brillouin zone,
then the Hamiltonian (9) may be written as

and P~+ is the dipole moment operator of the ith
electron. In the expression for the interaction
Hamiltonian (16) we have considered only the
resonance interaction between transverse excitons
and photons. Exciton-photon scattering effects
will not be taken into consideration in the present
study. ~~ Thus our total Hamiltonian is given by

Xb~~vb~„bg„b ~v, ++r ++tnt (ia)

where F.„„is the energy of an exciton with wave
vector k defined as

We shall make use of the retarded double-time
Green's functions defined as

Ef„=E„o+Z(k), (i4a) ((A(f); B(t'))) = —i8(t —t ) ([A(t), B(t')1 „), (19)

J(k) =P Z(n0, mv~n), m0) e'

Rat
(14b) where

( U) = trUe ~"/tre, 6 = (k)b T) ',
U(k - q) =g' U(n, m) e" ')'"m& —2J(q) . (14c)

"M

In deriving Eq. (13) we have neglected the third
term on the right-hand side of Eq. (9) for the sake
of convenience. This implies that the exciton ener-

gy given by Eq. (14a) is correct in the Heitler-
London approximation. ' The last term in Eq. (13)
describes exciton-exeiton interactions and the
summations are over the first Brillouin zone. The
last term in Eq. (14c) arises from the well known

fact that excitons are not, strictly speaking, Bose
particles but they are bound states of two Fer-
mions. Since we consider only one excitation band,
the index p, indicates the kind of the exciton
mode, transverse p = 1, 2 or longitudinal p = 3.

The Hamiltonian for the transverse radiation
field has the form

t
If~ =Z ~) 4,)39 b

K~ is Boltzm3nn's constant, T is the absolute
temperature, and 3C is the total Hamiltonian of the
system. 6(f) is the usual step function and the
operators are in the Heisenberg representation
and g is taken to be either + 1 or —1 depending
upon considerations of convenience. The equation
of motion for the Fourier transform of the Green's
function ((A(t); B(t )))&„) is given by

(o((A(t); B(t') ))( ) = (I/2v) ( [A(t), B(t)1 „)

-((IA(&), &1; B(f'))&, ,
(20)

The subscript (m) as well as the time arguments
of the operators will be suppressed for convenience.

Using the total Hamiltonian (18) we consider
the equations of motion for the number operators
for the exciton and photon field, respectively, as

kV jv

(2i)
where P~ and P~ are the creation and annihilation
operators of a photon with wave vector k and polar-
ization X(= 1, 2), representing the two possible val-
ues of polarization perpendicular to the direction
of propagation k, and w„- is the energy for the
photon field. The photon operators P~ and P~
satisfy Bose statistics. The interaction between
the transverse excitons and the electromagnetic
field is taken as'7'~'

. d f' t ~ gp.
k«~)))b [ )))«~hb ~1 ~ f

(6 j«P)))b + h -)b)bi ~jX)dt
(22)

where

m«, -=~) [fa, (k&)(&«./~g) 1'" . (23)

Since we are concerned only with one excitation
band we must have g= p for nonvanishing coupling
between the transverse excitons and photons.
Equations (21) and (22) imply that

" 1/2
bb...=(~«1+ f )««) '" tb, „P —b; b ), „.

(16)
where re~ is the plasma frequency and fo„(kX) is the
oscillator strength for the spin-allowed electronic f

d
—(f)«„bi + P~+) = 0,
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and hence 1 2nk„

~k),~k) = —&k.&k +C (25)

',fC = const++ fig„f»&„f&(&„+ ~ 2
(5-g A7 &( I&&& &3 h-)

~0
kv k&k, v

where

—' P'U(k-q)(b';„f,i„)(5-„„t,-„„), (26)
PjV .

kegsv

kv k (27)

Using Eqs. (20) and (26) we derive the equations
of motion for the Green's functions (&b&,„; f&~,&& and

x«Pkx, hL» — —g'~(k-q)1

where C is a. constant. Using Eq. (25) we may re-
write our Hamiltonian (18) as

(34)

c
2

—(d —0„-„+ &(. &(I&'„.„;f&t„» =4"(k)«b„-„; f&t„», (35)

where

,'Q f,„(kt &( ),
Vyg

(37)

The coupling function &(k) describes the coherent
pairing of two excitons with opposite wave vectors
and will be calculated self-consistently. Similar
equations to those of (34) and (35) hold for the
Green's functions &(f&t„-„; 5-„„&) and &(f&f» b ~„&&.

Equations (34) and (35) will be used in Sec. III to
discuss the excitation spectrum. Considering the
approximations that have been made so far, the
excitation spectrum will be correct in the Hartree-
Fock approximation.

x « I '„-„5;„I;„;5';„»,

+ U q k ', 5qvkkv& 5k

where nh, =
&t&t&,„+&. Similarly,

(28)

(3o)

II I. EXCITATION SPECTRUM

Solving the coupled equations (34) and (35), we
have

((
t

))
1 —2uk„((& ((&.' + Q&,„)—(&& Qj/4

kv& t» 2 [~2 f13/ )][(e2 f12(g&)]

(38)

((, t
))

1 —2n&-,„&e'&"(k)
2&( [(d' —0'$ v) ][(u' —fi'(k v) ],

(39'
where the energies of excitation Q, (k(&) are given by

(31) (4o)

To proceed further we introduce the following
decoupling approximation:

~- =+[a'- + ~(k) ~']"-' (41)

«5;.h;„5&., 5'-„„»=&h, „h;.&«5 .; 5;,», (32)

(&5';„b-'5-;51„»=&&a,b - &«W. ; 51.», (33)

which implies the possibility of the coherent pair-
ing of excitons with opposite wave vectors. Since
coherent pairing of electrons is responsible for
most of the macroscopic phenomena observed in

superconductors, '~"» the approximations (32) and

(33) will be sufficient for describing exciton con-
densation. 24 The decoupling scheme described by

Eqs. (32) and (33) is valid in the high-density limit.
Using Eqs. (28)-(33), we derive the following set
of coupled equations:

& f&(-,„b;„&= —2 (f&u Im &(I»-,„; I»„„&(e~+ 1)-', (42a)

&f&„„f»„„ = —2 (f(d Im « I&'„"„; h&1„»{e "+1) ',
(42b)

Substituting the imaginary pa, rts of Eqs. (38) and
(39) into Eqs. (42a) and (42b) and after integrating
over v we find

with A&-,„defined by Eq. (27). The splitting of the
energies of excitation is caused by the gap function
pp given by Eq. (36),whichisinducedbytheelectro-
magnetic field, The distribution functions (f&&-,„f&&-,„&

and &bt„f&t„„& can be calculated by means of the re-
lations~'
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(
d(q'/2m. „,)

p ~0 [(E~+q /2m, ) + Ih(k)l + p I' 2 ' (51)

(5))) f)km) (I std) & 2 e ))/2 t (44}
t. = (av'/)//V)) /3,

p = 1)/(0) U(k) = —,U(k) /~,

(52a}

(52b)
~+(k)

f b 0)-(I ~)) }
(ef ~ g))/2

~(k)
(5-))) 5kv) ( 2nkv) 2) 2 2)1/Z e))

2(Ew + P, ~)
kf/

(45)

(46)

&u = t /2m, „,= L, , X(0) = Vt' m, /2v X= 3/2', (52c)

where I.,„, is the width of the exciton band. ' Carry-
ing the integration in Eq. (51}and after some
algebra we obtain

where 8„ is the temperature-dependent factor given
by

8), = —,ftanh-,'PII, (k)))+tanhzPLI (k)))] + (I/2&k„)

&)k)= . I)
—2(—)(1~ ) c sh(—)

—1

~2 1/2

I'/d/sinh(1/p) ]' (53)

x(ef„+ pf))/~[tanh —,'pQ, (k p) —tanh~)aQ (ki), )t.
(47)

Then Eq. (37) takes the form

~(q)~(k)=- —g U(k-q) (.. .)„,(1-2s,„)&, .
Q

(48)

The scattering amplitude 4(k) is determined by the
solutions of the integral equation (48) at finite
temperatures. In the limit of zero temperature,
P- ~, the function 8g goes to unity and n;„= 0 and
Eq. (48) becomes

Q
V

which is formally analogous to that for supercon-
ductors. '~'3

We proceed now to solve the integral equation
(49) for 4(k). To do so we shall make a number
of simplifications similar to those made in the
theory of superconductivity. ' "~ We consider the
exciton energy in the effective-mass approxima-
tion'

E;„=E„0+q/2m„, , (50)

where rn, ~ is the effective mass of the exciton.
We then assume that in the range of frequencies
within the exciton band, the interaction U(k —q) is
constant, U(k), and positive (attractive interaction)
for 4(q) =A(k} 00, and zero otherwise. We also
take the quantities characterizing the electromag-
netic field as independent of the wave vector, that
is, p- = p, = const and the energy of the electromag-
netic field &dg=Q. Then the summation in Eq. (49)
is replaced by an integration over the first Bril-
louin zone and neglecting the q variation of the
density of states we have

which describes the scattering amplitude due to
coherent pairing of excitons in the presence of a
resonant electromagnetic field.

We shall consider the favorable conditions under
which h(k) 40. It is clear that h(k) becomes ap-
preciable when both the second and third terms in
the curly brackets of Eq. (53) become negligibly
small. In fact, the second term vanishes when the
resonance conditions are satisfied, i. e. , when

F =E„o—0 0. (54)

Thus at resonance or near resonance when (E /u )
« I, Eq. (53) may be written as

2 1fo
~(k) =

sinh(1/p)

which implies that p must be

g & a,(k),

(55)

(56a)

where

~,(k)= .
sinh(1/p)

so that h(k))/0. If we define the static dielectric
constant co for the exciton band in question as

(56b)

so= 1+ (ep f~/E„o, (57)

Equation (58a) indicates that a small value of the
oscillator strength or that a small co is required
in order to give a sufficiently small value for the
dielectric gap p. Thus a. finite value of A(k) is
feasible when the electromagnetic field is at reso-
nance or near resonance with the exciton band in
question, whose oscillator strength should be as

then p, , under resonance conditions, may take the
form

f'"-E,(e, —1)' '-Q{e,—I)' ' (5aa)
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small as possible. It is concluded that although
the resonant radiation field helps in minimizing
or reducing to zero the effects of the insulating
gap F.„o, it sets up the dielectric gap p, , which is
in competition with that of 4o(k). The dielectric
gap function p is also responsible for the splitting
of the excitation spectrum given by Eq. (40).

When U(k} &&a, where re is of the order of the
width of the exciton band, then p & 1 and sinh(l/p)
& 1. This case corresponds to the strong coupling
limit and an enhancement for d ~(k) is expected to
occur. The expression (55) is formally analogous
to that derived by Elesin and Kopaev 'for the super-
conducting gap in semiconductors under similar
conditions. The transition temperature T, may be
determined in the same way as it has been done in
Ref. 25 for the case when p, «ho(k) and under res-
onance conditions by the approximate expression

(z)=co st QA „()i„b )+E
ku k,&yv

—'
I
P' U(k —q) &5',„5,'-„)&5„„5„.) .).
k, $,v

Using Eqs. (30), (31), and (44)-(46) then Eq. (59)
assumes the form

2

&K) = const+ —P 0 (1 —2n„„)——g
2l~ Ib(R))~HER(l —2n„„) l~ Pz(l —2n„-„)

4 . (ef.+ 4)'" 4 ( k+ 4)'"

(58b)
x[tanh-, , (kv)+tanh-, 'p(-0 (kp)]. (60)

and in the limit p, -0,

Ks7~ = 0. 57&o(k). (58c)

Taking the limit of zero temperature, P-~,
e"„-1,nk„-0, then the difference bebveen the
total ground-state energy and that of the normal
state, i. e. ,

Thus when p, «4o there is a, smalI. increase in the
value of 7, in comparison with that when p -0. 1~ Qq„ l~ )d(k))2

2~(ef.+tut4)'" 4 . (ef. +ug'"

IV. GROUND-STATE ENERGY 1~2~ (e) + Q)«» (61)

In order to find the contribution to the ground-
state energy of the crystal arising from the co-
herent pairing of excitons we average the Hamil-
tonian (26) as

which is responsible for the coherent pairing of
excitons, Employing the same approximations as
those used for the derivation of Eq. (53) from
Eq. (49), we find

w =-'(I& I' p')/U--'Ia I'/U--'N(0g(E +~)[(E +~)'+ I& I'+ ~']" -«E'+ I& I'+ g']"'}

(62)

where 6 —= 6(0) and U= U(0). At resonance or near
resonance where (E /m ) «1, Eq. (62) is reduced
to

1 N(0)v
2 tanh(1/p} 2U

The first term in Eq. (63) is similar to that for
superconductors. '2

Finally, we define the biexciton operators

These operators satisfy the commutation relations

[r&„, r«].=(1- g„5,„-5',„)6z.6, ,

[rr. , r4zl =0,

h"„, rpv'] =2r, „r, „(1—6~t 6 ),

which are analogous to those for the Cooper pairs. '~
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V. DISCUSSION

We have considered that physical process where
two excitons with opposite wave vectors interact
to form a. bound state in a molecular solid, It
is found that such a process is feasible provided
that the electromagnetic field is at resonance or
near resonance, i. e. , when the effective energy
gap E~ is less than the width of the exciton band
(or equivalently the binding energy of the exciton)
and that the induced by the field dielectric gap must
be less than that for the biexciton state. When the
favorable conditions are satisfied then below the
critical temperature T, given by Eq. (58b), a
phase transition exists similar to that occurring
in superconductors. However, superconductivity
is not expected to arise because of the neutrality
of the electron-hole pairs. The new phase can be
described as a condensate of bound exciton pairs
due to the effective attractive interaction between
them. According to Kohn and Sherrington, ~' when
bound complexes consisting of equal numbers of

electrons and their holes condense, the resultant
state is not a superfluid. Such systems exhibit
long-range order in the coordinate space' ' '
(diagonal long-range order) but they lack the off-
diagonal one '; for further details we refer to
Ref. 27.

Thus under favorable conditions, i. e. , when

E~ &~ and p, &4o, the excitation spectrum consists
of two intense narrow lines peaked at frequencies
A, (kv) and A (kv), respectively, the splitting of
which is equal to e„-„given by Eq. (41). The ob-
servation of such an excitation spectrum will im-
ply the existence of bound exciton pairs and will
shed new light on the dynamical properties of
excitons. Since scattering effects arising from
the participation of phonons or impurities have not
been considered, our results are applicable at
rather low temperatures and for pure crystals.
We hope that the present study will stimulate ex-
perimental interest for the investigation of the ex-
citation spectrum of molecular crystals under the
influence of a resonant electromagnetic field.
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