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A new treatment is given of first-order Raman scattering in bounded insulators using the polariton
picture. A novel feature of the work is the use of polariton states which have the correct asymptotic
behavior as incoming or outgoing photons in the region exterior to the crystal, and are properly
matched, via boundary conditions to the usual polaritons (coupled exciton-photon states) in the region
interior. %'e recover in this polariton treatment, essentially the results of lowest-order perturbation
theory for the scattering cross section with some significant modifications in part depending on whether

allowed or forbidden exciton-phonon interaction is involved. Inter alia our work shows that the
exterior-photon density-of-states factors appear in the cross section thereby resolving previous uncertainty

regarding use of polariton group or energy velocities in the absorption region. Calculations are given of
frequency dependence of Raman-scattering cross sections for incident frequencies below and above the

energy gap, for allowed and forbidden electron-phonon coupling, and for correlated (exciton) and Bloch
(free) electron-hole pairs. These are compared with experiment for CdS and GaP.

I. INTRODUCTION

This paper has two parts which are interdepen-
dent. In the first part we shall give a theory of
Haman scattering by phonons in a bounded crystal
using the polariton picture. For reasons to be
described below we believe this treatment is an
improvement over previous work using the
polariton picture since our theory gives a unified
account of all the fields external and internal to
the crystal. In the second part of this paper we
calculate the frequency dependence of the one-
phonon Raman scattering cross section for fre-
quencies above and below the band gap of an in-
sulator. Our calculation considers both allowed
and forbidden scattering (involving deformation
and Frohlich electron-lattice interactions) and
also free (Bloch) and exciton (Wannier) electron-
hole pairs. Our explicit calculation for the com-
bination of %annier excitons —allowed and for-
bidden scattering with incident frequencies above
the gap (in the "continuum") is new. We give
numerical results and compare our calculation
with experimental results in GaP and CdS. At
various places in the text we shall compare our
results with earlier treatments which used a
Bloeh-electron picture' or an exciton picture, '
both treated in perturbation theory, or other
treatments using polariton picture. ' '

In the polariton quasipartiele picture the basic
entity which plays the dynamic role in Haman

scattering is the coupled exciton-photon mode:
the polariton. This picture is traditionally ap-
plied to phonon Haman scattering as follows.
The incident external photon (d is assumed to
create an initial exciton-polariton within the

crystal which scatters to a final exciton polariton
with production of a phonon or phonon polariton
(the latter if final-state interactions are impor-
tant). The final exciton polariton upon impinging
on the bounding surface produces the scattered
external photon u'. It is clear that to compare
the measured cross section for scattering of an
external photon (d to an external photon (d' with
that calculated on this picture proper account
must be taken of the process by which the incident
photon becomes the initial polariton, and the final
polariton becomes the scattered photon, i.e.,
transmission across the bounding surfaces of
the medium. In the traditional treatments in the
polariton picture this is done as follows.

First a cross section (s'v/8 Qs~')I is calculated,
say, for a crystal of unit volume, which describes
scattering of polaritons inside the crystal for
which we use subscript I. Then, to account for
transmission coefficients, absorption corrections,
ete. , one can follow I oudon's procedure. ' For
example, in the case of back scattering at normal
incidence from a semi-infinite crystal one has the
relation

8'o 8'o, j'
&Os~' &Qs|d', «(~)+«((u')

'T (u)T (v')

T(u) is the Maxwell transmission coefficient at
the incident frequency ~; ~' is the scattered
frequency; F is the illuminated area; and «(u&)

is the imaginary part of the refractive index at
frequency ~. 1/[z(&u) + «(&u')] can be interpreted
as a skin depth and F/[«(u&) + «(cu')] as an ef-
feetjve scattering volume. The essential point
of Eq. (l) is that there is a factorization of the
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calculated "measured" cross section into a factor
representing polariton scattering processes in-
terior to the crystal times the transmission
factors at the boundary.

This conventional procedure needs improvement
for several reasons. First of all, it would be
preferable to treat the eigenmodes of the entire
inhomogeneous system (bounded crystal plus
vacuum) on a unified footing rather than establish
a dichotomy between exterior photons and interior
polaritons, which is only a Posteriori rectified
by joining the two via transmission factors.
Secondly, from Eq. (I) it is apparent that the line-
width of the scattered radiation should be partially
due to the linewidth (lifetime) of the final exciton-
polariton state. Hence the scattered linewidth
would be expected to increase as the incident
frequency approached a discrete exciton line. But
this expectation is contradicted by all the experi-
mental evidence, which indicates that the scat-
tered linewidth is essentially that due to final
phonon lifetime, i.e., produced by phonon an-
harmonicity. A final matter concerns the un-
certainty regarding exactly which velocity of the
polariton quasiparticle should be used in the cal-
culated cross section (8'&r/sos~'), . There seems
no agreement on this point, with various authors
using group or energy transport velocities; in
either event these velocities are imprecise in the
region of (exciton) absorption. We believe the
treatment of polariton Raman scattering which we
developed is free of these deficiencies.

Our work is based on the construction of the
correct eigenmodes for the polariton Hamiltonian
in the bounded system. These modes have the
property that in the interior region within the
crystal they are the familiar coupled exciton
polariton, and in the exterior region they are the
true asymptotic scattering states, namely, bare
photons, with both parts correctly joined by the
full set of necessary boundary conditions (including
the additional boundary conditions if spatial dis-
persion is taken into account). In Sec. II we obtain
these modes by starting from the polariton Ham-
iltonian consisting of free photons (in both ex-
terior and interior regions) and free excitons
plus the bilinear exciton-photon interaction (in-
terior region). The diagonalization of this Ham-
iltonian is equivalent to the solution of Maxwell's
equations in a medium with a prescribed (and in
general nonlocal) susceptibility, and produces
the proper eigenmodes. Also in Sec. II we give
the trilinear exciton-phonon interaction. The
total Hamiltonian is the sum of all the above-
mentioned constituent parts.

In Sec. III we define the total cross section
which is to be compared with experiment. This

cross section depends upon the matrix elements
of a T operator which contains both the exciton-
photon and exciton-phonon interactions. We
modify a standard textbook discussion of particle
scattering from two potentials to deal with this
case. The asymptotic states which are scattered
from the two potentials are bare (exterior)
photons, and these photons define the incident
flux and the density of final states. Using an
operator identity the exciton-photon interaction
can be removed from the T operator if the as-
ymptotic bare photon states are simultaneously
renormalized by the exciton-photon interaction.
But these renormalized bare photon states are
exactly the polariton modes introduced in Sec. Il,
satisfying asymptotically incoming or outgoing
wave boundary conditions. This transformation
then permits us to write the transition matrix
element in a form of a transition between polariton
modes produced by the exciton-phonon interaction.

If spatial dispersion is neglected the calculated
cross section can then be factorized into a product
of a Baman tensor times a "structure factor, "
formally similiar to Eq. (I). The structure factor
accounts for transmission and absorption effects.
In Sec. IV this is worked out for the case of
normal incidence on a semi-infinite crystal. We
find that the formal expression for the Raman
tensor agrees with that obtained by using lowest
order perturbation theory on bare exciton and
bare photon states, with the important difference
that all momenta in the resulting expressions refer
to polariton momenta in the crystals and not to
bare photon momenta. In summary this result
shows that even in the polariton description the
correct (&'o/8 Qa~'), is that of lowest-order
perturbation theory with the aforementioned
changes. Also the vacuum velocity of light (the
asymptotic state) replaces the polariton velocity
in the formulas; the width of the scattered light
is due to phonon lifetime (anharmonicity) effects
and generally damping effects arise in a straight-
forward fashion; finally the transmission coef-
ficients occur directly and do not need to be put
into the scattering formulas in an a posteriori
or ad hoc fashion. In this way our result removes
the difficulties with conventional polariton theories
referred to earlier. In the Appendix we generalize
the work to include spatial dispersion by including
center of mass motion of a 1s exciton.

In the second part of this paper we use these
results to explicitly calculate some cases of cur-
rent interest for incident frequencies very near a
discrete exciton or in the electron-hole continuum.
In the latter case (frequencies in the continuum)
one must take into account the imaginary part of
the Rarnan tensor. ' ' Thecross section is then
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proportional to the sum of the squared real part
plus the squared imaginary part of the Raman
tensor. In Sec. V we evaluate the Raman tensor
for the four different cases relevant to experi-
ment; namely, with intermediate state either free
(Bloch} electron-hole pairs, or Wannier excitons
and with the exciton-phonon interaction either
q-independent ("allowed scattering") or q-depen-
dent Frohlich interaction ("forbidden scattering" ).
Note that our results imply that apart from the
refractive index as a multiplicative factor in case
of intraband Frohlich scattering, the perturbation
results for the other cases (deformation potential
and interband Frohlich) can be taken over without
change. Allowed scattering has been considered
in Refs. 15-17. For the Wannier exciton case
we give an analytic expression for the Raman
tensor including the imaginary part which has not
been previously given. A calculation for forbidden
scattering with free electron-hole pairs has been
reported by Hamilton. " We were not able to
reproduce his results for first-order scattering
and we believe them incorrect. The calculation
for forbidden scattering via Wannier excitons"
for incident frequencies above the band gap is
reported here for the first time. Actual numerical
calculations are given here, for several ranges
of (material) parameters, and compared with

experiment in Sec. VI.

ll. HAMlLTONlAN

The first step is to write the total Hamiltonian
for a bounded crystal. The Hamiltonian consists
of free photon, exciton, and phonon fields plus
the bilinear exciton-photon and trilinear exciton-
phonon couplings. ' We shall not discuss the
justification for using this Hamiltonian since
that is well known. ''

The total Hamiltonian H can be split into a
polariton part H ", a (harmonic) phonon part
H~, and exciton-phonon interaction II'.

II = apo'+e'+0'

H =Q Sn(q)(c c + ),
q q

H' = g f;&(q)b, b~c +c.c. (5)

HP" = Q bc'% ~(a a~ +-,') +Q hu);(b; b, +-,')
ky

k, y

2 PS(i)]
I/Z „

+i g g, »~, , b, (a +a X„}+c.c.
ay

1 v y

2

+g ' (a~ +a X„)(a'- +a»„),
~ y

a&~, b, , c~ are creation operators for photon,
'4

exciton, and phonon, respectively. k denotes
the momentum of the photon and y a polar-
ization label; i and q are quantum labels
which characterize the exciton and phonon states
for a bounded crystal, respectively. The exciton
label i consists of quantum numbers for the
relative and center-of-mass motion of the exeiton
as well as of band indices for the electron and
hole band. We use periodic boundary conditions
for the phonons, which can then be characterized
by a quasimomentum q and a branch index; the
latter is always omitted in the following.

In Eq. (3), g; g is the bilinear exciton-photon
coupling coefficient, which ean be expressed as
matrix element (f ~Ag p~0), where ~i) is the
exciton state; ) 0) is the ground state, with no
exciton present; Ag is the vector potential for
photon %; p is the relevant momentum operator.
We do not require detailed specification of this
matrix element but we shall implicitly assume
th, at the optical transition 0-i is dipole allowed;
in case it is forbidden higher order terms will
enter. The exciton-phonon coupling coefficient
f„(q) in Eq. (5) will be discussed in Sec. II B.

It may not be superfluous to remark that the
bare exciton and phonon fields exist only in the
interior of the crystal, and likewise their couplings
to the photon as well as to each other, while the
bare photon is assumed to exist in both the in-
terior and exterior regions. We now turn to the
polariton Hamiltonian and its eigenstates.

A. Polariton Hamiltonian

II " is a bilinear form in the photon and exciton
operators, and can therefore be diagonalized by
a linear transformation to give

The vacuum state
~
0) state of H~" is defined by

8»„ I 0) = 0 for all ko and y. Note that we use the la-
bel R, of the external photon to label the polariton
state. We shall discuss this more fully below,
and also later for the scattering cross section
we shall need to specify asymptotic "incoming"
and "outgoing" photon states and we shall then
affix label "in" and "out" to the B and B opera-
tors. We restrict our discussion to cubic crystals
with transverse polarization waves.

The operators B are linear combinations of the
a and b operators. It is convenient for the fol-
lowing to begin with linear combinations of the
a and b operators which correspond to the classi-
cal field and momentum variables:
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Ag„= " (" Pg =f(c]% ~)'~'(a» -a g),),
(c] ~)')" ' )'

A A
g

& +&»a(= ' „, , ll, =i(&d ) (b( —b ).
((d()

In terms of these auxiliary operators, me write
the B~ operator as

(A ov Ag, , +P 0" P").. . )~oy Xt y' y
4&t

K y' y

+ ~ 0 ~+II 0&IJ (9)

and likewise for the Hermitian adjoint. Scalar
amplitudes are mritten everywhere without caret,
the corresponding operators are mritten with
a caret. To find the correct linear combinations
(9) we need to use the equation of motion

A

(t(h& =[&&, ff ")]=Ifc~ ji.~a& =a~fi-„'

(10)

of spatial dispersion, which is discussed more
fully in the Appendix.

Now we specialize to the case of no spatial
dispersion, which means in particular neglect
of the dependence of the exciton frequency&a»=— ~)...
upon the center-of-mass quantum number s, and
also neglect of s dependence in any matrix ele-
ments. This mill permit us to evaluate the sums
over i =—(A., s) in Eq. (15) and so obtain simplified
expressions.

In the case of an infinite crystal s stands for
the momentum K, ()),(r) is simply a plane wave
and the coupling function has the well known form

Ax% ]f» -g& ~k, 4'. ( j.6

In the case of a bounded medium, the coupling
function gz, g» can be calculated by expanding
)I),(r) in plane waves and using Eq. (16). The re-
sult is

g),„e „=g,"().(&),

where ie), (K) is the Fourier transform of g, (r ).
Using the f sum rule

g(d» Q» —(dQ» = 02 (11}

(12)t+Agt t=0p

((d( (d )&(=2(
k g g(, 'f'„'AI)')'

Qt yt

This can be written as a system of equations for
the scalar amplitudes

which permits us to eliminate ~~ in the left-
hand side of EO. (15}. Next we use the com-
pleteness of the set of g, (r) which states

0, otherwise.

~

~

5(r —r '),
~

if both arguments

g p,*(r)p,(r') =~ are in the crystal region;

(19)

x Q k"(, -'()'y' (x(
»

Inserting Eq. (13) into (14) gives

(14)

Then the Fourier transform of Eq. (15) can be
written

(- ' —c*&*)&„)y)=4 fd g(, ')*& (~')

I-(d'+ c'k'+ (d(', jhow~
=

8( ~ -) '
)
' Z(, 7' ) k' y' ~

A» —(d
j(ty t

(15)

For simplicity here we drop the superscript
(%,y) on A~~o", , P~&0", ao ", and II&o)' defined

from Eq. (9). The quantum label i for the ex-
citon can be decomposed into two labels A. and s
which are quantum numbers for the relative and
center-of-mass motion, respectively. W'e assume
that the total exciton mave function is a product
of a wave function for the center-of-mass motion

(j,(r) and a wave function for the relative motion.
At this point Eq. (15) still includes the possibility

(20)

which is Maxwell's equation for A(r) in a medium
with

~

~,(-, ;,) 2 ~
k' ~ w'~ —(w si(I)' '

if both arguments are in

]

the crystal region.

0, otherwise.
(21)

It is clear from Eqs. (20) and (21) that in this
case the integro-differential equation (20) is just
a differential equation since the kernel as the
right-hand side of Eq. (20) is local. The inhomo-
geneous equation (20) needs to be solved subject
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to specifying asymptotic conditions on the homo-
geneous equation (right-hand side zero), which
physically corresponds to vanishing exciton-
photon coupling coefficient, i.e., g), =0. For this
reason we put aiq in the denominator in Eq. (21},
with q a real positive infinitesimal quantity. The
positive sign (negative sign) in front of ig cor-
responds to "out" ("in"}boundary conditions.

A A

The polariton operators B f „and B f „can corre-
spondingly be labeled with "in" and "out" to
regulate the asymptotic photon solutions as either
incoming or outgoing.

Summarizing, we have solved Maxwell's equa-
tion (20) with susceptibility equation (21) via
diagonalizing H " Once. A(r) is known the other
amplitudes can be determined from Eqs. (11)-(14).
Equation (13) gives, in particular,

if r is in the crystal region and 0 otherwise.
Ne can now discuss the physical significance

of the states created by the B operators of Eq.
(9). The photonlike part satisfies Maxwell's equa-
tion (20). The homogeneous solution of Eq. (20)
is taken as an incoming or outgoing plane wave
with wave vector %, depending on whether we take
+i@ in Eq. (21). The coupled solution of Eq. (20)
will also contain reflected and transmitted waves
outside the crystal as well as propagating po-
larization waves in the crystal. The interior and

exterior parts are connected by the usual Maxwell
boundary conditions. The exciton part of the state
created by Bt is obtained by solving Eq. (22)
choosing aiq as in Eq. (21). A state created by
B~ can be uniquely labeled by the momentum

%, of the exterior photon plus the "in" or "out"
designation of an asymptotic behavior. In Sec. IV
this mill be illustrated for normal incidence on

a semi-infinite crystal. Thus, as indicated at
the beginning of this subsection the polariton
operators may be denoted

+f out Bg in

depending on choice of +iq and their adjoints

B'"' and 8
kg

A t A

f)) (q)& 1;f),&
c +c.c.

%', q

It mas shown in Ref. 9 that for small momentum
transfer q only tmo essentially different functions
can al lse ~

@XX ~e ~ )i%' ~A
PPl~ + tP2p ~e+ ~I, J

(25)

Equation (24) corresponds to deformation potential
and interband Frohlich (that is either v 4 v' or
c 4 c') scattering. Equation (25) describes intra-
band Frohlich scattering. r, is the 1s-exciton
radius and I' is given by

i())((r) is the hydrogenic wave function with quantum
label X. The coupling equation (25) is linear in q
for small ~qj and therefore often called forbidden.
Equation (23) reads, in r space,

Xg -lq~ r

This form for the exciton-phonon interaction can
also be used for a finite crystal. The range of the
r integration is then automatically only the crystal
region.

III. DERIVATION OF THE SCATTERING

EFFICIENCY

The differential cross section per unit volume,
per unit scattered frequency interval for scat-
tering of a photon with wave vector ko into a
photon with wave vector kt exciting a phonon q
in the crystal is"

a,nd mhen appIied to the vacuum these create the

appropriate states as indicated above. In what

follows use will be made of this set of operators. with

(23)

8. Exciton-phonon coupling

The exciton-phonon interaction for an infinite
crystal can be mritten in the form
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= (a"+a') +(a"+a') . (a"+a') .
K(u)+it)) -a

(30)

The T operator in Eq. (30) describes the scattering
of photons by two potentials H~ and H'. The
theory of scattering of a particle by two potentials
has been discussed in Hef. 21 and we shall take
over that discussion making necessary modifica-
tions. Our first step is to write Eq. (30) using an
operator identity which can be established after
some algebra

7" "(z)=a"HPE Hi PE 1
, (a -a+a'+a")

z -H+H'

1 8'
+ 1+H T" (a)z -H+H'

x 1+,H (31)

Since the first term in Eq. (31) is independent of
the exciton-phonon interaction it does not con-
tribute to the inelastic scattering and we therefore
omit it in the following.

The operator in parentheses in the second term
when applied as in Eq. (29) will permit us to
introduce new states. The application of this
operator to the ket a ) 0) will produce a new state

ko
which we call ) tttg ), which can be labeled by
the "in" and "out" labels, This state can be identi-
fied as an eigenstate of H ". Thus Let the new
states be"

is the photon-exciton interaction in the polar-
iton Hamiltonian (3) and

~
0) is the product of the

free photon, exciton, and phonon vacuum states.
The T operator is

a'E e
pter

.II (~ +iq)

1

h( td +i ) -ay"
out

& 1+ aPE ut )0&

For vanishing exciton-photon coupling equation
(32) reduces to a photon plane wave. Choosing the
plus (+) or minus (-) sign with (iyl) in Eq. (32)
produces "out" or "in" going scattered waves.
The state equation (32) is an eigenstate of ay",
using a general theorem in formal scattering
theory. "

Now recall the definition of the &„-& operator
in Eq. (9), and its amplitudes A and ry in Eqs.
(20) and (22). For vanishing exciton-photon
coupling a =0 and the 8 „operator reduces to
A)-„. As discussed in the end of Sec. IIA, depen-
ding on choice of sit) in Eqs. (21) and (22), these
operators become the B~„'"' and correspondingly
the "in" operators which describe "out" and "in"
scattered waves.

However a solution of the Schrodinger equation
which describes scattering of a particle in a
potential is uniquely determined by the incident
wave vector of the particle (here photon) and the
asymptotic behavior. Thus (apart from possibly
a phase factor), we identify

i

~out
&

—gout
i 0)

"0" 'O"

(33b)

This important step permits us to rewrite the
original transition matrix element between bare
photon states as a matrix element between ap-
propriate polariton states. Then Eq. (29) be-
comes"

= Q f (pter)(0)Bf, bty b~Bt'"t ~0)
sj 0~ pf

= Qf;y(q)(«l):Bj, „., b,'l):5„Bg'„"')+).Bj, , » 1[b,' B-„'"„')10&1

and using Eq. (22) this becomes

Ito y' t «
' r ltoy tout fo (q )( ttt + td )(tti + ttt) +f tt (q )(ttt —tray)(td —tttt)

~3 (2 3/2
i j

(34)

If we transform the It label in i =(X, k) into r space and use Eq. (27), Eq. (34) reads

Z g, , ~ 2 g f xx'(q)(ttrztdt'+rdttt ) dr e-ttt r)-alto' y'(r)) oto) troy(~))out

X. X'
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Inserting Eqs. (22) and (35) into Eq. (28) and rear-
ranging, gives

CL

, =kok" Q 6[(u —(u' —A(q)] Q R„„.(q, (o)Syq (q) ',
yy'

~&. graf ~~'(q)8' ~

(A) (d

1 1

[I(d y
—1(hl+ fg)] [K(dy~ - K((d + fbi)] [K(d &, +5(&d + Ig)] ['K(d y' +N((d + f'g)]

S „„(q)= dre '"'A o & ' *(r)A~o» ~ '"'(r) .
C

(37)

The vector potential A in Eq. (38) is determined by Maxwell's equation (20) and the condition that outside
the crystal the incident or scattered wave % taken to be unit amplitude. The prefactor in Eq. (36) is calcu-
lated using this boundary condition. The letter C in Eq. (38) means that the r integral runs only over the

crystal. Without damping (d'o/d Qd+') is proportional to the crystal volume, and with damping it is pro-
portional to an effective scattering volume. One obtains the scattering efficiency [dimension[i/(length
times frequency)]] from the cross section d'a/dQd&u' [dimension (length squared/frequency) by calculating
the latter for unit volume.

IV. DISCUSSION OF THE SCATTERING CROSS

SECTION

A major result of this work is Eq. (36) for the
scattering cross section, which consists of two
factors: the Raman tensor A(q, ao} and a structure
factor S(q). This result was obtained by neglect
of spatial dispersion. Now we shall compare Eq.
(36) with the results of perturbation theory and
with other (conventional) treatments in the polariton
picture.

In the perturbation theory treatment the struc-
ture of the Hamiltonian is identical to that of Eq.
(2) except that all objects always refer to the in-
finite crystal (interior), in the calculated (8'c/
8G Bu')z, with the transmission factors across
the boundaries being accounted for as in Eq. (1).
A comparison of our equation (37) with the results
of perturbation theory [see Eqs. (29) and (30) of
Ref. 2] indicates first of all that Eq. (37} only con-
tains two of the six terms which arise in pertur-
bation-theory treatments. ' This is because of the

simplicity of the Hamiltonian we used: had we in-
cluded the bilinear exciton-phonon and the tri-
linear exciton-photon terms the other four terms
would appear in Eq. (37). But the result equation
(37) suffices for our discussion. Further, we

note that the two terms in Eq. (37) are the same
as their counterparts with one important dif-
ference. In our case q is the difference between
incident and scattered polariton momenta inside
the crystal whereas in perturbation theory, q is
the difference between incident and scattered
bare-photon momenta. In case of momentum in-
dependent scattering (such as deformation poten-

VQCUUrYl

"oz
Re

crysta[

tkz

I

vacuum
I

c rys ta[

(koz
Re

-ik'z
Te

ikoz
I

-ikoze

a)

FIG. 1. Illustration of the different waves inside and
outside of the crystal which belong to the initial and final
state for the Raman scattering and which satisfy the
correct boundary conditions. I,'a) Incident wave; (b) scat-
tered wave.

tial or interband Frohlich coupling), the two re-
sults agree. For the intraband Frohlich case,
A(q, &u} is proportional to the momentum transfer
q and thus in polariton theory q = [n(u)ko-n(u'}ko],
where n(m) is the refractive index, while in per-
turbation theory q =(ko-k,'). As ~ approaches a
discrete exciton energy from below the polariton
momentum transfer can become very large where-
as the photon momentum transfer remains small.

The structure factor S in Eq. (38), in general,
leads to Loudon's formula' for transmission coef-
ficients, absorption corrections, etc. To illustrate
this let us consider a backward-scattering experi-
ment with normal incidence on a semi-infinite
crystal. The different amplitudes for the vector
potential which are compatib1e with the boundary
conditions "in" and "out" are shown in Fig. 1(a)
for the incident wave and in Fig. 1(b} for the scat-
tered wave. Figure 1(a) is apparent because it
corresponds to a simple physical picture for the
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1+B=T, 1 —A=nT, (39)

with n =k/k, and n' = e(&u). It then follows that
T=2/(1+n). Similarly, Fig. 1(b) leads to T'=2/
(1+n'). Therefore, we have the result that the
same transmission coefficients have to be used
for the incident and scattered waves, except for
the difference between ~ and cv'.

Equation (38) then becomes, after squaring,

lS(q,)l'= F'[Re'(k' k+q.)+I-m'(k'+k)] '

incoming, reflected and transmitted waves. Fig-
ure 1(b} for the scattered waves is at first sight
unexpected. However, examining Eq. (32) reveals
the origin of this result: one has to change the bra
vector [Eq. (32)] into a ket vector by taking the
Hermitian adjoint. This changes the sign of jq
into -iq and therefore the ket of the scattered
waves corresponds to incoming boundary con-
ditions. A discussion of this point in terms of
precollision and postcollision wave packets is
given in Ref. 21. Maxwell's equation (20) gives,
for the amplitudes,

mally equal to the lowest-order perturbation re-
sult with the exception that the transferred momen-
tum in the Raman tensor refers to polariton mo-
menta inside the crystal before and after scat-
tering and not to bare-photon momenta. As a
result the correct (82o/BQ 8&@')z is formally iden-
tical to the lowest-order perturbation theory re-
sult with the previously indicated difference de-
pending on whether the scattering is momentum
independent or momentum dependent (intr aband
Frohlich). Now we shall compare our result
equation (36) with the cross sections obtained in

other polariton picture treatments such as Refs.
3, 5, 7, and 9. In Refs. 3 and 5, a result is ob-
tained which, transcribing to our notation can be
written, for unit volume (V =1),

420 1 1 A''2

2k-2 Q 8(& ~ Q(q})&q Tc-Tr'

x T((g)z'((o') . (4o)

lS(q, ) l' acts like a smeared out momentum selec-
tion rule for the final q, integration. The main
contribution comes from a region around q,
=Re(k —k') with a width of Im(k+k'). Since the
deformation potential is q independent there should
be no effect at all in the cross section for allowed
scattering. But Frohlich scattering is q dependent
and one would expect an effect. The magnitude of
this effect can be estimated in the following way:
the maximum in the Frohlich coupling for 1s
excitons occurs at lql = I/20, where r2 is the ls-
exciton radius. The spread of momentum is of the
order Im(k+k') - k, . Because k, is small com-
pared to I/r2 the spread involves only a region in

q space, small compared to (I/r2}2 and therefore
should lead to a small effect. This was verified
by a numerical calculation for CdS which showed
that to obtain non-negligible effects one mould
need an imaginary refractive index much larger
than one.

Carrying out the q, integration one obtains from
the lSl' term

T(~)T(cu ') E/Im(k + k '),

except for a volume factor which is canceled by
a, similar factor in A.

Equation (36) together with Eq. (41) give a final
answer to the question of which (d2o/dQ o&u')z has
to be used in equations like (1). We have treated
the exciton-photon interaction exactly in this work,
so it is clearly a polaxiton picture. Nevertheless,
we obtain a result for (82o/BQ 8&v') which is for-

(42)

v is the group velocity (Ref. 3 uses the energy
transport velocity) of the incident polariton.
is the group velocity and k' is the wave vector of
the scattered polariton. The factor k "/v' is pro-
portional to the density of final polariton states.
6 is the Kronecker symbol and e and 2' the po-
larization of the polaritons. The quantity E~(&u)
measures the exciton content of the polariton and
is given by

(43)

Equation (42) should be compared with our equa-
tion (36) taking

S(q) = a- - -, . (44)

There are tmo important differences between our
result equation (36) and equation (42).

In our result equation (36), the velocity factor
in the incident flux, and the density of final states
refers to the propagation of the physical (mea-
sured) photons outside the crystal, while in Eq.
(42} these refer to the propagation of polariton
wave packets (for group or energy velocity) in-
side the crystal. We believe our result resolves
the question (and difficulties) referred to earlier
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of use of group or energy velocity, in the polariton
picture, especially when absorption is present.
From our treatment we see that the correct ve-
locity factor is that of photons in vacuum.

The second difference concerns the normaliza-
tion constant N(u) In. our treatment, e.g. , Eq.
(37), N(&v) = 1 and the correct normalization fac-
tors are determined by the Maxwell boundary
conditions (recall spatial dispersion is not in-
cluded here so there are no af&c). These factors
then appear in the transmission coefficients.
Again we stress that our cross section corre-
sponds to the physical situation where the incident
and scattered photons are measured outside the
crystal and the scattering by phonons is done by
polaritons inside the crystal. On the other hand,
the normalization constant N(&u) in Eq. (43) cor-
responds to normalized polaritons. Thus Eqs.
(42) and (43) describe the situation in which inci-
dent and scattered polariton fluxes are presumed
created (normalized} and detected inside the crys-
tal. But in our opinion the latter does not cor-
respond to the physical situation. For this rea-
son also we believe our treatment preferable.

At resonance, when incident (or scattered) fre-
quency approaches a dispersionless 1s exciton
band our treatment equation (36) leads to a diver-
gence in the scattering cross section like
(u&„—&u) '. Of course it is well known that any
predicted divergence is eliminated just at reso-
nance by damping (self-energy effects) which are
due to higher-order terms in the Hamiltonian than
we considered. But we want to emphasize that
this unphysical divergence is not a significant de-
fect of the theory but only of the somewhat simpli-
fying approximations we made here with the as-
sumed Hamiltonian in order to bring out the im-
portant new results of our work. Inclusion of
spatial dispersion effects (see Appendix) even if
damping terms are neglected also eliminates the
divergence. But spatial dispersion effects com-
plicate the theory owing to the extra propagating
waves, "etc. , so that a straightforward compari-
son of our new results and other polariton treat-
ments including spatial dispersion is not possible.
Our predicted divergence is in accord with the
results of perturbation theory carried out at a
similar level. As will be shown (Secs. 5 and 6)
explicit numerical calculations of the frequency
dependent cross section near resonance using our
results give satisfactory agreement with experi-
ment in several cases, although several questions
remain. Turning now to the conventional polariton
treatments we note that Ref. 6 obtains the result
equation (42) with N =1. In Ref. 9, a formula like
Eq. (36) is obtained, but multiplied by the factor
Re(n'}/Re(n). All these other polariton treatments,

Refs. 3, 5, 6, 7, and 9 obtain a cross section which
diverges at resonance like (e„—~) '", again
neglecting damping and spatial dispersion, and
with the same caveat regarding elimination of
unphysical divergences at resonance, by damping
terms.

We do not know whether at the present time the
predicted difference between the power law di-
vergence of (-2) we predict or that of (--,') given
by other theories, is experimentally detectable,
but certainly this is a noteworthy difference be-
tween our new results (and perturbation theory)
and the other polariton theories.

V. EVALUATION OF THE RAMAN TENSOR

In the present section we shall derive more
explicit formulas for the resonant term in the
Raman tensor equation (37). In Sec. VI explicit
numerical calculations w'ill be given and compared
with experiment in various cases. Owing to our
general result that the rigorous polariton treat-
ment gives results akin to perturbation theory
there will be some contact with results previously
reported by other workers. Where such contact
exists we compare our work and theirs. We be-
lieve that the several of the various representa-
tions for the Raman tensor and the structure fac-
tor reported here are new and also permit nu-
merical calculation to greater accuracy than be-
fore.

We consider a simple insulator and we limit
ourselves to one valence and one conduction band
and the corresponding discrete and continuous
exciton states. The bands are assumed to be
parabolic and the band masses negative and posi-
tive for the valence and conduction band, respec-
tively. The quantum number A. is then fully de-
termined by the internal exciton momentum k and
(only for the Wannier exciton case) a discrete
variable n=1, 2, 3. . . . The oscillator strength
g( is'

g~~ = (e/m ) (Py)(~ «) '~0«(O),-

&»„&= J d'»

where y is a Bloch function at the zone center.
The momentum matrix element is assumed to be
nonzero. For free electron-hole pairs

(46)

while for Coulomb correlated pairs

1 ~'~0 ~ «l

le. o)I - „„.„., Ie«-(o)I —,
lkl stnh(, /„ lkl),

(47)
where ro is the 1s exciton radius.
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A. AHowed scattering

The coupling function is given by Eq. (24) and the Raman tensor for correlated electron-hole pairs be-
comes

'"e'&P )&P )*(&..-C'..) ~~)(„„.(ii) = (-ii i' " '," - ~ iir*, ' [)i( ~ i))) 8 i * —z, ][I)(ii' i))) ~ )i',/ii' —z,]

e' "o " /sinh(7{/r, lk l)
'aiir, J, "

W ~ i)))- I')'/2)i-E]I+( i)))-'~')/2~i-&])
(48}

is the exciton binding energy 5 /2pro of the Is exciton, ]], is the reduced mass. Writing the numerator
in the more symmetric way

e' "0~" /sinh(w/r, lkl) =I+ ctoh( /er, lkl )

and making the substitution x = I/kr, the integration can be carried out in the complex plane. The integra-
tion path is hereby extended for convenience to -~ and then closed in the upper plane. The result is

V 4vr, '(d(d'rn' ~ n' &((e +ir})—E, + E&/n' g((d '
ir+]) —E, + Es/n''

1 h((L) + i]I) —E
%e+s h'((e'+i@) —E,

+ iv (e[(n~ —Z,)/a~, ] 8[(n(u—' Z,)/fi-(u. ])

''ii(io))i{ii]&,/(I - & )P'*- i» {iifzs/(& '-&,)]"*)

Here 8(z) denotes the step function. The case of uncorrelated pairs is obtained from Eq. (49) by taking
the limit ro- ~,

( ),(r~)'"e'((„)()i„)'(c„—c ) (2)i) "t)i —)i)'" (Iii' —z)
'~

(50)

B. Forbidden scattering

In this case the coupling function equation (25)
is to be used. It is convenient to write the inter-
mediate sum as a Green's function

8(d+{)](r,0) = 8(di{))(0,r) =
2 e «~l Ti

yoE~ 4g r

(- -) ~ & rl»&&l r)

( I(()ir+[) —K(d „'

Using Eq. (50) we obtain

(- „) ~r
'

&P„)&P) )*C e'
r', z,'[ql~~' m'

x S q~ —S q~

(51}

(52)

and in the Coulomb correlated case"

1 I'(I —iv)8 „„(r,0) = 8 „„(0,r) =
r, E~ 4n(r

x W„„,(-2ik lrl) .

I" is the gamma function, 8' is the Whittaker
function, and k and & are defined by

(55)

s„(i()=(i,z,)* f d e'"'

x 8~,{„(0,r)8~.„.„(r,o), (53)

"") )"* ( () o

v= I/rP .

(56)

(57)

with the total exciton mass M=m, +m„. In the un-
correlated case it is

Inserting Eq. (54} in (53}gives for the uncorre-
lated case
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( (2 )'" (6
-2,)" (6

' —2,)'" (58)

Retaining only the term proportional to q', Eq. (52) yields the following expression for the Raman tensor
for free electron-hole pairs:

(58)

The case of Coulomb correlated pairs is more
tedious. We used the following spectral repre-
sentation for the Whittaker function":

620 k

1

(
k-k1+ y, 0~y~1

in a power series in y using the fact that (k' —k)/
2k «1. Our final expressions are

expansion I:

which is valid for —1 &Re(k)& 1. The last restric-
tion means that the frequencies ~ or cu' must be
below the 1s exciton or above the gap:

S~&E1 or k~&E

6 I 2

n

(64)

and

E„or 5&'& Eg .

(61)
n+ i, -~,

x B(4, 1 + l, + l, —i v);

Inserting Eqs. (55) and (60) into (53) and carrying
out the r integration, we obtain expansion II:

kk'
S„(q) =

2
ds,

2W 1

ip
2 ( 2

p 2)2

(62)

ik'(I', , ~ (1 —iv')„(5)„
Rwk'5' ' ' ~ n f(1+n)!

x I„[ln2 —(l((n 6 I}—i(n+ 2}

~ 6( +6}~ 6(( * —i '), (]), (66(

with P =ks, + k's, . For first-order Raman scat-
tering, q «P holds for all frequencies. We ex-
pand therefore the first factor in the integrand
and keep only the quadratic term in q [the constant
term in g drops out in Eq. (52)]. S (q) then be-
comes"

oo s +1
S (q}= „,B(1—iv', 4) ds,

1

(Q B) — 5 (I 6 6'kf

k

oo

x Q (5 —1)'(B(4 (. n, l, + 1 —iv)
I

I

2k'A+ J3ln k'

—B[4((n + 4) —(l((5 + l, + n —i v) . (67)
x F(1 —iv', 5, 5 —i v', 1 —2/a) . (63)

Here a =1+(k'/k}s„B is the P function, and F is
the hypergeometric function. Moreover we as-
sumed that ru' (and therefore also u&) is in the
continuum so that n & 2. The case ken & S„is
easily obtained by interchanging k and k'. We
expand the F function in Eq. (63) either as a power
series in 1 —2/a (expansion I) or in 2/a (expansion
II} using the formulas 15.1.1 and 15.3.12 of Ref.
28. The substitution s, -s,/(s, +5) transforms the

integral into the interval [0, 1]. Finally, we ex-
pand also a factor of the form

6 is given by (k + k')/2k and (!( is the first psi func-
tion. Equations (64) and (65) represent a power
series in (1—5)/6 and should converge rapidly
far away from E and E„. Similarly, Eqs. (66)
and (67) converge near E and E~.

Our numerical work using these formulas was
carried out on the NYU-CDC-6600 computer.
Detailed results are given in Sec. VI. It may be
worth noting however that the numerical summa-
tion shows that the l, sum rapidly converges;
taking 20 terms is sufficient for an accuracy of
10 '.
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For the n sums we used 300 summands in Eqs. (64)
and 60 in Eq. (66}. Taking both expansions, we
obtained an estimated accuracy of at least 10 '
for all frequencies satisfying the inequalities in

Eq. (61}.

VI. DISCUSSION OF THE NUMERICAL RESULTS

AND COMPARISON WITH EXPERIMENT

In this section we shall give our calculated re-
sults on the Baman tensor for the four combina-
tions we considered: allowed and forbidden scat-
tering, and Bloch and Wannier electronic states.
As appropriate comparisons will be given with

experiments in CdS and Gap and with other work-
ers where there is some overlap.

Figures 2 and 3 show numerical results for the
squared modulus of the Itaman tensor IR .(ur} )

as function of the incident frequency ao. In both
figures only an over-all numerical factor is arbi-
trary. The ratio of the values below and above
the gap and also those for uncorrelated and cor-
related electron-hole pairs are fixed by the
theory. We used the experimental value O.V5 for

10 —.
5

(arbitrary units)
ol ji 10s

10—4

I

I

I

the ratio Err/R&o, in Cds. For incident frequencies
+ & co~ our curves agree with those of Bendow
et al. '7 for allowed scattering and of Martin'9 for
forbidden scattering. Inspection of Eqs. (50) and

{59)shows at once two important properties of
the Raman tensor, calculated with free electron-
hole pairs: (a) iR~~(&u}I' as function of &d is sym-
metric with respect to the frequency 0 =+ + —,'~0.
The dashed lines in Figs. 2 and 3 show graphically
this symmetry; (b) R .(u&) is real for ur ( u&, ex-
pressing the fact that only virtual electronic pro-
cesses can take place in that frequency region.
R„ i(ru) is pure imaginary for ur & &v, +u&, and re-
flects the fact that the ingoing and outgoing photons
are in resonance with electronic states. For
td, «0 & td~+ &u0 R~i(&d) is in general complex. The
dashed (real part) and dash-dotted (imaginary part)
lines in Figs. 4 and 5, labeled with a capital F,

Is - Exciton
p

p

to'I-

I

10
pC

I
I

/

10—

-6 -4 -2
I

0 2

0
I

6

FIG. 2. Frequency dependence of the squared modulus
of a nonzero component of the Raman tensor for allowed
scattering. ( is the incident frequency; ('~ is the gap
frequency. The dashed curve is calculated for free
electron hole pairs and the solid curve is calculated for
%'annier excitons. The arrow marks the position of the
1s exciton. The experimental points are from the
following references: solid dots, Bef. 30 for Gap; open
squares, Bef. 29 for GaP; open circles, Bef. 17 for CdS.

0 /
0 /

/
/

r
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FIG. 3. Frequency dependence of the squared modulus
of a nonzero component of the Baman tensor for forbidden
scattering. Dashed curve calculated for free electron-
hole pairs, solid curve calculated for %annier excitons.
The experimental points are from the following refer-
ences: crosses, Ref. 30 for GaP; open circles, Ref.
31 for CdS.
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FIG. 4. Different contributions to one of the nonzero
components of the Haman tensor for allowed scattering.
E dashed curve, real part; E dot-dashed curve, imag-
inary part with free electron-hole pairs; E solid curve,
discrete (real) contribution, E dashed curve, real con-
tinuum contribution; E dot-dashed curve, imaginary
contribution of Wannier excitons. All contributions have
positive sign except of the real continuum contribution
of Wannier excitons above the gap, denoted by -E.

illustrate these points.
The residual Coulomb attraction between elec-

tron and hole produces two changes compared to
the free cases: discrete states appear below the

gap and the oscillator strength lsee Eqs. (50)-(52)j
strongly increases for small kinetic energies of
the exciton. Let us first consider allowed scat-
tering. The discrete contribution to the Raman
tensor is shown by the solid line in Fig. 4. Al-
though the oscillator strength of the discrete
states is much smaller than the integrated oscil-
lator strength of the continuum, the discrete
contribution is larger than the free electron-hole
contribution in the region from 4(do below to 3+o
above the gap. The strong I/O enhancement of
the oscillator strength for small internal momenta
k increases the real part of the exciton continuum
contribution substantially below the gap. Above
the gap this real continuum part is of the same
order of magnitude as below but of different sign.
The discrete and the continuum contribution add

up constructively below the gap leading to a
strongly increased Raman efficiency due to Cou-
lomb correlation (see Fig. 2). Above the gap the
discrete and the real part of the continuum con-
tribution have different sign and are roughly of
the same order of magnitude. The resulting can-
cellation makes the total real part of 8 rather
small in the continuum. This destructive inter-

ference is also discussed in Ref. 16. Figure 4
shows that the Coulomb correlation tends to di-
minish somewhat the imaginary part of the Raman
tensor. In total, the Coulomb attraction between
electron and hole causes a strong asymmetry in
the Raman efficiency with respect to the gap, a
strong enhancement only occurs below the gap.

The situation for forbidden scattering (Figs. 3
and 5} is similar. Strictly speaking, one cannot
distinguish in that case between a discrete and a
continuum contribution because of the nondiagonal
elements in the internal quantum numbers. It
turns out that the part of A due to discrete state
only is at least one order of magnitude larger than
the total real part in the frequency interval shown
in the figures. Below co the cancellation with
other contributions in A is incomplete leading to
a Raman efficiency which is one to two orders of
magnitudes larger than in the free case (see Fig.
3}. The total efficiency in the exciton continuum
is again of the same order as in the free case be-
cause of large cancellations in the real part and
the absence of an enhancement in the imaginary
part.

Figures 2 and 3 contain experimental values for
GaP (Refs. 29 and 30) and CdS." " In GaP ezci-

&0 —. Is - Fxciton

R I

- (arb. units)
/

/

/ I'I(
/

/
I l

1
/ /

/ I i

~-F
)02 ~ / \

/

)0— I

I

-El
I

10

~-E

j
i

{4)- (d~)/+o
/ 6

FIG. 5. Different contributions to one of the nonzero
components of the Haman tensor for forbidden scattering.
I dashed curve, real part; I' dot-dashed curve, imag-
inary part with free electron-hole parts; E dashed curve,
real part; E dot-dashed curve, imaginary part with
Wannier excitons. The minus sign in front of I' or E
means that the contribution has a negative sign.
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tonic effects are rather small and we compared
the experimental scattering efficiencies with theo-
retical predictions for the free electron-hole case.
For CdS the theory with Coulomb correlated elec-
tron holes was taken for the comparison.

Figure 2 shows that the agreement between theory
and experiment for the uncorrelated case (dashed
line) is rather good. The agreement above the

gap is still improved if the spin-orbit splitting of
the valence bands is taken into account. " The
theoretical curve for the Coulomb correlated case
(solid line in Fig. 2) below the 1s exciton and its
comparison with experiment is identical with that
of Ref. 19. Above the gap however our curve also
contains the imaginary part of the Raman tensor
and becomes much flatter (like the experimental
points) compared to the curve in that reference.
Nevertheless the theoretical values are too low

by a factor of about 10 in that frequency region.
Figure 4 shows the same comparison for the

forbidden case. The GaP values fit the theoretical
curve only for a small frequency region around
the gap and then tail off rapidly. A possible expla-
nation for that deviation is that the experimental
efficiency also contains allowed scattering contri-
butions due to imperfect experimental conditions
or impurities. In any case the experiment does
not show a clear violation of the theoretical mir-
ror symmetry of the scattering intensity with re-
spect to the frequency cu + 2uo (especially if
one takes into account the uncertainty in the exact
position of the bottom of the conduction band).
The figure shows also that the experimental points
in CdS of Ref. 31 fit the theoretical curve for the
correlated case below the 1s exciton rather well.
Above the gap the theoretical curve has a similar
slope like the experimental points but it is much
too low to explain the experimental efficiency.
The large discrepancy in the continuum for CdS
is rather puzzling because we treated the exciton-
photon coupling exactly and took fully into account
the electron-hole correlation. One possibility to
explain the discrepancy is that above the gap the
radiation does not penetrate deeply into the crystal
so that surface effects may play an important role.

APPENDIX: SPATIAL DISPERSION EFFECTS

In this Appendix we shall generalize some of the
work of Secs. II and III to include spatial disper-
sion. %e consider allowed scattering and limit
ourselves to incident frequencies close to a para-
bolic 1s exciton band. Assume the crystal is semi-
infinite and we are dealing with normal incidence
and back scattering. For simplicity we therefore
omit the polarization labels y and y '.

The work of Sec. II can be taken over directly

with the exception of Eqs. (21) and (22). The sus-
ceptibility Eq. (21) should now read

X(r, r') =

2 ~ gag, (r)g(r')g*„ifr and r'are
h ~ ~2~, —(~aiq)' ' in the crystal

region

0, otherwise. (A1)

Equation (22) now reads
1/2

o.'„(r) = —— dr')t~(r, r')A(r'),

with

g),(l, l g~y. (r}q.*(r )&'
(u2~, —(a) ~ iq)' (A 3)

Equations (A2) and (A3) differ from their counter-
parts (21) and (22) insofar as the exciton energy
k+~, now depends on the center-of-mass quantum
number s which prevents explicit summation over
s at this step. In Ref. 32 an explicit form for
g, (r) was given using as a boundary condition that
the boundary is equivalent to an infinitely high re-
pulsive step potential acting on the exciton center-
of-mass motion.

Equations (28)-(34} remain valid, but Eq. (35)
becomes

k(}q, ko 3/2 3 f2
(d)t &

~re 'q' dr' yz r, r'g"0 r'

drll g r ref Qko

rent

(A4)

In obtaining Eq. (A4} we only considered spatial
dispersion to be important in the denominator.
The r' and r" integration can easily be carried
out and the result is

f dr "[X~(r, r ")A"o(r ")j
'"'

= g„a)~

(A6)

Here A.j are the vector potential amplitudes of dif-
ferent polarization waves, kj are the solutions of
the dispersion relation

X
j

jjkjg

(dy~ —((d +iaaf)

(A5)

for z ~ 0, i.e. , in the crystal region. %'e also get
the additional boundary condition
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mi8sion factor times an internal cross section.
We have carried out some illustrative numerical

calculations based on Eq. (A10), using parameters
appropriate for CdS. The values taken mere
w~=20700 cm '; I"=1 cm ', a=8; M=0.9m„' terms
g'„=1.32 x 10' cm '. In Fig. 6 the diagonal term
(i=j) of Eq. (A10) is plotted, including absorption
and reflection corrections, as in Eq. (A10). Solid
curves included spatial dispersion (and the ad-
ditional terms), while dashed curves omit it.

These curves indicate tmo major features. With-
out spatial dispersion one obtains sharp reso-
nances for the cross section, centered around 0 in
Figs. 6 and 7, mith halfmidth comparable to the
I'=1 cm ' assumed for exciton lifetime. This is
smoothed over by including spatial dispersion, as

is seen in these figures. Thus a possible test for
spatial dispersion mould be the absence of sharp
lines in the Raman cross section (at low tem-
peratures) where expected, when near the sharp
exciton line.

Secondly, our calculation indicates that spatial
dispersion effects are small in the sense of not
producing sizable extra contributions to the scat-
tering from the additional channels available due
to extra propagating polaritons. Only in a fre-
quency region comparable to the longitudinal-
transverse splitting of the exciton are these ef-
fects even noticeable. The essential point is that
the photonlike polariton dominates the scattering
and this is essentially the same as if spatial dis-
person were neglected.
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