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Nonlinear infrared absorption by parametric phonon processes is shown to be negligible in the
low-absorption region of exponential frequency dependence of the optical-absorption coefficient P, but
observable at the reststrahl resonance and in Raman scattering. At low intensity, the transmission T is

independent of intensity I as usual, but at high intensity the T(co) curve broadens and the
transmission at resonance increases. This behavior results from the parametric instability in the process
in which an intermediate-state reststrahl phonon is annihilated and a pair of phonons is created. An
effective relaxation frequency of the reststrahl phonon, which is greater than the low-intensity value as
a result of the increase in the amplitudes of the pair phonons above their thermal equilibrium values, is

quite useful in understanding absorption and Raman-scattering results. The time constant for the
approach to the steady state is important since the steady state is not attained in short laser pulses in

important cases in which long-lived phonons give rise to low steady-state threshold intensities for
anomalous absorption. The threshold for the parametric instability is quite sharp when considered as a
function of the amplitude of the fundamental phonon, but the deviation from linear absorption with

increasing intensity is quite smooth. Contrary to previously accepted results, even crystals such as NaC1
having a center of inversion could have anomalously low thresholds since the threshold is controlled by
the phonon (in the pair) having the longer lifetime. Chain instabilities and enhanced relaxation from
mutual interactiqn of excited pair phonons are negligible for the phonon instabilities, in contrast to
previous results for plasmas and parallel pumping in ferromagnetic resonance, respectively. The method
of calculation, using boson occupation numbers rather than mode amplitudes, has the simplicity and
power to yield more information about parametric instabilities, including effects above the threshold,
than has been possible previously.

I. INTRODUCTION

Parametric processes are well known in ferro-
magnetic resonance, ' 4 plasma physics, ' nonlin-
ear optics, especially stimulated Raman and Bril-
louin scattering, 7 and many electrical devices.
However, apart from Orbach' s w ork showing that
it should be possible to create large numbers of
long-lifetime phonons on the lowest transverse-
optical branch by a parametric instability, there
apparently have been no studies of phonon insta-
bilities. In particular, the effect of parametric in-
stabilities of phonons on optical absorption has not

been considered in spite of considerable interest in

nonlinear optical effects.
Since the parametric instabilities typically occur

at high laser intensities, there are a number of

high-intensity effects that could mask the para-
metric effects. These include absorption by mac-
roscopic inclusions, ' ' avalanche breakdown, 10' 13

self-focusing effects, ' and differential heating by
linear abosrption. ' In previous calculations, the
instability threshold for an isolated process, such

as annihilation of one boson and the creation of two

other bosons, has been obtained simply from lin-
earized equations of motion of the mode amplitudes
or the mode occupation numbers. More detailed

calculations have been severely hampered by the
complexity of the nonlinear mode-amplitude equa-
tions, especially near and above the threshold, and

the difficulty introduced by requiring the amp)itudes
to relax to their thermal equilibrium values. '

In the present paper, the nonlinear absorption of
infrared radiation by parametric excitation of pho-
nons is considered and a general method of solving
parametric problems is presented. As discussed
in Sec. IIA, an example of a process that has a
parametric instability is shown in Fig. 1, where
the intermediate phonon f is a fundamental, or
reststrahl phonon (transverse-optical mode with

wavelength lp
=—0). Special attention is focused on

ionic crystals such as Nacl, though the discussion
for the most part is quite general. Absorption. ,
as opposed to scattering, processes are empha-
sized. The results of a similar study on the effect
of parametric instabilities of phonons on stimulated
Raman scattering and on the parametric instability
in the Raman process itself' will be presented
elsewhere. '7

The present treatment differs from previous
ones in the following ways: (a) consideration of
the nonlinear effects of phonon instabilities on in-
frared absorption; (b) treatment of transient, as
well as steady-state, effects; (c) development of a.

1699



1700 M. SPARKS AND H. C. CHOW 10

Photon

poir

I' IQ. 1. Two-phoDOIl )3FOcesses ~

simple method of calculation which is used even
above the threshold; (d) incorporation of effects of

sums over potentially unstable modes; (e) analysis
of chain parametric processes and enhanced re-
laxation of output phonons; (f) treatment of the in-

stability in the I ax-Burstein higher-order-dipole-
moment process; and (g) consideration of processes
in which two fundamental phonons are annihilated.

The following results are obtained: (a) prediction
that the thin-film infrared transmission spectrum
T(~) of crystals is independent of intensity I at low

I as usual, but that for I &-,' I, , where I, is the crit-
ical intensity for the parametric threshold, the
reststrahl resonance in T(~) broadens and the

transmission at resonance increases with increas-
ing I; (b) calculation of the value of I, showing that
at the reststrahl resonance I, can range from -10
to 10"W/cm'; (c) demonstration that the nonlinear
parametric-phonon-instability absorption in the in-

frared region of low multiphonon absorption is
negligible with respect to the electron avalanche-
breakdown process; (d) indication that transient ef-
fects are important„especially in rendering un-

observable by present short-pulse lasers the low

thresholds resulting from ultralo~-lifetime pho-
nons; (e) demonstration that the instability thresh-
old is sharp when considered as a function of the
a.mplitude nz of the intermediate (fundamental) pho-

non, but is a smooth function of the laser intensity

I; (f) analysis of effects of many potentially un-

stable modes whi. ch evinces that the value of n& is
considerably less than its threshold value n, even
when I » I„(g) calculation of an effective relaxa-
tion frequency I"& for the intermediate mode which

shows that I'f is greater than the usual linear, low-

intensity value I'& as a result of the increase in the
amplitudes n& of the output phonons responsible for
the damping I'&, (h) indication that even crystals
(such as Nacl-structure crystals) having a center
of inversion could have anomalously low thresholds
I„since the threshold is controlled by the output

phonon having the longer lifetime when the two

phonons are on different branches; (i) derivation
of simple closed-form expressions for transmis-
sivity as a function of I, for n&(I), for 1"f(n&), and

for I'&(I); (j) calculation of I, for n-phonon pro-
cesses with n & 2, which shows that these nonlinear
higher-order processes are negligible; (k) analy-
sis of chain parametric-instability processes, in-

dicating that these phonon processes are negligible,
in contrast to the cases of ferromagnetic reso-
nance and plasma. insta. bilities; and (1) calculation
of I, for the process in which two reststrahl pho-
nons are annihilated and two other phonons are
created, which shows that this process may be im-
portant in some cases.

Significant results will be denoted by under-
scored equation numbers.

11. TAO-PHONON INSTABI LITY

A. Physical description

In this section a simple physical description of
the two-phonon parametric instability will be given.
Consider the two-phonon process in which a photon
is annihilated, a fundamental phonon is created,
then annihilated, and two other phonons are created,
as illustrated in Fig. 1." This process is directly
analogous to the Bloch- Bloembergen-Suhl subsid-
iary-resonance process which occurs at high power
levels in. ferromagnetic resonance. The fundamen-
tal phonon corresponds to the uniform precession
magnon (with k = 0) a.nd the pair of created phonons
corresponds to a pair of created magnons. '9

The present section concerns the part of the pro-
cess in Fig. 1 in which one phonon splits into two

phonons, called the pair. The analysis applies to
other cases also. For example, the fundamental
phonon could be created in the Haman-Stokes pro-
cess.

The two-phonon process gives rise to ordinary
linear absorption at low power levels. ' In that
case, the relaxation of the pair phonons maintains
their occupation numbers n~ at their thermal equi-
librium values yg&. At higher power levels, nz in-
creases above nz. As the intensity I of the radia-
tion increases, the fundamental-mode amplitude n&

increases, and in turn the amplitude of the output

pair increases. The balance of power into the pair
from the fundamental mode by the power out of the

pair by relaxation is the first key to a simple ex-
planation of the parametric instability. The power
into the pair increases nonlinearly; that is, the

power contains products such as 2n&n~, since the
second vertex in Fig. 1 involves three phonons.
On the other hand, the power out of the pair by re-
laxation increases linearly as 2T'(nz —pic), where
l" is the relaxation frequency of an output phonon.
Thus, at a critical value n, of n&, the amplitude

nz becomes very large.
This behavior is analogous to that of a pendulum

with a force having frequency = 2„, where „ is
the resonant frequency of the pendulum, applied
along the direction of gravity: For a small angle

9, the loss is linear in 8, while the energy that the
force puts into the pendulum (the scalar product of
force and diets. nce) is proportions. l to 82, since the
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projection of the motion along the vertical is pro-
portional to 8 . The pendulum instability is dis-
cussed further in Ref. 21. The details of this type
of behavior will now be discussed.

B. Instability threshold of a pair

The threshold value n, of n& at the parametric-
instability threshold and the increase of the pair-
mode occupation number nQ as n& increases will
now be derived, and it will be shown that nQ in-
creases extremely rapidly as n& approaches and
slightly exceeds n, , as will be seen in Fig. 2below.

First consider the power flow from the funda-
mental mode to the potentially unstable pair in Fig.

1. The Hamiltonian for this process (vertex Vq in

the figure) is

K= Q h Vq, q q Aq, Aq Aq
QlQ2Q3

(2. 1)

where q, —= (k, , b,)spe. cifies the phonon mode with
wave vector k, on branch b, , Aq. = aq, + a q, [with

'l

—q,.:—(-k, , b,.)j, and gt and a are the usual phonon
creation and annihilation operators normalized to
unit commutators. From the standard second-
order perturbation-theory result for the transition
probability between the states of a system, the
rate of change of n& resulting from the coupling to
a single pair of phonons Q, and Q2 is

=—
2 (~ &nz+1, nq, —1, nq —1 ~X~n&, nq, , nq &~

—
~ &n&

—1, nq +1 nq +1~ZI n& nq, nq ) &6(w) ( 2)

where 5 is the Dirac 5 function and ~—= (d —~Q
1—~Q, with & the frequency of the photon.

In detailed calculations for specific cases it is
important to consider the case of unequal frequen-
cies ~Q and ~Q since in NaCl-structure crystals

83-86a selection rule 2 prohibits both phonons of the
pair from being on the same branch and a quasi-
selection rule27 indicates that the coupling of a fun-
damental phonon to two acoustical or to two optical
phonons is small. However, no essential features

of the calculation are lost in the case of equal fre-
quencies and equal relaxation frequencies 1 Q. The
presentation will therefore be simplified by formal-
ly using these approximations. The case of ~QQl

and I'Q, 0 I'Q i.s considered in Sec. IID. The
occupation numbers n~ of the two phonons in the
pair are equal since pgQ, =nQ, where the bar de-
notes the thermal-equilibrium value as before, the
two-phonon process creates the phonons in equal
numbe rs, and I'Q, = I"

Q .
Substituting Eq. (2. 1) into (2. 2), using the fact

that Vf QlQ2 vanishes unless k, = —k„and using the
well-known matrix elements of nt and n gives

dHQ (2. 3)

CL

E

0
CL

Q

Fundamental Amplitude nf
(a)

= —I'q (nq —
F~q ),c

t&lQ

relax

and the result is set equal to zero to obtain

(2. 5)

where

6=2n&nq+?1y —Bq, C= v[3!Vyq q ~'5(~) . (2. 4)

The subscript "pump" in Eq. (2. 3) denotes the rate
of change of nQ from the coupling to f. The energy-
conserving 5 function will be eliminated by taking
into account the finite lifetime of the pair, as dis-
cussed below.

In equilibrium, the net rate of change of nQ must
be zero. Thus, the rate of increase in Eq. (2. 3)
is added to the rate of decrease by relaxation

ng
nc

Fundamental Amplitude nf
{b)

2n&nq+n& —nq
——2yz, (nq —7vq), n =—I'q/2C. (2. 6)

The solution to (2. 6) is

FIG. 2. Increase of the pair amplitude with increasing
(a) The ordinate scale is such that ~ is visible. (b)

The ordinate scale is many orders of magnitude smaller
than (a).

1/2
nq=(n, —n~) sgn(n, —n~) 1+ ' —, —1

27E nQ + Bf
(n, —n, )'

(2. 7)
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~here sgnx=-+1 for x & 0 and —1 for y & 0. Equa-
tion (2. 7) has the limiting values:

and

»Q —Plg for nf '=& n

nq = [n,(2iiq+1}]'", for nt = ii,

(2. 8a)

(2. Bb)

nq —= 2(nt —n, ), for ng
~~ n (2. 8G)

as sketched in Fig. 2. We shall say that the pair
has been driven unstable if nq = [n,(2nq+1)]', or
nf = n, , and the threshold of the instability is de-
fined by»&= n, . At the critical value n, of n& there
is a sharp dramatic increase in the value of n~.
The sharpness is illustrated by considering values
of n@ slightly below and sli.ghtly above the thresh-
old. At nt = n, —c», , where [(2iiq + I)/ n]' t'««& 1,
Eq. (2. 7) gives nq = (nq+ —,')/e, which is of order
10 for nq71 and &=10 i. At nt=n, +en, , Eq. (2. 'I)

gives zz@ = 2&n„which is order 10' for & = 10 and

», = 10"; i. e. , n~ increases by 16 orders of mag-
nitude for a, small change of n& at n& =n, .

The behavior below the threshold mas a.pproxi-
mated previouslys' for the ferromagnetic-reso-
nance case by li.nearizing the equation of motion.
In the present case, linearizing Eq. (2. 6) by ne-
glecting the term —n~@ gives

iiq + nt/2n,
»Q 1 —n, /n,

(2. 9)

'8' Utq-q ~

'V= Sq~tl't/(2"q+I)~ (2. 10}

where X is the number of unit cells in the sample
and p is the number of pairs of branches into which
the fundamental phonon decays. For example,
p & 6+5+. ~ ~ +1 =21 for a solid with six branches,
a.nd p = 3+2+1=6 for decay into acoustical modes
in diamond. The factor S~, which was added for-
mally to Eq. (2. 10) to account for the variation of

which displays the instability at nf = iz, vividly,
since n~- ~there. Qn a linear scale mith zz~ vis-
ible, a graph of nq from (2. 7) would have the ap-
pea. rance of Eq. (2. 9), since nq would be off scale
at a value of ~z& less than n, according to the dis-
cussion in the previous paragraph. It mill be shomn
in Sec. III B that the large number of potentially
unstable pairs in the present case of phonons re-
stricts nt to values below nt —q, so that Eq. (2. 9)
is a. good approximation in all cases of interest
here.

Next, consider the value of n, in Eq. (2. 6). An
estimate of the size of the matrix element V&@ @

in Eq. (2. 4) is obta. ined simply by summing the
right-hand side of Eq. (2. 2) over Q-=Q, = —Qz, as-
suming that n@ = Fz and» &

= n , evaluating the
sum on Q by assuming a Bebye density of states,
and approximating the Debye frequency by ~&.
This gives

V& z with Q, is zero for transitions not allowed

by symmetry, ~ ~ is much less than unity for
quasiunallowed transitions, and is of order unity
for fully allowed transitions. An alternate expres-
sion for Utq q is given below in Eq. (2. 24).

In Eq. (2. 4), the 6 function 6(w) is appropriate
when a. sum (approximated by an integral) is in-
volved. In the present case no sum is involved
since the energy into a, single pair is of interest.
Thus, following Callen and White and Sparks, the
5 function is replaced by a normalized line-shape
factor

2 &,)(2~q)(21"q), 1
6 ((L) 2 i) ) )

)i [~' —(2i q)']'+ (2u. q)'(21'q)' vl'q '

(2. 11)
where the approximate equality is valid at reso-
nance (i)) = 2i))q). Substituting Eqs. (2. 11), (2. 10),
and (2. 4) into (2. 6) gives

)7& t){2nq + 1)[(()) 4i))q) + 1 6@)qI
1 6'(dcoq &yI y

(2. 12)

C.

Cr&thecal

&n te»s& ty

In order to relate the threshold condition»„=»,
to the experimentally controllable quantity, which
is the intensity I of the incident radiation in this
case, the relation between I and», is first derived
by equating the energy into the fundamental mode f
to the energy out of f by relaxation. In See. III it
mill be shown that near the threshold the increased
energy flow from f to the pair has rather important
consequences including an increase in the relaxa-
tion frequency of the fundamental mode. The usual
linear low-intensity value l

&
of the relaxation fre-

quency is used in the present section in order to
obtain the critical value I, of the intensity.

If the intensity just inside the front face is Io,
the intensity at a distance x into a sample mith
thickness» 1/P is I = Ioe "== Io —PxIo, where P is
the absorption coefficient and the approximate
equality holds for Px«1. The rate of energy ab-
sorption in the layer of area. 4.1. is —;1(f-lo) =A1pf,
where Io =- I. Equati. ng this rate of energy absorbed
by f to the rate of loss by relaxation ticul'i(ni —)it)
x gx/ V=- tiiIntA1')/ )V where V ls the voblnle of tile
sample, gives

I= tii)intl't/UP . (2. 14)

The well-knomn result for I3 for polar crystals is

The resonant value of », is denoted»~. From Eq.
(2. 12) with ~ =- 2~q,

1
~n fi(nq + —.)I q (2. 13)

$ coil't

which is of order I'q/~il't. The corresponding
value of the critical intensity I, and numerical val-
ues of n~ are discussed in the folloming section.
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ct»„»„V (cd —(dy) +(QJyry)
(2. 15)

where n„ is the index of refraction and X is the
number of ion pairs. With n~ = », in Eq. (2. 14),
the critical intensity is

I, = (ri"»,r,/v p).,„. (2. 16)

The subscript min denotes that the value of the
threshold intensity is to be calculated for all pos-
sible pairs, and the lomest of these values deter-
mines the observed critical intensity I,. Recall
that the intensities I a.nd I, are internal to the sam-
ple, and reflection at the surfaces must be taken
into account to obtain the applied values.

There a.re two resonance factors in the expres-
sion (2. 16) for I,. The first is the josey resona-nce
factor in p in Eq. (2. 15). The second is the pair
resonance factor in &z, appearing in the brackets in

Eq. (2. 12). The laser-resonance factor is on res-
onance when the laser frequency ~ i.s tuned to w&.

The pair-resonance factor is on resonance for the
pairs having phonon frequencies (d~ = —,'~. The
minimum in Eq. (2. 16) usually occurs at the pair
resona. nce ~z = —,'co; it is likely that the pair of
modes with the lowest threshold will have ~~ =,'-~
(since the resonance factor ha, s a minimum there)
unless there are no phonons having this frequency,
or the coupling of the fundamental phonon to this
resonant pair is very small [So .&1 in Eq. (2. 10)]
or there are other pairs having small I'@ and large
coupling.

In order to obtain numerical values of I, and»~,
the values of the relaxation frequencies I'@ and I"&

are needed. Since the values of I'z for various
phonon modes Q are not mell known at present, only
rough estimates of the values of I, and»~ can be
obtained: For NaCl at room temperature,
I'& —=2&&10' sec '. First assuming that I'@ = I"&

and that the coupling is strong (So= 1) and using
-i=w~=2wo=3&'. 10' sec ', p=10' cm', .V/V=2. 2

x10 cm, (2no+1}=5.6, and f'=4 inEqs. (2. 13)
and (2. 16) gives

»p/X= 2&& 10 I, = 10 W/cm'. (2. 18)

.r, r,», c ')/r, ~']"-' —1', (2. IO)

It should be emphasized that the value of I, is sen-
sitive to the value of I', and it may not be possible
to achieve such a low threshold.

On the other hand, it has already been pointed
out~8'~ that it is conceivable that an anomalously
low value of 1"~ =10' sec ' could be achieved. In
this case, the value of I, wouid be only 10 K/cm~
The results of Secs. IID and V are important in

considering such anomalously low values of I, . In
the former, it mill be shou n it~;~t the anomalously
low values of I, are not restricted to crystals with-
out a center of inversion, ' ~:~(-', in the latter it will
be shown that in the usual case in which lasers with

pulse lengths of order 10 nsec are used, the steady
state is not attained and the threshold intensity is
increased drastically above the previously ex-
pected value.

D. Effect ot uncqua} frequencies i c "~ ~ c + }

In the calculations above it w, ~s,lssumed formal-
ly that the funda. mental phonon decays into two pho-
nons mith equal frequencies. As discussed in Sec.
II8, the threshold may be determined by the decay
into two modes having unequal frequencies, es-
pecially in NaCl-structure crysta. ls.

The occupation numbers», and»~, as well as the
relaxation frequencies l", and I'~ are now, assumed
to be unequal in general. The balance of power in-
to the pair of modes from the fundamental against
the pomer out of the pair must be considered sepa-
rately for the individual modes. Following the
rea. soning of Sec. 'IIB, me find

C[»y(&i)+1)(ll p+1) —(By+1}pl)»p] rg(»)»g) =0»

C[»~(», +l)(ii, +1}—(»~ -l}»,n, ] —r, (~i, —», ) =0.

The coupled algebraic equation can easily be solved
hv substitution, which g,ves

», —,4 ]s "112)1+(I p$&gulp I', Hp»y + I yH(J

»~/X 0. 7, f, ==1.0'10 W/cm (2. 17)
and

», —», (r,/r, }(n, —»,), (2. 20)
This is a large value of I„and in experiments to

look for the instability, a small value of I, is de-
sirable. Thus, smaller. values of T'z and I' are
needed. For small-Q acoustica. l modes on the
lowest-frequency branch at low temperature, I'@

is believed to be small. ""A conservative ap-
proximation to the lower limit of I"~ is 10' sec ',
corresponding to a mean free path of order 1 p, m.
At low temperature, I'z also will be smaller, say
a factor of 5 smaller than at room temperature.
According to Eqs. (2. 16), (2. 13), and (2. 15) on
resonance, I, -I'zI& and n~- I'@. Thus, at low tem-

peraturee,

where

4= [- (I', +rz)»&+ r2»z —r, 7~, + I', I'2C ']/2I', .

If we now define» by

,»=r, r, (/r, +r, )c (2. 21)

it is easily verified that the various limiting be-
'. haviors for»@ found in Sec. II 8 z. ". still valid for
lhe present case. In particular, the threshold
gromth at n&=@, remains the same. The threshold
value», in Eq. (2. 21) is the same for both modes
since n, and )'Ep are linearly related, as seen in Kq.
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(2. 20). The values of n, and n~ at the threshold are
dif.'erent in general, of course. Equation (2. 21)
reduces to Eq. (2. 5) if I', =I'z. If one relaxation
frequency, I'&, is much greater than the other, I'&,
then Eq. (2. 21) reduces to n, = I'&/C. Thus the equal
frequer. cy approximation employed previously in-
troduces no serious error in either qualitative or
quantitative description of the threshold behavior
if I'g is interpreted as I", for the case of I",= I'~ or
as the lesser of 2E', and 2I', for the case of I', » I'~

or I'~» I', .
This result that the threshold can be low if either

mode is long lived (I'o small) is important. In the
absence of the analysis above, it might have been
guessed incorrectly that the phonon having the
shorter lifetime would control the threshold or that
one mode might go unstable before the other. The
suggestion3'~9 that the phonons on the lowest
acoustical branch may have anomalously long life-
times at low temperature implies that the value of

I, may be anomalously low. Since a selection
rule~3 ~6 prevents both phonons of the pair from
being on this lowest branch in crystals with a cen-
ter of inversion (such as Nacl-structure crystals),
it was previously believed that such crystals would
not have the anomalously low values of I,. 9 The
present result, that the relaxation frequency I'~
that determines the va.lue of I, is equal to 2I'& when
one value I & is much less than the other, shows
that the lack of a center of inversion is not re-
quired.

E. Higher-order two-output-phonon processes

As mentioned in the previous section, the two-
phonon processes arising from the cubic anhar-
monic terms in NaCl-structure materials are sub-
ject to rather stringent selection rules 36 and
quasiselection rules. " This is expressed mathe-
matically by the smallness of the factor 5 in the
transition matrix element of Eq. (2. 10). By virtue
of Eq. (2. 13), the critical intensity is increased
when Sz is small, a reasonable result on physical
grounds. Since for higher-order processes such
as the creation of two phonons from the annihilation
of two fundamental phonons [Fig. 3(a)] or that of
one fundamental phonon and one other thermal pho-
non [Fig. 3(b)] the selection rules are more re-
laxed, it is of interest to examine whether these
processes lead to parametric excitation a.nd if so,
whether the threshold conditio~ is lowered from the
previous f j.rst-order case.

Both processes (a) and (b) arise from the fourth-
order term of the anharmonic potential "~,@ @ z,
which contains a selection-rule-related factor ns. "

Process (a) is analogous to the second-order Suhl
instability that is responsible for the premature
saturation of the main resonan. ce in the ferromag-

netic case. The instability condition can be found
in exactly the same way as in Sec. II B, and, within
the equal frequency approximation, it is

with

hem„n„[((u2 —
& ~2)~+((u, I,) ]

4m' uf
(2. 22)

&pb —2p)N"' 2, ', g .g)
(2. 24)

038 A2 1/P.

32p (1 —2p)N m m a &u &u cu

(2. 25)
where a is the equilibrium nearest-neighbor sepa-
ration and e~ and n3 are angle factors related to
selection rules. For fully allowed transitions the
n's are of order unity. The result of (2. 23) can be
resolved into a product of two factors. The first
is the ratio I n2!'/I c&, I, which has to do with the
selection rules. The second,

(a)

FlG. 3. High-order txvo-phonon output processes: (a)
annihilation of two fundamental phonons, and (b) annihila-
tion of one fundamental phonon and one thermal phonon.

+e' = Fq'/I Vyyo'-o' I

where the prime distinguishes the output phonons
in Fig. 3 from those of Fig. 1. One readily ob-
tains the ratio of the critical intensities for second-
and first-order instabilities as

f,(2nd order) 2I'z, ! 3!V~o z!
I,(1st order) 81'~o

I 4! Vzz o,

The value of the ratio in Eq. (2. 23) can be esti-
mated as follows: For a crystal with two types of
ions with masses m& and m& (m& & m&), the vertex
coefficients in Eq. (2. 23) are30
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8Bal'o. /(1 —2p)m(t m„'t (utI'o,

is a dynamical factor and is estimated to be about
1.2 &10' in NaCl. In obtaini. ng the latter, we have
used I' ~ 1.85&10" sec ' and F. ~ 5. 56&&10"
sec '. In order for Eq. (2. 23) to be less thanunity,
the selection rule factor I @2 ' ~/

~ n31 must be less
than 10 3. It is expected that l zsl mill be of order
unity, since there is no selection rule and no rea-
son to expect that there are quasiselection rules
for this four-phonon vertex. Thus, if the quasi-
selection rules on ~~ should make ) typal

& 10 for
all potentially unstable pairs, there still would be
an instability as a result of the higher-order pro-
cess.

By proceeding in. the same may, one can study
the process illustrated in Fig. 3(b). It can be eas-
ily demonstrated that such a process is character-
ized by essentially linear i.ncrease of final phonon
occupation as nf increases and hence no threshold
occurs. In passing, also note that the two-phonon
difference process (two phonons a.nnihilated and one
created) does not have a parametric instability.

F. Anharmonic interaction versus high-order
dipole moment

The process discussed in Secs. IIA-IIE is the
absorption of radiation by the fundamental mode
(driven off resonance in general), which splits into
two phonons as a result of the anharmonic interac-
tion. The same end result, that is the absorption
of radiation and the creation of tmo phonons, can
result from the Lax-Burstein interaction involving
higher-order dipole moments. ~5 In this latter pro-
cess, the photon splits into two phonons directly,
with no intermediate state. The Lax-Burstein
mechanism usually is considered to be weaker than
the anharmonic-potential mechanism (although
there is still debate on this point). Since this im-
plies less energy into the potentially unstable pair
of phonons, it is expected that the threshold is
great for the group-IV semiconductors, diamond,
silicon, and germanium, in which the anha. rmonic-
potentia. l mechanism is inoperative. The following
simple estimate indicates that this is indeed the
case.

The preceding analysis for instability threshold
may be used provided one makes the formal re-
placements of n& by the number of photons n~ and
l3f V~gg I by the square of the new vertex, I V~(~.

The resulting threshold value of the photon occupa-
tion number is

n„=l',/2 f V, f'. (2. 26)

The value of I V~ l~ can be estimated from the
known values of P as follows. First, P is related
to the photon relaxation frequency F~, then F~ is
related to I V~ ) . The time rate of decrease of in-

tensity on passing through a slab of material with
absorption coefficient P is

dI —cPI —c PPt~np

Ren(~) V[Ren(~)]' ' (2. 27)

where Ren(&u) is the real part of the refractive in-
dex. Differentiating I = hun~c/Ren(~) V directly
and assuming linear relaxation gives

dI —chroFqn~
dt VRen((u)

(2. 28)

Equating (2. 27) and (2. 28) gives the simple relation

P Re=n(a)I;,/c . (2. 28)

The relaxation frequency F~ can be calculated
assuming interaction V~, and is given by

Fp= m Vp 5 ~- 2~q 2nq+1

mhich upon converting into an integral in k space,
neglecting angular dependence of the integral, and
assuming a Debye frequency spectrum with maxi-
mum frequency ~ „ is approximately

1&@72wNf V& f
(2n +1)u~ jm „. (2. 30)

Equations (2. 26), (2. 29), and (2. 30) lead to

n~, 36m&u~l"o Ren(u)
(X cpu „

(2. 31)

For u /+ „1/2, I'o/v „=1/50, w „10'4sec ',
p=10 cm ', 2no+ 1 a 1, and Ren(vt)=7, Eq. (2. 31)
gives n, /N ~ 50 or I, = tom, c/ VRen(~) ~ 10' W/cm,
which illustrates the great magnitude of the thresh-
old intensity for the Lax-Burstein mechanism.

III. POWER ABSORPTION AND ENHANCED RELAXATION
OF THE FUNDAMENTAL MODE

(3.1)

again for»&»»&. An expression for F& will be de-
rived in Sec. IIIB, and Ff will be used in the dis-
cussi. on of several effects in Secs. IIIC, IIID, and

IV A.

In the limit of nz «n„ the steady-state pomer out
of the fundamental mode is simply fimF&n& for nf
» nt, where I't is the usual linear (low intensity)
relaxation frequency. As the intensity is increased
and nz approaches n„ this steady-state power in-
creases, becoming many orders of magnitude
greater than the linear value A~F&nf in the formal
limit of n& =—n, . This increased absorption is a re-
sult of the pair-mode occupation numbers n@ in-
creasing above their thermal equilibrium values
caused by the great power flow into the pairs from
the fundamental mode. A conveni. ent measure of
the increased power flow is the generalized relax-
ation frequency F& defined by the relation
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4A(dna = h(pro(zzo —zzo) .
dt ytfmy

(3 2)

The power out of the fundamental mode by linear
relaxation is, with n&» n&,

A. Energy flow into a single pair

It will now be shown that the value of the contri-
bution I'~, to I'~ from a single pair, is negligibly
small for nz = zz„while rz z /rz = 1 for zzf = 2zz, .
Consider the power into a single pair of modes
from the fundamental mode. In equilibrium, this
power is equal to the power out of the pair by re-
laxation:

2' +1
2zzo +!.=

nf nc
(3. 5b)

From this result with n, given by Eqs. (2. 6) and
(2. 4),

(2zzo+l)6(~) =(2zzo+1) "~ (3.6
q nc-ny y

where n~ is the value of n, Bt ~=2~ . From Fqs
(2. 4), (2. 6), a,nd (2. 11),

At higher power levels the value of n is greater
than zzo. Then, neglecting no reduces Eq. (3. 4) to
(3.1) with r& given by (3. 5a) with no replaced by
zzo. From Eq. (2. 9)

= ScoI gnat
reJax

(3. 3) n~ = rzo/2 3!V~ o o ~ (3. f)

For zzz-zz„no [zz, (2zzo+1)]'@, and the power (3. 2)
out of the fundamental mode f to the single pair is
much less than the power (3.3) out of f by linear
relaxation, since I'& & I & usually is satisfied.

Before considering the effect of the large nu~nber
of modes into which f is coupled, note that as zz& is
increased above n, , the value of zzo in (3.2) in-
creases rapidly: For n&&zz, +c, (3.3) and (2. 8d)
give dh&uzzo/dt = ferro(zzz —zz, ). When zzz = 2n„ the
va. lue of zzo is 2n, , and for r& —ro, (3.2) and (3.3)
show that the power into the single pair is equal to
the total Linear-relaxation power out of n&. This
is equivalent to the previous statement rz z/ r~ =1
for nf =2n, . Thus, the parametric excitation of
many pairs is potentially an extremely strong sink
for removing energy from the fundamental mode.
This fact is important in the limiting of the value
of n& at a finite value, as discussed in Sec. IVA.

B. Sum over all pairs; dependence of I'& on nf

It is assumed henceforth that n~ is the minimum of
n, ; i. e. , that the minimum occurs at w =2w~.
From Eqs. (2. 4), (2. 6), a.nd (2. 11),

1 7TZq OI g
zz zz —zz (1-n /n )'~' zz[((u' —-'~')'+ ~' f']

mI'g 1
z@6(&do z zd) y

2zz~(l —zz~/zz~)
(3. 6)

1

r~ (1 —zz~/zz, )"' (3.9)

for this ca,se of zzz&zz~ —e. The result (3.9), which
can also be derived starting with

where the 5-function representation was used in the
aPProximate equality and rq —= ro(1 —zzz/zz~) In the.
second term in I'+, it was assumed that ~~2~&.
Substituting (3. 6) and (3. 5b) into (3. 4), neglecting
zzo, and evaluating the trivial integral gives (3. 1)
with

Since there are an enormous number of modes
into which the fundamental mode could put energy,
it is possible that summing Eq. (2. 2) over all pairs
could give a number greater than the total linear-
relaxation values of I.'&nf even when the single-pair
value in (2. 2) is negligible. The following calcula-
tion, even though highly simplified, clearly illus-
trates that this is indeed the case. Summing Eq.
(2. 2) over pairs and using Eq. (2. 1) gives

"~= —Q zz~ 3!V~ o o ~'5(~)[(2zzo+1)n~ zzzo] . —
Q (3. 4)

Setting zzo = zzo and using (2zzzz+1)zz& —zzzz= 0 reduces
Eq. (3. 4) to

pe
dt

= —rq(zzq - n~),

where

t&ly = —2~ ro(zzo - zzo),
Nfl g

4
54

Q
X

O
CP

CS

I

Fundamental Amplitude n&/np

(3. 10)

r, =+v~3!V„,~'6(~)(2n, +I) . (3. 5a) FIG. 4. Enhanced relaxation frequency of the funda-
mental mode (n~& n&).
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-3 =, Ii=—I Ic ~ (3. 12)

For low power levels (I «I, ), n&=n~(I/I, ), so that

n& increases linearly with the incident intensity.
The linear relation is lost with higher intensity, as
is evident from Fig. 5. The region of changeover
from n&~I to n&~const is not sharp. For n& to at-
tain a value within a tenth of n~ requires I = 9I,.
The value of n& is limited to values below n~ even
for very large values of I. Thus, the simple lin-
earized result (2. 9) for no can be used in studying
steady-state results. This will not be the case in

the time-dependence analysis of Sec. V or, in gen-
eral, in other applications.

D. Absorbed power and I &/I'& as functions of I

It mill be shown that the pomer absorption spec-
trum P~,(u)/I is constant for I «I, and decreases
in peak amplitude and broadens for I approaching
and greater than I, First note tha. t (3.9) and (3; 12)
give

f;/r, = (I, +1)'", (3. iS)

which is unity for I« I, and is equal to (I/I, )'~~ for
I»I, . The transition between the tmo limiting be-
haviors is quite gentle, in contrast to the sharp in-
crease in I'z/I'& as a function of n&/n~ at n&/n~ = 1.

indicates that I'& ——I'& for n& «n& and I
&

increases
to a value much greater than I'& as n& approaches
n~. A plot of Eq. (3.9) is given in Fig. 4.

C. Relation between n& and I

On the basis of the fact that the relaxation fre-
quency of the fundamental mode is enormously in-
creased at the threshold, one may be tempted to
conclude that the power absorption mould be in-
creased likewise. This conclusion is erroneous
near the laser resonance, since enhanced relaxa-
tion of the fundamental mode considered in the pre-
vious two sections vastly alters the linear depen-
dence of n& on the incident intensity I, as mill now

be shown. Physically, the resonance absorption
of a harmonic oscillator is inversely proportional
to the relaxation frequency. In Sec. IIID, the new

relation between n& and I mill be used to obtain the
behavior of power absorption as a function of I.

In the steady state, the power absorbed is equal
to the power dh~nz/dt out of the fundamental mode.
Thus, with (3. 1),

(3. 11)

Equation (3. 11) may be equated to IVP (Sec. II C) to
yield a relation for n& in terms of I& and I. Using
Eqs. (3. 9), (3. 11), (2. 12), (2. 15), and (2. 16) for
the case of la, ser resonance (~ = ~&) and assuming
that the minimum in (2. 16) occurs at n, = n~ gives

(See Fig. 4. )
The power absorption at the laser resonance

(~ = &uz) is obtained by substituting (3. 13) and (3.12)
into (3.11), which gives

IqP,h, = hculynq
(1 ),g2 . (3. 14)

0.
C

I

O
'D

I

~~
t

CL

I I-

CI

F
CI

LL.

incident Intensity I /I

FIG. 5. Dependence of fundamental mode amplitude on
incident intensity from Eq. (3.12}.

From this result (3. 14) it is seen that P„, is linear
in I for I «I, and increases only as I'@ for I» I,.
Again, the transition between the tmo limiting be-
haviors is smooth. The power-absorption spec-
trum P h, (u)/I decreases at resonance as I ap-
proaches and becomes greater than I,. This result
(3. 14) is discussed in Sec. VII.

Since I"&, P,„„a,nd T are smoothly varying
functions of I, in contrast to the sharp-threshold
behavior as functions of n&, the value of I, will be
referred to as the critical intensity, rather than
the threshold intensity.

IV. EFFECTS ABOVE AND NEAR THE THRESHOLD

A. Sticking of ny

The result, from Sec. III C, that n& & n& even for
I » I„which will be ca,lied the sticking of n&, is
analogous to angle sticking in ferromagnetic reso-
nance. ' The previous explanation of angle sticking
mas that the energy flow out of the uniform-pre-
cession mode u mould be so great when n„&n
where n„, is the threshold value of the occupation
number n„of the u mode, that n„mould be reduced
to the value n„,. This previous explanation is not
strictly correct since the analysis of Sec. IIIC
evinces that the strong flow of energy out of u ex-
ists for n„& n„,. Thus, n„sticks at a va.lue some-
mha, t below n„„just as n& sticks at a value below

n~ as in Fig. 5. In the following section, the pre-
vious explanation of the sticking phenomena is con-
sidered briefly.

B. Large value of l &/1& above the threshold

The fact that the power A~I'&n& out of the funda-
mental mode would be extremely large if n~ were
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greater than n~ is the key to the previous explana-
tion of angle sticking, as discussed in Sec. IVA.
This result is easily explained intuitively as fol-
lows: In Sec. IIIA it was shown that for n&=2n, and
I'Q = I'z the energy from nz to a single pair is equal
to the total energy out to all pairs by li.near relaxa-
tion. Thus, I'z/I

&
is of the order of the total num-

ber N„„,of pairs that are above threshold (i.e. ,
have n& &n, ) Sin. ce there are of order 10~3 poten-
tially unstable pairs, the value of I'z/I'& is extreme
ly large.

An order-of-magnitude estimate of the size of
Ir/I'& for the formal case of nz &n~ is obtained by
extending the analysis of Sec. IDB to this case.
For nz&n~+e, Eq. (2. 8) is approximately

nQ- nQ —0, for nz&n,

=2(n~- n, ), for n~ & n,

which, with (3.10) gives

duly

dt
d(uq g((oq) I'q(n~ —n, ), (4. 1)

where co, aod (d are the positive roots of n&=n, .
With nz- n, given by the top equality in (3.8), Eq.
(4. 1) becomes

When the length ~, —ro = I'q(nz/n~ —I)'~' of the inte-
gration region is short, g(wq)/I'q can be evaluated
at Q 2 Qj Evaluating the remaining integral gives
(3. 1) with

I'y 8np n~
2 3/2

I'~ 3v(nq+ ', )n~ n, - (4. 2)

In some systems, it is conceivable that the occu-
pation number n& of the unstable pair could become
so great that the phonons coupled to the pair could
also be driven to their threshold. This chain of
unstable pairs could be extended to more and more
pairs, as illustrated schematically in Fig. 6.

The method developed for deriving the threshold
condition enables us to argue that chain process
does not occur in the anharmonic-potential-induced
phonon instabilities. For n& & n„whi. ch is satisfied
according to the discussion of amplitude sticking in
Sec. IVA, Eq. (2. 8) gives

nq & [n (2nq+1)] ~2 . (4. 3)

For these phonons to induce instabilities of other
modes, their number nQ must reach a value of the
order of n„a requirement that cannot be fulfilled
according to Eq. (4. 3). In other systems, a very

for this case of nz& n~+e. Thus, Fz/I'z is of order
n&/(nq+~)»1 for n& 2n&. ——

C. Chain instabilities

FIG. 6. A chain of parametric processes.

small density of states at the frequency of the
threshold pair would be required in order to have
chain process.

D. Enhanced relaxation of pair modes

In the estimates of critical intensity, we have
used the relaxation frequency I'Q derived essential-
ly from linear theory. As the instability is ap-
proached, the large number of phonons generated
interact with one another, leading to further relax-
ation not accounted for in the linear theory. If this
enhanced relaxation were significant, the value of
the critical intensity would have to be altered as
discussed in Sec. IIC. It will now be shown. that
this is not the case; i. e. , the enhanced relaxation
is negligible.

Consider the most extreme case, in which nQ ap-
proaches the right-hand side of Eq. (4. 3). The
dominant mechanism for relaxation is the process
in which two of these phonons coalesce to form an-
other phonon under conservation of energy and

crystal momenta, as illustrated in Fig. 7. Using
the standard quantum-mechanical method, the
transition probability of this process was calcu-
lated and expressed in the form dnq/dt=- I'qnq,
from which I Q is identified as the enhanced relax-
ation frequency. Here I'Q is a function of nQ. Us-
ing the steady-state value of (2. 8b), I'q is found to
be 6&& 106 sec ', much smaller than the value used
for evaluating the critical intensity, so that the en-
hanced relaxation considered here has little effect
in altering the critical intensity.

E. Parametric processes without intermediate states

The sticking of n&, the nonthreshold behavior of.

1; and the absence of chain instabilities and en-
hanced relaxation all are related to the fact that the
physical process (Fig. 1) contains an intermediate
state, which is the fundamental phonon state in the
present case. Other processes, such as the in-
stability of the phonons created in the stimulated
Raman process, ~'6 that have intermediate states
exhibit similar behavior, as discussed in Sec. II.'7

By contrast, processes that do not have inter-
mediate states have quite different behavior. For
example, in the three-stream plasma instability,
no intermediate mode is present and the radiation
energy may drive the plasma waves strongly enough
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that I'& in (5. 2) is slowly varying; that is, T» I/Fz.
Thus, with 1"f formally considered to be a constant
in Eq. (5.2), the solution is

(5. 3)

FIG. 7. Enhanced relaxation for phonons Q to phonons
Q' when ~»n~.

The time 7 required for the steady state to be
established must be less than the laser pulse length
if the steady-state theory is to be applied to experi-
ments using pulsed lasers. It will now be shown
that r is of order I"z, which is sufficiently short
under most conditions, but n0] for ultralong-life-
time phonons (I'z & 10'-10' sec '). For this latter
case, pulses longer than the typical value of 10 ns
would be required in order to observe the instabil-
ity.

The total rate of change of q-=n~+-,' is, from Eqs.
(2. 3), (2. 4), and (2. 5), with —n~& negligible,

~"=r", g+g ~-1 (5. 1)

to give rise to a chain instability. 3' Similarly, in
parallel pumping experiments of ferromagnetic
resonance, the rf-field photons convert directly
to a pair of magnons without the intervention of uni-
form precession magnons. In that case the en-
hanced relaxation of the unstable magnons is indeed
significant, and provides a mechanism for addi-
tional energy absorption. 3~'33

V. TIME FOR INSTABILITY TO OCCUR

(5. 5)

Now If is a function of a sum over Q's. In the
spirit of Eqs. (3.9) and (3. 5b), we formally assume
that

(r~/I'~)'= n/n, (5. 6)

which is correct at f = 0 (I'& = I'& and g =yi) and in the
steady state [Eqs. (3. 9) and (3. 5b)].

Substituting Eqs. (5. 6) and (5. 5) into (5. 1) gives

dq 1+I

which shows that g increases exponentially to the
steady-state value q„=-yl(1+I/I, ) [in agreement with
Eqs. (3. 5b) and (3. 12)] with time constant

T=I/r, . (5. 7)

In passing, it is mentioned that it can be shown
rigorously from (5. 1) that

w ~ Fz (I,/I)in[I/I, + f,(I+I,) '] .

The proof involves the inequality

which reduces to

nf = R/I'q = VIP/I'qh(u (5. 4)

for f )(f'z), 'o=I'z . For still greater times, nz de-
creases slowly as 1f increases, as illustrated
schematically in Fig. 8. At the laser resonance
(~ =~&), Eq. (5. 4) gives

The time variation of nf is, for nf ~~nf

(5.2)

where R= VPI/k~ is the rate of creation of funda-
mental phonons by the incident intensity, with P
given by (2. 15) with I'z replaced by I'z.

Since I'f is given as a sum involving the n~'s, the
solution of (5. 1) and (5. 2) is not trivial. An im-
portant practical case is that in which 1 «Ff. An

approximate solution for this case can be obtained
as follows. For n~=n~, I'z is equal to the usual
low-intensity linear value I'f. For all q equal to
the steady-state values g/(I —n&„/n, ) from (3. 5b),
where nf„ is the steady-state value of nf, I'f is
equal to the steady-state value I'z„= I'z/(I —nz»/
n~)

~ from Eq. (3.9). If the time constant for the
approach of g to its steady-state value is denoted
by v, then If——I'f for t «w, and Ff T.'f for
For the case under consideration, it will be shown

For a typical value of I'z = 10'2 sec ', Eq. (5. '7)

gives ~ =10 '2 sec, which is short with respect to

AP.
fee

FIG. 8. Schematic illustration of the time dependence
of the amplitude gf of the fundamental mode.
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nanosecond pulses, so that the steady-state solu-
tion applies. For I' &10 sec, the steady state
is not attained in a, 10 nsec pulse. In this case,
Eq. (5. 1) gives zI=q, that is, no=no. Thus 1"&

—= I'&, and the effects of the parametric instability
are not observed.

Vl. INSTABILITY AT HIGH FREQUENCIES

The effect of phonon instabilities on infrared ab-
sorption in the case in which the frequency of the
external radiation is high, say, about 3-8 times
the reststrahl frequency of the crystal, is of con-
siderable practical interest. Two energy-absorp-
tion mechanisms, with the fundamental phonon
driven off resonance in both cases, will be consid-
ered. In the first case, the fundamental phonon
decays into two phonons that are off resonance
(zdz+zdz& v). In the second case, the fundamental
phonon decays into a sufficient number of phonons
to allow phonon resonance to occur (~z+w2+
+ zzzm = zd)

+ —' =0, i=-1 2, . . . , -»~ . I,
'6. 3)

Proceeding as in Sec. II B yields

C' 'any(nz+1)(iz, +1) (n +1)

—(nq+1)n, n, n J
—&,(n; —ii;) =0, (6. 4)

C' ' =-2zzl (z»+1) I Vz z2. ..

B. m-phonon instabilities

The second mechanism leading to nonlinear en-
ergy absorption at high frequency is the multipho-
non process in which a fundamental phonon is an-
nihilated and zn phonons a.re created (Fig. 9). It
will now be shown that for sufficiently intense ex-
ternal radiation a parametric instability can set in,
as in the previous process.

Again using the general relaxation of. power bal-
ance gives

A. Two-phonon instability off resonance
X 5 ((L7 Mz Xl2 z'J) )rn ~ (6. 5)

This can be considered as a special case of the
two-phonon instability discussed in Sec. II, in
which the 5 function in Eq. (2. 11) is fa.r off reso-
nance. For this case Eq. (2. 12) reduces to

~n fz(2nzz+1)(&u' —4+ze)~

N 16Sq(d(dye)yI'g
(6. 1)

With fz= 4, (2nzz+I)= 5. 6, zd = l. 8&10' sec ',
= 2&zzo = 3&& 10' sec ', So = 1, X/ V= 2. 2: IO~ cm 3,

P= 5&&10 cm ', and F& = 2&&10' sec ', Eqs. (6. 1)
and (2. 16) give

n, /X=9& 10, I, = 1.4&& 10 W/cm, (6. 2)

FIG. 9. m-phonon processes.

which is many orders of magnitude greater than the

corresponding critical-intensity values at reso-
nance and is much greater than the avalanche-
breakdown value of -10' W/cm~. ' '3 Thus, the

nonlinear absorption by this process is negligible
in the high-frequency multiphonon region. This is
not surprising since less energy is put into the pair
of phonons when they are driven in the w ngs of

their absorption curves than when driven on reso-
nance.

In the present general case, the advantages of

using the energy balance method over the equation-
of-motionmethod become even greater than in t'he

case of ~& =2. The present method yields a single
ni-order algebraic equation, while the equation-of-
motion method leads to n& coupled nonlinear differ-
ential equations, the solution to which is not easily
found.

Since high-order multiphonon processes a.re sub-
ject to much less stringent selection rules than
two-phonon processes are, a reasonable first ap-
proximation is to assume that the ~&& phonons cre-
ated have equal frequencies. With this approxima-
tion, the set of ni equations (6. 4) are reduced to
the ~»-order algebraic equation:

C' 'rzz&(zizz+I) —(»&+1)zz+J —I'(»+ —
zz&&) =0.

(6. 6)

Here llq,'hand I @ refers to the occupation number aI1c1

relaxation frequency, respectively, of a final pho-
non. The g function in. C' ' will subsequently be
approximated, at resonance, by

5(&' —Mz —4,'2 —' ' ' —N ) 2/»izzI

It is more expedient to solve for»& in terms of

»@ than vice versa, which gives

ii + I o(zizz —lzo)/C
(zze + I) —no

For n@ slightly greater than ~&@, ~&& is a sharply i. n-
creasing function of n@ until it attains its rn;-cxi-

mum. This local maximum, denoted by», , n1;t.,
be obtained approximately by satisfying the dual
conditions that (6. 6) yields only one root and that
»@ is small. It is found that, for u& ~ 2,
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m= 5, n, = l. 3x10 N, j, = l. 4x10 'N W/cm

In obtaining these estimates, we have not accounted
for the limitation due to selection rules so that the
actual values are even greater than indicated. For
a sample of any reasonable size, the critical inten-
sities in all cases far exceed that required for ava-
lanche breakdown, thus multiphonon instabilities
will not be observed.

VII. SUGGESTED EXPERIMENTS

(a) {b)

FIG. 10. Parametric excitation of m phonons. (a)
Schematic illustration of the approximate steady-state
solution to energy balance equation. In (b) the heavy
dashed line shows the actual growth path of the final mode
as the incident radiation power increases.

(6. 8)

where b= m(yn-1). Beyond this maximum, n& a,s
a. function of no decreases until no

' ——I'o/C' '. It
then approaches the asymptotic value n&- na/m. —
These features are exhibited in Fig. 10(a).

From Fig. 10(a) it will be noted that for a given
value of n&(&n, ) the occupation number no in the
multiphonon region may be multivalued, corre-
sponding to the different branches in the figure.
The actual value of n~ depends on the stability of
the solution on a given branch in the presence of
fluctuations in the values of n& away from the
steady-state solution. It is not difficult to demon-
strate that all three branches are stable against
even extremely large fluctuations, as long as nf
& n, . For n& & n„ there is only one solution. This
behavior indicates that the final modes remain on

the lowest branch until the fundamental mode is ex-
cited to a value n, . For greater values of n&, nz
increases to the higher-branch value. The value
of n, can therefore be identified as the threshold
for m-phonon parametric instability. The actual
growth pattern is shown schematically as the heavy
curve in Fig. 10(b). The growth from the bottom to
the top branch, represented by the heavy dashed
vertical line, is not under equilibrium condition
since the values in that part of the curve are not
steady- state solutions.

Using Eq. (2. 16) with n, replaced by Eq. (6. 8),
together with Eqs. (6. 5) a.nd (6. 7), we obtain the
following numerical estimates:

n, -=r, /C"(ni+ bn, )([ I-. (2b- m'}/(»+ b, )]'"+I],

T„=1 —(udc 'Ime((u), d «X/—2w (7. 1)

where Ime(u) is the imaginary part of the dielec-
tric function e(&u). At ~ = u&&, Eq. (7. 1) gives

In the preceding section the possibility of para-
metrically exciting phonons was considered for a
wide range of infrared frequencies. The analysis
shows that in the higher-frequency region, para-
metric processes, though possible in principle,
have large thresholds I, so that other nonlinear
processes, such as avalanche breakdown, would

set in first. In the case of two-phonon excitation,
however, the parametric instability should be ob-
servable. Of all the possible absorption experi-
ments, consider one of the transmission type. It
is necessary to use a sample of thickness no great-
er than a fraction of a, micron, this small thickness
being necessary to allow some transmission near
the laser resonance.

According to Eq. (2. 18), of the order of 10 W/
cm' are required. For NaCl, with X& —=60 p.m, and

two times diffraction-limited spot of 120 p, m diam-
eter, the area is - 10 cm, corresponding to a
power of -10 W. In practice, several-orders-of-
magnitude-greater power may be required. Since
tunable sources with this power are not currently
available, a fixed frequency laser must be used.
For example, HzS with lines at 60. 3 LL],

m3 could be
used with NaCl. A low-power spectroscopic mea-
surement of the absorption as a function of w could
be made to determine the position of the NaCl ab-
sorption curve with respect to the laser frequen-
cies.

The transmission would be measured as a func-
tion of the incident power. A noticeable change
[increase at resonance —see Eq. (2. 15) with I"&

—I &] should occur as I approaches I„crore spodn-

ing to the increase in I"z.
For a. thin film of crystal of thickness d, the

transmission coefficient T„ is given by

m = 3, n, =0.61K,
m = 4, n, =14+',

I, = 3. 9 x 10' N W/cm

f.= 6. 5x10"~' W/cm'
1 —T„—= uP()dc '(a oe„)I'~' = (1 —T„)„„(f//I,+1) 'i' .

(7. 2)
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FIG. 11. Spectral transmittance of a thin film schemat-
ically illustrating the broadening of the resonance at
high values of incident intensity. The bottom curve was
sketched using Ect. (8. 14).

In the second equality, the result (3. 13) for I'~ was
used. The subscript "lin" denotes that 1- T„ is
evaluated at f"f = l f. By correlating this depen-
dence of 1 —T„on I with the experimental results,
parametric processes may be verified. In partic-
ular, according to Eq. (7. 2), the transmission co-
efficient of a thin film driven parametrically at
resonance should increase as I increases, while
T„decreases with increasing I away from reso-
nance. This behavior is analogous to that observed
in the premature saturation of the main resonance
in the Suhl-Bloch-Bloembergen ferromagnetic in-
stability. Figure 11 illustrates the change in
transmission with increasing intensity.

In. principle, the parametric instability could be
used to study the relaxation frequencies of various
phonon modes as a function of the position of the
modes in the Brillouin zone, as has been done for
magnons in parallel pumping experiments. How-
ever, the results would be more difficult to inter-
pret than in the magnon case since it would be
more difficult to determine unambiguously which
phonons were going unstable in general.
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