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Origin of the unusual dependence of the nonlinear optical susceptibility on bond length for
ionic ferroelectrics
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The bond nonlinear polarizability is shown to increase with increasing bond length for covalent

compounds but to decrease with bond length for sufficiently ionic compounds. This behavior is shown

to explain, for example, the anomalously small value of the d „nonlinear coefficient in LiTaO, as

compared with the isomorphic LiNbO„as well as the opposite signs of d 33 in the isomorphic BaTi03
and PbTiO, . The unusually large deviation of Pb,Ge30„ from the Jerphagnon relationship between the

vector part of Miller's b, and the spontaneous polarization is also discussed.

I. INTRODUCTION

When an optical field E(f) =E(u&) cosset is present
in a system which lacks a center of inversion it
produces a second-harmonic polarization P(2&v)

given by

P;(2ur) =d, ,~E, ((u) E,((u),

where d;;„ is the tensor second-order nonlinear
optical susceptibility. Since d;» vanishes by
symmetry for free isolated atoms, its magnitude
and sign in a crystal are intimately related to the
formation and properties of the chemical bond' ~

(e. g. , ionicity f; and bond length d}. Owing to
the fundamental importance of these bonds it has
proven useful to decompose the macroscopic non-
linear optical susceptibility d;;„ into bond contri-
butions P using3'6

d;,a=+ G;,aP'

where P is the nonlinear optical polarizability of
a single bond, " 6;;„is the bond geometrical factor
(i.e. , it is simply a product of the direction
cosines between the bond axes and the crystal-.
lographic axes), and the sum on p runs over all
the bonds in the crystal.

The magnitude of the bond nonlinearity P has a
strong and unusually interesting dependence on the
bond length d. The fact that p is indeed a strongly
varying function of d can readily be seen in several
ways. For example, it is well known both the-
oretically and experimentally that the nonlinear
bond polarizability P is intimately related to the
linear susceptibility' y (e. g. , Miller's rule shows
p~ if ). The linear (L) susceptibility is known to
change rapidly with changes in bond length (e. g. ,
via the photoelastic, Raman, or similar effects)
and this strong dependence can be represented as
a power law,

(3)

where the power-law exponent is given by

d 9y
VL= ~

Bd

Thus, from Miller's rule we would also expect the
nonlinear susceptibility to change rapidly with d.
More directly, experiments" have shown that d,.»
varies with strain (acoustically induced optical
harmonic generation) and that lattice contributions
to d;;„are important (see, for example, the classic
Faust and Henry ~ experiment}. A final point worth
mentioning is that the zinc-blende semiconductors
GaP, GaAs, InAs, GaSb, and InSb all have rather
similar properties (e.g. , ionicities, etc. ) and dif-
fer mainly in their increasing bond lengths along the
series and their dramatically increasing nonlinear
{and linear) susceptibilities. Thus, clearly 8P/
9dc 0 and cannot be ignored. In fact, this depen-
dence of the nonlinear (NI.) polarizability P on d,
which can be expressed [in analogy with Eqs. (3}
and (4)] as a power law,

P(x d NL

where the power law exponent is given by

d BP
NL

p

will be crucial to understand the unusual behavior
of d, ,„ in ferroelectrics to be discussed later. '

The relation between this pomer-1am exponent
0» and the bond ionicity is expected to show a
particularly interesting and unusual behavior from
the following considerations. For highly covalent
crystals (e.g. , GaAs, InSb, etc. ) it has been
shown theoretically ' that P is a strongly increas-
ing function of bond length, namely, pfx: d'3 (i. e. ,
the power dependence is gNL =+ 3}. This large
positive value for (TNL is required, for example,
to quantitatively understand the strain dependence
of the crystal nonlinear optical coefficients d;»
Physically this rapid increase of the bond non-
linearity P is a consequence of the decrease in the
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average potential (i.e. , the decrease in the aver-
age energy gap E~) for the bonding electrons as the
two atoms composing the bond are separated. That
is, just as y increases as E~ decreases, "

p also
rapidly increases as E~ decreases (e.g. , from
Miller's rule P~ g ).

However, P clearly cannot continue to increase
indefinitely. As the atoms are moved further and
further apart, a situation is reached when the bond-
ing between these distant atoms become sufficiently
weak so that the decrease of the oscillator strength
for the transitions leading to the nonlinear polariz-
ability dominates sp/sd. At this point p decreases
with increasing bond length d, and vanishes in the
limit of completely separated (i.e. , spherical)
atoms, as of course it must.

This can be seen more quantitatively by con-
sidering an extremely ionic "bond" in which es-
sentially all of the valence electrons have been
transferred from the cation to the anion, and there-
fore corresponds to a situation for which both the
cation and anion have a nearly spherical charge
distribution. The nonlinear optical susceptibility
of such an ionic system is of course not zero {al-
though it is rather small). It arises from the
charged cation polarizing the valence electrons on
the anion, and creating various multipole moments'
(dipole, quadrupole, octupole, etc. ). As is well
known, the nonlinear susceptibility is approximate-
ly proportional to the octupole moment of the
ground-state charge distribution (xs), i. e. , P
~ (x~)/E2. Since the induced octupole moment will
fall off as d ~ (where d is the cation-anion dis-
tance) and since for such separated atoms the ef-
fective gap E, is expected to be approximately in-
dependent of d (is just determined by the anion
atomic potentials), we see that for highly ionic
systems P~ 4 4 gives a simple estimate for the de-
pendence of P on d. (This expected constancy of
the effective gap for highly ionic crystals will be
discussed more fully later. }

To summarize these observations on the inter-
esting ionicity dependence of the exponent of the
power-law O„I, we indicate in Fig. 1(a} that for
highly covalent strongly bonded systems P increases
rapidly with d (e. g. , P~d'~), whereas, on the con-
trary, for highly ionic weakly bonded atoms, P is
expected to decrease strongly with d (e. g. , P'xd ).
Crystals having an intermediate ionicity will have

P approximately independent of d (as we will find
later for I.iTa03, BaTiQ3, and PbTiQ3) and are
therefore especially interesting.

It is important to note that the consideration of
this dependence of P on d is only of major impor-
tance for ferroelectrics. This is simply a result
of their nearly centrosymmetric structure and con-
sequent close cancellation between nearly opposing
bonds. For example, in BaTi03 the use of Eq. (2)

shows that the d33 coefficient is proportional to
[p(long) —p(short)], where p(long) and p(short) are
the two inequivalent Ti-0 bonds parallel to the c
axis. Clearly, if P were independent of bond
length, then d33 would be zero. Thus, it is the de-
pendence of P on d which is responsible for this
nonzero d33 . In fact, using Eq. (5) we can see that
d33 O'NL, p and 'thus vanishes if ONz, = 0. Howeve
in nonferroelectrics, the effect of unequal bond
lengths is not usually significant, since there is
no near cancellation between the various bonds.
This can be clearly seen in the wurtzite structure,
for example, where the contribution of the four
tetrahedral bonds to ds, is proportional to [~ + a»
&&(&d/d)]. The second term, due to the difference
in bond lengths ~d, is only a few percent of the
first term, which is due to the approximately tet-
rahedral bond configuration, and hence d33 does not
vanish if vN~=0.

In the rest of this payer we attempt to quantita-
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FIG. 1. (a) Schematic representation of the behavior
of the bond nonlinearity P on the bond length d. For high-
ly covalent crystals (e. g. , GaAs) p increases as d in-
creases (p~d'3), whereas for highly ionic crystals p is
expected to decrease rapidly with d (P o=d+). For inter-
mediate ionicities, p will be approximately constant. (b)
Schematic representation of the behavior of the linear
susceptibility X. For sufficiently covalent materials
(e. g. , Ge, Si, MgO), X increases as d increases, where-
as for sufficiently ionic crystals (e. g. , LiF, NaC1, RbCl),
X decreases with increasing d. Expressing get-d "the
experimental results discussed in Ref. 15 can be given as
O.

z. =+2 0 +1.6, —1.2, —1.7, and —2. 6 for Ge, MgO,
LiF, NaC1, and RbCl, respectively.
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tively understand this transition from Po- d""~ in
covalent bonds, to p(x d '» in ionic bonds, and to
relate it to the unusual behavior of several fer-
roelectric crystals. In particular, we will try to
explain why LiTaO3 has an anomalously small" d»
nonlinear coefficient compared with the similar
isomorphic LiNbO&. %e will also investigate the
unusual result that d33 has aPposite signs in the
isomorphic compounds BaTiO3 and PbTiO~, and that
PbTiO, and also Pb, Ge30„(Ref. 20) have two of the
largest deviations from the usually accurate Jerphag-
non relation ' between the spontaneous polarization
P, andthe vector part of the Miller's normalized
nonlinear susceptibilitys2 d (i.e. , g„~ —P,}.

II. LINEAR SUSCEPTIBILITY

Owing to the similarity of Eqs. (3) and {5) it is
helpful to begin by discussing the behavior of the
linear susceptibility. It is mell known that for
significantly covalent crystals (e. g. , Ge, GaAs,
ZnS, MgO, etc. ) the linear susceptibility y=(n'
—1)/4s decreases under hydrostatic pressure
(i.e. , 1~d"~), whereas for highly ionic crystals
(e. g. , Nacl, LiF, BaF, , etc. ) y increases with

hydrostatic pressure (i. e. , y~d '"). The close
similarity of this linear behavior [illustrated in

Fig. 1(b)j with the nonlinear behavior previously
discussed [Fig. 1(a)] suggests a common origin
for these two phenomena.

In order to examine in detail the dependence of

y on d we use Phillips and Van Vechten's ' for-
mulation for the linear susceptibility, namely,

where A~ is the plasma frequency (including d-
band effects if any) and the average energy gap is
given by

E =E+Cg h

where E„ is the covalent contribution to the total
gap~

E„~d ' (s =2. 48)

and where C is the ionic contribution to the gap,
so called since the ionicity is given by

(10)

In terms of the fundamental bond parameters C can
be expressed as

C=be- ——~ e-Ar Zof Z 3
r

{where r-=zd). That is, C is the electronegativity
difference between the two bonding atoms (n and P)

and vanishes if they are identical. More precisely,
C is the difference between the Coulomb potentials
Z /r of the two atoms composing the bond The.

bare core charges are Z and Zz and these Coulomb
potentials are evaluated at the bonding site (r
= —,

' d), i. e. , at the position of the most mobile
electrons, which are those contributing most
strongly to y. Only a small fraction of the elec-
trons are in the bond, however; the remainder
screen the ion cores, reducing their charge by the

Thomas-Fermi screening factor" e " (i. e. , Z,f f

=e Z ). Because the true screening behavior
of a solid will be more complex than this simple
Thomas-Fermi description a dimensionless cor-
rection factor b of order unity is necessary.

Since the Thomas-Fermi screening assumes a
free-electron gas it is clearly a more appropriate
approximation for covalent semiconductors (e. g. ,
GaAs, etc. ) than for highly ionic insulators such
as NaCl. To get a feeling for the expected be-
havior of the prescreening factor b, in a relatively
tightly bound crystal such as NaCl, it is instruc-
tive to first consider the extreme situation of very
tightly bound core electrons, for which atomic,
i.e. , Slater, screening ' is appropriate. It is
well known that Slater screening is far less ef-
fective than Thomas-Fermi screening and conse-
quently the effective charge Z,«seen by such tight-
ly bound electrons is larger tl;an that seen by
loosely bound valence electrons, for which the
Thomas-Fermi screening is appropriate, i. e. ,
Z,«(Slater) &be ""Z . This was also previously
found to be the case for the more tightly bound d
electrons. Of course, even rather ionic com-
pounds such as NaCl are much less tightly bound
than the atomiclike core electrons just discussed
and therefore Slater screening is not really very
appropriate. However, the general trend we ob-
served of increasing Z,«, i. e. , increasing b, with
increasing ionicity would be expected to hold
roughly. Physically, this result can be readily
interpreted as due simply to the fact that in more
covalent bonds the electrons are more mobile and
can therefore screen the core Z more effectively.

Actually b is most closely related to the average
coordination number' iV, of the compound, and
therefore indirectly related to the ionicity. How-

ever, this ionicity dependence can be clearly seen,
since as f, is increased (keeping the number of
electrons per atom the same) there are phase
changes to structures with larger N, . That is,
for the ionicity larger than a critical ionicity f,.
&f„«a crystallographic phase change occurs. '
For example, consider the A' B system. For
low ionicity (e. g. , Ge, GaAs, Zn5e, etc. ) the
stable phase is zinc blende, for which ~V, =4 and
b=1.6, ' for large ionicities ( f,. &0. 79) the NaCl
structure, for which X,=6 and b=3. 4, is stable,
and finally for extremely large ionicities {f; & 0. 96)
the CsCl structure, for which X,=8 and 5=6. 1, '
is stable.
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Van Vechten has shown that the ionic-covalent
transition exhibited in Fig. 1(b) can be explained
by calculating the bond-length dependence of the
linear susceptibility using Eqs. (4) and (f)-(11),
yielding

v„= (2s —3) + [2(1 —s) +k~ —2v„]f,
[with s = 2. 48 from Eq. (9) ], where

i.e. , 0, is the power-law dependence of the pre-
screening factor b on bond length (b~ d'"). Thus,
using Eg. (12) experimental values for v~ can be
determined from the experimental measurements
of frL. The striking dependence of a„on ionicity
(determined from the hnear susceptibility) is
shown as full circles in Fig. 2. %e have also in-
cluded the set of cubic crystals CaF2, SrF~, and

BaFz (Ref. 27) (the most ionic crystals known'}
as well as the very interesting noble- and transi-
tion-metal compounds SiTiQ~, CuCl, and AgC1.

SrTiO~ is the prototype structure for the ferro-
electric crystals BaTiQS and PbTiQ~, and as we

0 1.5
b
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Li NbO& g MgO
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FIG. 2. Plot of experimental values of ot, = (d/b)(Bb/Bd)
obtained from pressure dependence of the index of re-
fraction [i.e. , at, (L), plotted as filled circles] as a func-
tion of ionicity. The lower ionicity curve is for d-elec-
tron compounds, while the higher ionicity curve is for
non-d-electron compounds. Note the critical ionicities
on both curves (+& = 0. 72, and F = 0. 85) below which o&

=0 and above which o& increases rapidly with ionicity.
The unfilled circles are obtained from experimental data
on the transition-metal bond nonlinearities P (Nb-O),
P(Ta-O), and P(Ti-0) [i.e. , oi), (NL) from Tables I and II].
Note the good agreement between these two methods of
obtaining o&.

will see later all these compounds have very simi-
lar values of (T, . Only the full circles (determined
from the linear susceptibility) are important for
the present discussion. The open circles deter-
mined from the nonlinear susceptibility will be
discussed later.

Note that there are tu~o best-fit straight lines,
drawn through experimental linear- susceptibility
results, one for the d-electron noble- and transi-
tion-metal compounds and the other for non-d-
electron crystals. (%'e will shortly discuss the
reason for this difference. } Both of these lines
result in a critical ionicity F (for the d-electron
compounds F„=O.72, while for the non-d-electron
crystals I' = 0. 85) such that 0& = 0 for compounds
having f, & F, E, . {Van Vechten' has found that
o., =0 gives a satisfactory description of even less-
ionic compounds than those included in Fig. 2. )
For the opposite situation, f; &I', I'„, 0, rises
rapidly and reaches values as large as 0~-3. This
sharp transition from covalent to ionic behavior is
similar to that found in a number of other prop-
erties. 30

The result 0, =0 for the covalent compounds is
not unexpected. ' It means, as discussed before,
that the Thomas-Fermi free-electron screening is
a good approximation for the highly mobile bond-
ing electrons, and therefore all that is required to
correct for the non-free-electron behavior of the
bond is a simple multiplicative constant. That is,
b is highly constant (as found to be accurately true, '
within a given crystal. structure, for very wide
variety of compounds and structures}; hence db;/

9d =0, resulting in 0„=0.
It is well known that owing to the strength of co-

valent bonds, they are significantly shorter than
ionic bonds (e. g. , the ionicity of the rocksalt crys-
tals MgS and NaCl are 0. 79 and 0. 94, respectively,
while their bond lengths are 4. 92 A and 5. 32 A,
respectively). Thus, as the bond length increases
this corresponds to a larger ionicity. As dis-
cussed above, 6 increases with ionicity and hence
we conclude that 6 should increase with bond
length d for highly ionic compounds, i. e. , {7~ &0,
as is indeed observed in Fig. 2. Another way of
saying this is that as d increases it is more dif-
ficult for the valence electrons to screen the core
charges, and this corresponds to a larger b. This
argument may be made more quantitative from the
following considerations. " In the ionic limit ( f,.
—1) the ionic gap C is expected to be approximate-
ly a maximum with respect to the bond length,
i. e. , {d/C) (BC/sd)-0. The reason for this is that
for such highly ionic compounds, this condition
minimizes the total energy, since the Madelung
energy makes the dominant contribution to the co-
hesive energy. Thus, assuming {d/C) (sC/sd)
=0, we obtain the following approximate value for
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The calculation of the average bond nonlineari-
ties P and Miller's delta, b —= P/y, do not require
the knowledge of cr„~ and ean be readily and ac-
curately evaluated using the previously derived
theoretical expression [written for ABOo com-
pounds in esu, i.e. , (cm/statvolt)cm ]

600 fre (Z~+ —', Zo) 1o C
E', d'(q/e)

(15)

where ~ is the linear susceptibility of a single bond
and where (q/e) is the bond charge in units of the
electronic charge. By using Eqs. (10) and (11),
this expression can be simplified to

(16)

where we have only exhibited the most significant
parameters. Physically the meaning of Eq. (16)
is that the nonlinear susceptibility P increases as
the linear susceptibility y~ does (which is reason-

cr~ in highly ionic crystals ':
cro —- (1 + —,

' kr) = 2. 5 .
This estimate is in approximate agreement with
the experimental cr~ values for the highly ionic
crystals in Fig. 2.

The fact that E=O. 85 for the non-d-electron
crystals, whereas F, =0.72 for the more complex
transition-metal compounds which have strong d-
electron effects, does not seem unreasonable.
This is especially true since, as discussed pre-
viously, the presence of such d electrons strongly
influences the screening behavior of the bond (i. e. ,
the Thomas-Fermi prescreening factor 5 of the
d-electron atom} as evidenced by the observa. -
tion that (Z,*)„,for a noble- or transition-metal
atom may be significantly different from the num-
ber of valence electrons. Further, we have shown
that the d electrons increase y and hence decxease
f;, so that transition-metal compounds have sig-
nificantly lower ionicities than isomorphic non-d-
eleetron analogs. For example, while the ionicity
of GeOz is f; = 0. 730, that of T10z is only' f; = 0. 686.
An even better example is the comparison between2

f;(AloOo) =0. 80 and f;(FezOo) =0.68, where the
lowering of the transition-metal ionicity is close
to that observed between the critical ionicities (E
and E„) for the transition- and nontransition-metal
compounds. Thus, it seems rather appealing that
the d-electron line, in Fig. 2, can be approxi-
mately obtained by simply shifting the non-d-elec-
tron line to a lower ionicity value. Further, as
discussed above, since, the d electrons are more
tightly bound than the s and P valence electrons,
they would be expected to have larger o., values.

III. NONLINEAR SUSCEPTIBILITY

A. LiNb03, LiTa03

able as discussed earlier) and also that P in-
creases with f; since this is associated with a
larger acentricity in the bond.

We will shortly return to the numerical evalua-
tion of P using Eq. (15) but first we turn to the
determination of cr„c, [Eq. (6)] using the approach
discussed previously. That is, by differentiating
the theoretical expression for p [i.e. , Eq. (15)]
we find

crNc, = cro (6fr (17)

1(LiNbOo) =-' [1(Li-0)+ y(Nb-0)],

1(LITaO ) =-,' [lC(Li-0) + 1(Ta-O)].

Using the ratio of y(Nb-0) to that of lC(Ta-0) de-
termined from the measured long-wavelength in-
dices of Nb20, and Ta,O, (n=2. 23 and n=2. 13,
respectively} yields y(Nb-0)!y(Ta-0} = 1.12. Com-
bining this with Eq. (19) and the knowno' long-
wavelength indices for LiNbO3 and LiTaO~ (n =2. 11
and n = 2. 04, respectively) yields the values listed
in Table I. We find, as expected, that most of the
crystal linear susceptibility {83% in LiNbO3 and

81% in LiTaO~) resides in the highly polarizable
transition-metal bonds. The other linear and non-
linear parameters obtained following previous
work' are also given in Table I. ' The average
coordination numbers for the various bonds X,(A-B)
were calculated using (for, say, LiNbO~)

where vo is the power dependence found previous-
ly by assuming a& = 0 and is given by

cr, = (6s —kr —9) —[6(s —1) —3@v]f, . (18)

Equations (15) and (18) were used to calculate
the nonlinearities for the significantly covalent
(i.e. , f,. &F, E~) compounds LiNb03, Ba~NaNb, O» „

and GaAs, and excellent agreement with experi-
ment was found. In particular, Eq. (18) accurately
predicted both the magnitude and sign of the higher-
order acoustically induced optical harmonic coef-
ficient"'" for GaAs, as well as d» for LiNbO, ,
which is directly proportional to c, . Thus con-
firming, as indicated in Fig. 2, that for covalent
compounds the cr, term in Eq. (17) can be ne-
glected. In order to observe its influence we
now consider more ionic compounds. We begin
with the interesting crystal LiTaO3, which is iso-
morphic to LiNbO3 but slightly more ionic.

For completeness in calculating d;,„ for LiNbO~
and LiTaO~, we include the small contribution of
the Li-O bonds. To do this we require the
individual contributions of the Li-O, Nb-O, and
Ta-0 bonds to the linear susceptibility. These can
be determined with sufficient accuracy as follows.
Following previous work' ' we decompose LiNbO~
and LiTaO~ into their constitutive bond contribu-
tions
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d (A)

Li Nb03
Li-0 Nb-0

LiTa03
Li-0 Ta-0

1.98

47Iy"

X~ (A')

1.2

0. 42 2. 01 0. 42 1, 78

5. 9

TAB1 E I. Linear and nonlinear bond parameters for
the isomorphic crystals LiNb03 and LiTa0&. Note that
as expected, the nonlinearity of the Li-0 bond is negli-
gible. The theoretical nonlinearities of the Nb-0 and

Ta-0 bonds are exactly the same as those determined
previously (in Ref. 3) by neglecting the Li-0 bonds, and

are in good agreement with experiment. For conversion
of the experimental results used in Tables I-III to ab-
solute values, we have used the determination of B. F.
Levine and C. ( . Hethea, Appl. Phys. Lett. 20, 272
(1972). That is, we have multiplied the nonlinear sus-
ceptibilities which were measured relative to quartz, by
the nonlinear susceptibility of quartz, i. e. , d~&(quartz)
=0.80' 10" esu.

in Table I. The values of o,{NL) were obtained
from Eq. (17) using the experimental values33 for
oNi, , while the values of o3(L) were obtained from
Fig. 2 [i.e. , from Eq. (1)]using the known ionic-
ities (also given in Table I}. Note that the actual
numerical values, for LiTaO~, of the linear and
nonlinear determinations of o3(Ta-0) are in good
agreement namely, cr,(L) =+ 0. 50 and o3(NL)
=+0. 50. That is, the value of cr3(NL) for the
Ta-Obond in LiTa03 (indicated by an open circle in
Fig. 2) lies on the straight line determined from
the linear data.

It is also noteworthy that as expected o,{Nb-O)
= 0 since f,.(Nb-O) & E, , while o3(Ta-0)+0 since
f;(Ta-0) & F, . This behavior is, in fact, responsi-
ble for the anomalously small value of d3, (LiTaO, )
compared with that of d3i{LiNb03). That is, the
larger o, for the Ta-0 bond reduces the net power
dependence o„i, [see Eq. (17}]and since di, ~o„i,,
a small value for d3, results.

C (eV)

E„(eV) 7. 1

16.2 12. 9

7. 3

8. BaTi03, PbTiO3

fg

(10 " esu)

a'"&'{10-"esu)

0„884

+0. 01

P (10 esu) + 0. 03

P~~~(10+ esu)

0. 717

+2. 0

+1.9
+6. 3

+2. 0

+0. 03

0. 756

+1, 7

+1.9
+3„9

+4

+0. 9

+0. 50

+0. 50

X,(Li-O) =f.«N, (Li) +f~X,(0),

iV, (Nb-O) =f,«N, (Nb) +f N, (0),

where, for example, N, (Li) is the average co-
ordination number of the Li atoms, f~ is the atomic
fraction of anions in the molecule, and f,« is the
atomic fraction of cations.

Using the linear bond parameters given in Table
I together with Eq. (15) results in the bond non-
linearities P and 4 also given in Table I. These
values, so obtained, are all rather similar to
those previously obtained with the neglect of the
Li-0 bond. In particular, note that 4(Li-0}
«4(Nb-0} as expected3; further, the calculated
bond nonlinearities &(Nb-0) = 2. 0&& 10 33 esu and
6{Ta-0)= l. 7X 10 esu are exactly the same as
those obtained previously by completely neglecting
the Li-0 bond, and are in excellent agreement with
the experimental value37 n. (Nb-O) = 4(Ta-0) =1.9
~ 10 esu.

We have also listed the values for the various cr's

1(BaTi03) 3 g(Ba 0)+ 3 g(Ti-O),

}f(PbTiO,) = —', y(Pb-0) + —,y(Ti-0)
(21)

(note —', of the bonds are Ba-0 and only 3 are Ti-O).
%'e can determine the susceptibility of the Ti-0
bond by making use of the closely related simpler
compound TiQz. Obtaining @(Ti-0}from Ti02
and combining this with Eq. (21) results in the
linear susceptibilities given in Table II. In order
to evaluate the bond volumes v, when the average
coordination number N, [given by Eq. (20)] for the
two bonds p, and v are unequal we suggest the fol-
lowing simple generalization of the expression used
previously~'~:

The unusual pair of compounds BaTi03 and

PbTi03 gives us a further opportunity to test these
ideas. As previously mentioned, d» of BaTi03 and

PbTi03 have opposite signs. Before investigating
whether Eq. (17}is related to this unusual behavior,
it seems reasonable to first check whether the
linear properties of the Pb-Q bond are unusual.
(The Ba-0 and Ti-0 bonds have already been dis-
cussed" and were found to behave as expected. )
The bond parameters for PbQz, which is iso-
morphic with Ge03, Sn02, and TiQ2, are the fol-
lowing: e = 4. 1, E„=6.0 eV, C = 12.2 eV, b = 1.38,
and f,. = 0.806. These are in no way unusual being,
in fact, all very similar to the other isomorphic
compounds. Thus, the sign difference in d33 for
BaTi03 and PbTi03 is not simply related to any
peculiar linear properties of the Pb-0 bond.

To calculate the nonlinear susceptibilities in
these compounds, we first need to determine the
linear susceptibilities from'
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(22)

TABLE II. Linear and nonlinear bond parameters for
the isomorphic crystals BiTi03 and PbTi03. Note that
the bond nonlinearity P of the Pb-0 bond is over five
times as large as that of the Ba-0 bond, and makes, in
fact, a contributio~ to d33(PbTi08) which is comparable
to that of the Ti-0 bond. The agreement between the cal-
culated and experimental bond nonlinearities is good.
Owing to the small value of P (Pb-0) relative to P (Ti-0)
the experimentally determined Pb-0 nonlinear bond
parameters are not as accurate as those for the Ti-0
bond.

BaTi08
Ba-0 Ti-0

Pb Ti03
Pb-0 ri-0

47t y"

y, (A')

C (eV)

E„(eV)

2. 81

2. 41

0. 68

15.5

3. 1

0. 962

2. 00

2. 20

7. 1

13.0

7. 1

0. 768

4. 17

1.19

10.2

3.0

0. 922

2. 00

2. 20

7. 1

13.4

7. 1

0. 779

~calc (10-28 esu) y 0 04

(10 esu)

P'+' (10 esu) + 0. 2

P'~' (10 esu)

+3.5

+4. 2

+17

+ O. 11

+0.09

+1.1

-+1.5

+ 1 7

+2. 3

+ 20

a, (NL)

+0.30

+ 0.72

—4. 0

+1.5

+0.78 -+2

—0. 14

+ 0.89

+0. 93

That is, we have made the reasonable assumption
that as the average coordination number N, in-
creases the bond volume decreases. The results
for the linear and nonlinear bond properties of
BaTi03 are given in Table II.3 '3 The experi-
mental values of P(Ti-0) and o(Ti-0) are obtained
by neglecting P(Ba-0) since the theoretical value
of P(Ba-0} is only I/~ of P(Ti-O).

Note that the large magnitude of the Ti-0 bond
nonlinearity~' p(Ti-0) & p(Nb-0) & p(Ta-0) is well
accounted for theoretically. A significant con-
tributor to this large P is the large linear polar-
izability of the Ti-0 bond. The reason for the
smail value of ds~(BaTiO~) in spite of this large
P(Ti-0) is that the ionicity of the Ti-0 bond is
close to the critical ionicity. This results (see
Fig. 2) in the unusually small value of o„„(Ti-0)
=+0.30. This small O„L does not, however, re-
duce the d„component so that, in fact, d„(BaTiO, )
= 3dsi(LINbO&). Thus, new compounds containing
the Ti-0 bond have promise of having rather large

phase-matchable nonlinearities. Actually this
small value of v„~(Ti-0) is not unexpected since,
in fact, it corresponds to a value [from Eq. (17)]
of o,(TI-O) =+ 0. 78, which is close to that found
(v~ =+ 0.86) from the pressure dependence of the
linear susceptibility in the similar compound
SrTiO~ (see Fig. 2). This value is also close to
0, =+0.72 obtained directly from the d-electron
line in Fig. 2 by using the known ionicity f, (Ti-O)
=0. 768 from Table II.

%ith the aid of the experimentally determined
values of p and 0 for the Ti-0 bond for BaTi03
(given in Table II), we can now obtain the experi-
mental values of the Pb-Q bond in PbTi03. In or-
der to do this we must take into account (using Fig.
2) the slightly higher ionicity of the Ti-0 bond in

PbTiQ3 as compared with BaTiQ3 (see Table II). The
major effect of this is to cause 0., to increase some
what [from o, (Ti-O} = 0. 78 in BaTiO~ to cr, (Ti-O)
=0. 93 in PbTi03 as shown in Table II], since as
Fig. 2 indicates 0, increases rapidly with ionicity.
Further, this la, rge f, causes a slight increase of
P in PbTiO~ as Eg. (16) and the P""(Ti-0) row of
Table II show. From these considerations, we
can determine the experimental values for p(Ti-0),
o(Ti-O), and hence also P(Pb-0) and a(Pb-0} by
obtaining the best fit to the PbTiQ3 experimental
d33 and d3, measu rem ents . These re su its are given
in Table II. It should be noted that owing to the
relatively small value of P(Pb-0) the experimental-
ly determined bond parameters P and 0 for Pb-0
are significantly less accurate (errors of order
-30%) than those for the Ti-0 bond. " As de-
monstrated in Table II, these experimental bond
nonlinearities, P(Pb-0) and P(Ti-O), are in good
agreement with those calculated using Eq. (15).
The power dependence o~(NL) determined from this
nonlinear experimental fit are also in good agree-
ment with those, 0~(L), determined from Fig. 2.

In spite of the great similarity between the var-
ious linear and nonlinear bond parameters for the
Ti-0 bond in BaTi03 and PbTi03, there is one
striking and significant difference between them,
namely, that the net dependence cr» of P on the
bond length is positive for BaTiQ3 and negative for
PbTi03; i.e. , p increases with d in BaTi03 and
decreases with d in PbTi03. This remarkable
difference in behavior between these two compounds
is simply a result of the near cancellation in Eq.
(3.7) between the ao and 0~ contributions. Because
of this cancellation, the small increase in c), in
going from BaTi03 to PbTi03 (caused by the small
ionicity increase) is sufficient to change the sign
of the small net cr„L.

In order to see more clearly the role of these
parameters in determining the net crystal d, ,„
coefficients it is helpful to look at the relationship
between d;» and the individual bond P and 0» val-
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ues. The d~3 coefficient is especially interesting
owing to the comparable contributions of both types
of bonds and is given [with the aid of Eg. (2}]by

dies(PbTiOq) &'10 = f [14+5oNz, (Pb 0)]P(Pb 0)
—2. 9o„,(Ti-o) P(Ti-0)j

=+18.7&&10 ' esu (experiment).
(23)

Note that the Pb-0 bond has a rotation contribution
in addition to the bond-stretching contribution
[proportional to o»(Pb-0)], whereas the Ti-0
bond only has a bond-stretching term. There-
fore, if o„„(Ti-0)were zero (i.e. , all bonds has
the same nonlinearity P), then the Ti-0 bonds
would make no contributions to d».

The above expression, which exhibits the pro-
portionality between the Ti-0 bond contribution
and o„z,(Ti-O) clearly shows the importance of the
sign change in o„L(Ti-0) between BaTiO& and

PbTi03, and its direct relationship to the sign
change between do~(BaTiO~) and ds, (PbTiO, ). Since
a„„(Ti-0}&0for PbTi03, the Ti-0 bonds make a
positive contribution to d33, in agreement with the
positive experimental value for d33; for BaTi03
o„z (Ti-0) & 0 and thus the Ti-0 bonds make a neg-
ative contribution to d33. The other contributing
factor toward making ds, (PbTiO, ) &0 is that
o„~(Pb-0) is large and negative making the factor
multiplying P(Pb-0) positive. [Since P(Ba-0)
« lKPb-O), there is no corresponding contribu-
tion by the Ba-0 bond in BaTi03. ] It is note-
worthy that this Pb-0 contribution to ds~ is com-
parable to that of the Ti-0 bond in spite of the
fact that P(Pb-0) «P(Ti-0). This is simply a re-
sult of the very small value of cr„r,(Ti-0) «o„z,
(Pb-0) multiplying J3(T1-0) in Eq. (23}.

The situation is different for the d» coefficient,
since as the relation below shows,

d~~(PbTiO~) &&10 ={-[3.6+2. 7o„~(Pb-0)]P(Pb-0)

—3 9 P(Ti-0)j
= —88. 6 &' 10 esu (experiment),

(24)
the Ti-0 bond makes a negative contribution to d~~

which is approximately independent of either the
magnitude or sign of o„„(Ti-0). As can be seen
from the above equation, the Ti-0 bond makes the
dominant contribution to d3, [since P(Ti-0)
»P(Pb-0)], explaining why ds~ of both BaTiO~ and

PbTiQ3 have the same sign whereas the d33 have
the opposite sign.

These comments also help explain why the value
of &„=-433+2&3, is smaller than expected from the
Jerphagnon relation [b,„«(-P,) ] between the vector
part of Miller's delta, 4„, and the spontaneous
polarization P, . That is, ~„ is small in PbTi03
because ds~ is positive (for the reasons discussed

TABLE DI. Comparison between experiment and an
empirical fit using p fx:dNL, with p(Pb-0) =+2.4x 10" 0

esu and O'N&(I'b-O) = —0. 5. Owing to the lack of absolute
x-ray measurements, we cannot relate the fitted absolute
signs of d&~ and d22 (predicted to be negative) to the ex-
perimental ones (i. e. , the handedness of the crystal is
unknown). However, the relative experimental signs of
d&& and d22 are the same, in agreement with the predic-
tions of the empirical fit.

d3)

d~3

di1
d22

Pb5Ge~O«
Empirical fit

(10 esu)
Experiment

(10 esu)

+].J
—2. 0
+ 2. 4

8, 2

above) and hence this positive d~, partially can-
cels the larger negative value of dz~. This does
not happen in BaTiO~, for which the Jerphagnon
relation is well satisfied.

C. Pb, Ge3OII

Pb, Ge~O» is another lead compound which is in
poor agreement with the Jerphagnon relation. '
In fact, it not only disagrees in magnitude (by a
factor of -10), but also in sign. Most of the non-
linearity d, ,„ is due to the Pb-0 bonds as can be
seen by comparing P(Pb-0) =+1.5&& 10 ~ esu (from
PbTi03} with P(Ge-0) = —0. 3&&10 3 esu (from
GeOz). Since the geometrical factors for the Pb-0

and Ge-0 bonds are similar, we can concentrate
on just the Pb-0 bonds. A good empirical fit to
experiment, shown in Table III, is obtained using
P(Pb-0) =+2. 4x10 '0 esu and o„~(Pb-0) = —0. 5

[i.e. , o, (Pb-O) =+1.15]. It is noteworthy that
P(Pb-0) is similar in both Pb, Ge,O«and PbTiO,
despite their rather different structures (e. g. ,
PbTi03 has only three Pb-0 bond lengths whereas
Pb, Ge~O» has 24 unequal bond lengths per unit
cell}. The o~(Pb-0) value of Pb, Ge~O« is in
adequate agreement with Fig. 2 since it would
correspond to an ionicity of f,. -0.91, which seems
reasonable compared to f, (Pb-O) =0.92 in PbTiO, .

It is worth noting that the small values of 4;; in
Pb5Ge30» are simply due to the small "geometri-
cal" (i. e. , bond rotation and stretching) factors
multiplying P(Pb-0) and P(Ge-0). That is, the
small ~;, are not due to any near cancellation be-
tween the positive P(Pb-0) and the negative P(Ge-O).
Finally the reason for the wrong sign prediction
of the Jerphagnon relation is directly related to
the negative value of crN~(Pb-0). That is, by
evaluating the geometrical factors for d,-» (just as
we did for PbTi03), one finds

6„=—h33+26qq = —0. 5g„L(Pb-0) I6(Pb-0)N/1,
(25)
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where X is the number of unit cells per cm . In
LiNb03, Ba~NaNb, O„, LiTaQ3, and BaTiO3, for
example, the relevant 0„„is positive and ~„is
negative, in agreement with the Jerphagnon rela-
tion &„~—P„which also predicts a negative &„
(taking P, as the positive direction). However, in
Pb, Ge,O» the power dependence v„L(Pb-0) is
negative and as Eq. (25) shows this produces a
Positive &„which is in disagreement with the
negative value predicted from ~„cc—P, .

IV. SUMMARY AND CONCLUSIONS

%e have discussed in detail the dependence of
the bond nonlinear polarizability P on the bond
length d (i.e. , pcs-d "L, where O„L is the power
dependence). Physically the reasons for this de-
pendence of P on d are analogous to those for the
bond-length dependence of the linear susceptibility

That is, for covalent bonds as d increases and
the atom cores are separated further apart, the
effective potential or energy gap E» acting on the
mobile bonding electrons decreases, thereby in-
creasing both the linear and nonlinear polarizabil-
ities. However, for highly ionic bonds the non-
linearity arises from the induced octupole mo-
ment induced in the anion by the charged cation.
In this case, as d is increased, these induced mo-
ments decrease rapidly; hence P decreases. This
sign change in the power dependence vNz, (PCC d "

)

between covalent and ionic compounds was shown
to be closely related to an analogous sign change
in 0~ and the pressure dependence of the linear
susceptibility (i. e. , y~d ").

One important reason for this striking difference
in behavior for covalent (Pcc d") and ionic (P~ d ')
materials was found to be related to the difference

in validity of the free-electron Thomas-Fermi
screening in each case. For the relatively loosely
bound valence electrons in covalent bonds, the
free-electron screening was found to be adequate.
However, for the more tightly bound ionic crys-
tals, more atomiclike (and less efficient) screen-
ing became appropriate.

These differences in the dependence of P on d
(i.e. , the ionicity dependence of v„~) were shown
to be crucial to an understanding of the unusual
properties of several ferroelectrics. In particu-
lar, by using cr values determined from the linear
susceptibility data we were able to quantitatively
account for the small value of d»(LiTaO, ) as corn-
pared with d»(LiNbO~), as well as the opposite
signs of ds~(BaTiO~) and d~s(PbTiO~). The large
deviations of PbTiO3 and Pb, Ge~Oyy from Jerphag-
non's relation were also explained. For example,
as Eq. (25) shows 6„(Pb,Ge,O») ~ (- v»). For
relatively covalent ferroelectrics (e. g. , LiNbO3
and BaTiO~) O„L is Positive so that ~„&0 as pre-
dicted by the Jerphagnon relation. However,
Pb, Ge30« is sufficiently ionic so that 0N~ & 0 and
thus we predict 4„&0, in agreement with experi-
ment, but opposite to the prediction of Jerphag-
non's relation.

It would certainly be of great theoretical as well
as practical interest (e. g. , for far-ultraviolet
nonlinear devices) to measure d...for even more
highly ionic, larger band-gap crystals such as
fluoride s.
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