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The temperature dependence of the infrared reflectivity of rutile, TiO„ is reported in the range
275—900 cm ' and from room temperature up to 1500 K, for both the A,„- and E„-type mode

spectra. Reflectivity spectra are fitted with the aid of a four-parameter dispersion model based on the

factorized form of the dielectric function. The equivalence between the classical dielectric response

function and the phonon propagator provides a correlation between adjusted frequencies and damping

and their quantum counterparts in terms of the phonon self-energy. The temperature dependence of the

anharmonic frequency shift for the ferroelectric (FE) A,„(TO) mode which has been shown to be linear

in the vicinity of room temperature looks more rapid at high temperature. This may indicate the

occurrence of an anharmonic coupling that involves the sixth-order Hamiltonian, which acts as a

quadratic function of temperature to stabilize the FE mode together with quartic anharmonicity. The
behavior of TO and LO phonon damping with increasing temperature shows that the phonon lifetimes

in rutile are limited by anharmonic three-phonon coupling. Phonon lifetimes are found shorter than in

other oxide crystals. Moreover, the ratio of the damping function evaluated at the harmonic frequency

on the frequency of the A,„(TO) mode is six times higher than the same ratio averaged on all other
modes. Thus rather large anharmonicities are revealed in rutile that are correctly described by

lowest-order terms in the phonon self-energy.

I. INTRODUCTION

Because of its scientific importance rutile, TiOz,
has been the subject of many experimental investi-
gations. Though rutile is not a ferroelectric crys-
tal, it is known" that the frequency of the A, „(TO)
mode rapidly increases with increasing temper-
ature, as in the case of ferroelectric crystals,
thus involving a decrease of the static dielectric
constant with increasing temperature. The de-
pendence of the frequency of the A, „(TO) mode on

temperature has been experimentally investigated
both by neutron scattering' and dielectric mea-
surements' from room temperature down to 4 K.
On the other hand, Samara and Peercy' have stud-
ied the temperature and pressure dependence of
the Raman-active modes from 4 up to 500 K.
These authors have found rather small self-energy
shifts from the energy of the harmonic-vibration
mode, while the self-energy of the so-called
ferroelectric A, „(TO) mode accounts for 20% of
the vibration energy at 300 K. To make use of
the Lyddane-Sachs-Teller relation, they have as-
sumed that the A, „(LO) mode frequency is tem-
perature independent. The main conclusion was
that, for the ferroelectric Az„mode, the anhar-
monic frequency shift derived from the cubic
Hamiltonian is counterbalanced by strong quartic
anharmonicity which becomes predominant at tem-
peratures higher than -30 K, and which stabilizes
the vibration mode. Such an effect has been pre-
dicted by Silverman and Joseph. ' Since the same
situation occurs in many ferroelectric (FE) ma-

terials, ' it is of great interest to study this sta-
bilization process. One of the authors has re-
cently pointed out' that to the same sixth order in

the self-energy as the cubic term, the sixth-order
Hamiltonian gives a contribution to the phonon
self-energy the effect of which is also to stabilize
the harmonic mode energy. However, while the
temperature dependence of the quartic term is
linear, it was pointed out that the lowest-order
term involving the sixth-order Hamiltonian should
involve a quadratic temperature dependence of the

energy shift with the same positive sign. Thus it
is of interest to study to what extent the data ob-
tained by Samara etal. ,

z which show a linear be-
havior in the vicinity of room temperature, ex-
trapolate up to high temperatures.

Since the Az„mode is infrared active, rneasure-
ments of the temperature dependence of infrared
ref lectivity should give information on the self-
energy of this A, „(TO) mode as well as on that of
the corresponding LO mode. Also, to complete
the study of the Raman-active modes by Samara
et al. ,

z the anharmonic behavior of the infrared-
active E„modes will be presented in this paper.

To obtain as much information as possible from
the infrared reflectivity spectra when the calcula-
tion of the dynamics of the anharmonic lattice
would be of formidable complexity, a four-param-
eter dispersion model has been shown to be more
suitable than the classical three-parameter model
in the case of several polar-mode crystals having
wide ref lectivity bands. ' This four-parameter
model has been tested for the E„-type modes of
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TiO, and Al, O, .' In the case of only one reflec-
tivity band and approximately for mell-separated
bands, it is straightforward to show that the clas-
sical dispersion model, as tested first by Spitzer
and Kleinman' in a crystal having many phonon

branches such as a-quartz, implies equality for
the longitudinal and transverse mode damping. '
%'hen the reflectivity bands are narrow, as in
quartz' or silicates, "it is reasonable to expect
approximately the same phonon decay for the LO
and the corresponding TO modes within the hy-
pothesis of a two-phonon density of states which

would be a slowly varying function of frequency.
This is usually the case in crystals having a suf-
ficient number of phonon branches regularly al-
located in the Brillouin zone. On the other hand,
when

corundum, Al, O„' have shown that yf Jp is ap
proximately equal to y»o in the whole temperature
range for modes which have the "classical" char-
acter, viz. ,

0fTo -1 «1
f LO

whereas for the E„' mode having the highest oscil-
lator strength (Q, ro =569 cm ', Q, ~o =909 cm ' at
300 K), it was verified that the imaginary part of
the phonon self-energy increases monotonically
fx om the value determined at u = QTo up to another
value at ~ =QI p as may be expected.

II. PHONON SELF-ENERGY AND

DIELECTRIC SUSCEPTIBILITY

0fTo 1 )1
2
jLo

that is when the infrared band is wide, there is no
reason for an identity between damping yTp and

y because both phonon modes may have different
phonon decays. Results obtained with the aid of
the four-parameter model for the E„modes in

In this section we review some fundamental ex-
pressions obtained by Maradudin and Fein, '

Cowley, "and one of the authors. '
By adopting the notation of %allis eI, a$. ," the

anharmonic Hamiltonian may be expanded as

II =H' +0' + ' +H" +''',
A

where the nth-order Hamiltonian is

ff& &= g p ".g V& &(k,j„k,j„... , k„j„)~(k,j,)~(k,j,) ~ ~ X(k„j.).
~lf 1 ~2 j2 ~ n jn

The V "~( ~ ~ ) potentials are Fourier-transformed
nth-order atomic force constants' and the oper-
ators A(k, j,) are defined in term of the usual

phonon creation and annihilation operators

X(k,. j,) = a'( k, q, )+ e(k, q, ). -. .(3)

y„„=—lim QM»M, ~G(Oj, ea ix, T),P
x~0

Oj

where v is the volume of the crystal and P =1/ksT.
The phonon propagator may be evaluated by

solving the Dyson equation within the approxima-
tion of assuming the self-energy matrix

P(0j, (u, T) = Pk[b(u(0j, (u, T) + iI'(O-j, u), T)] (5)

as diagonal over the branch indices. ' ' " In Eq.
(5}, the real and imaginary parts of the phonon

self-energy, respectively, correspond to the an-
harmonic frequency shift hw and the damping func-

The linear dielectric susceptibility tensor is
defined as the analytic continuation of a sum of pho-

non propagators over all polar vibration modes and

depends on a product of first-order dipolar-mo-
ment tensor components M@M,f associated with

each polar phonon mode (5j),"

tion I'. If a&(0j) is the harmonic frequency of a
phonon mode, the phonon propagator that describes
the spectral response of this phonon mode is" ~

»(oj)
ph ur (Oj) —ur —2+(Oj)p(Oj, cu, T)/pk

'

%'e shall restrict ourselves and retain only the
terms which contribute to the phonon self-energy
up to the same order as the lowest-order contribu-
tion to the imaginary part of the self-energy, viz. ,
the sixth. Within this approximation, three terms
are known to contribute to the phonon self-energy.
They are diagrammatically represented in Fig. 1.
The first one [Fig. 1(a)] is due to the lowest-order
effect of the quartic Hamiltonian. This term is
real and thus only contributes to the frequency
shift in the form' ' "

he@ '~(0j, T) = —g V '~(0j, 0j,k,j„
k, j,}[2n(k-,j,) + 1],

where n(k, j,) =(e" "&'&~~ sr —1} ' is the mean num-

ber of phonons, hereafter noted as n, .
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The second term [Fig. 1(b)] is due to the cubic Hamiltonian. Calculations by using the usual set of rules'

give the following contribution to the frequency shift and damping function:

b(ui )(Oj, (u, T)+iIi )(Oj, (u, T) =-&, g ~V ')(Oj, kj„-k,j2)~

1 1x (n, +n, +1) 6' +iw5((u+(u, +(u,) —6'
{d+i+(d2 (d —(d 1

—{d2
-rw5((u —(u, —(u, )

1 1~ (n, —,) i' ~ imi)( ~,—,)-i' -'w(i( —,~,) I,(d+ (al
&

—(d2 ('d —(d ) + (d2

(8)

where, for simplicity, (u(k j, ) is noted (u, and 6' denotes the principal part.
The third term [Fig. 1(c) gives a real contribution as does the first. The result is

z Q V (Oj Oj k)j) k ji k2j2 k2j2)
(d g

+ (d2 (d )
—(d2

(8)

As long as the quartic potential is positive, as is apparently the case, the frequency shift n(u(4)(Oj, T) is
positive, whereas 6(u(6)(Oj, (u, T) is usually negative in the vicinity of the normal-mode frequency. "'4
Thus both contributions balance each other. within the hypothesis of a positive sign for the quartic poten-
tials, the sixth-order potentials, which are second derivatives of the quartic potentials, are also positive.
However, s(u")(|}j, T) is a quadratic function of temperature, whereas a(u(4'(Oj, T) and n. (u(6'(Oj, (u, T)
vary linearly with increasing temperature in the high-temperature limit.

The linear dielectric susceptibility tensor is

X).((u T) =X(lJ.» T)*iX)'(((u T}

1 2(u(0j)

gs ~ )u '& (uw(5j) —(u'+2(u(|}j)[d(u(5j, (u, T) wiI'(5j, (u, T}]
0$

(10)

Within the lowest-order approximation, the damping I'(Oj, (u, T) reduces to the imaginary part of Eq. (8),

1(0j,(u, T) = 8, Q (V ' (Oj, k, j„—k, j2) ) ((n, +n, +1)5((u —(u, —(u, )

+(n, —n, )[5((u+ (u, —(u, ) —5((u —(u, + (u,)]],

(12)

while the frequency shift is the sum of terms
b, (u

' (O', T), A(u(' (Oj, T) added to the real part
A(u"'( j, (u, T} of Eq. (8).

The form of Eq. (10) is that of the classicai di-
electric susceptibility

02~
e

4P 0 (d +ly (d

Oj

,
Oj

kljl -klj

Oj

Oj

kl jl k2j

Oj

kl)l

where Ae& is the classical oscillator strength, and

0& and y, , respectively, are the resonance fre-
quency and damping of a TO vibrational mode.

Equations (10) and (12) are equivalent when

(Sw/gp}(u(0j }M+M„&= Q~& b, e, , (13)

Q2~
—= (u'(Oj) + 2(u(Oj)A(u(Oj, (u, T), (14}

FIG. 1. Diagrams of the phonon-phonon interactj. ons
that contribute to the phonon self-energy up to the sixth
order.
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(ay~ ——2u&(0j)I'(Oj, (o, T) . (15) z LO &LO0 —(d + SP (d

f A~TO
—~'+ 2yf TO@

(18)

These equivalence relations imply a generaliza-
tion of the classical dispersion formula (12) to take
account of the possible frequency dependence of
a&a(Oj, &o, T}+iI'(Oj, ~, T) and under these con-
ditions either the classical or quantum forms of
the dielectric susceptibility may be utilized.

III. FOUR-PARAMETER SEMIQUANTUM (FPSQ) MODEL

The form of the dielectric susceptibility (12) re-
flects the fact that the complex frequencies of the
transverse-optic modes are the poles of the func-
tion g and of the dielectric function

e = z„+4m' .

The complex frequencies of the longitudinal-optic
modes are the zeros of the dielectric function and

thus the poles of the function

Consequently, to obtain information on LO as
well as on TO modes, it appears more suitable to
use the factorized form of the dielectric function"

Tests of formula (18) in realistic cases' have
shown that the four parameters per polar mode
may be considered as frequency independent, even
in the case of wide ref lectivity bands. Indeed, we
make an approximation which holds as long as the
structure of the crystal involves a sufficient num-
ber together with a regular frequency distribution
of phonon branches in order that the two-phonon
density of states (and a fortiori higher-order den-
sities) would be a slowly varying function of fre-
quency. Then a~iel(0j, cv, T) is assumed to be a
constant, rewritten dry ' (Oj, Q&, T), in the vicinity
of the resonance frequency Q~, as are the two
other contributions to the frequency shift. In view
of relation (15), I'(Oj, &u, T) should be of the form'

F(Oj, &u, T) = u&y~(&v, T) . (19)

A comparison of Eqs. (10) and (18) shows' that
the FPSQ model assumes a monotonie increase of
the dimensionless damping function y&(u, T) from
a value y~~(T) at &u =Q Yo up to another value

y&„o(T) at &u =Q~o, consistent with the above ap-
proximation. By making use of the equivalences
(14) and (15) applied to the longitudinal modes,
Eq. (18) may be rewritten in the form

~o(oj) — ' + io(oi)[ o(oj, ~~o, ) + '
yf~o( )j

&o (Oj) —(u +2&&) (Oj)[wu) (Oj, Q,m, T) +i(uy~ro(T) j

This expression involves four adjustable pa-
rameters per polar phonon mode at each tem-
perature, viz. , 6&urn(0j, Q&ro, T), bw (Oj, Q& T),
y&ro(T), and yz„o(T). For the necessity of a first
approach, Eq. (18}may be equivalently utilized
when the harmonic frequencies (which will be de-
termined by extrapolation down to T =0 of the
frequency data) are unknown, and the four adjust-
able parameters are ~f ~o ~JLp pfyo and pygp.

Infrared reflection spectra can be fitted with the
aid of Eq. (18) or equivalently (20} together with

v~ —1

Thus a measurement of the phonon self-energy at
two frequencies, Q&0 and Q~o, can be deduced
from the infrared ref lectivity data for each polar
mode.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

All infrared reflection spectra were measured
with a single-beam Perkin-Elmer 12C mono-

ehromator equipped with a sodium chloride or a
cesium bromide prism. The average angle of the
incident light beam was 7-,'' from the normal to
the sample surface. During the reflectivity mea-
surements the infrared flux was chopped ahead of
the sample so that the thermal radiation emitted
by the crystal would appear as a constant flux
and consequently was not detected. The thermal
radiation emitted by the crystal at a minimum in
the reflectivity may be compared to that emitted
by the globar source heated at a known temper-
ature, thus allowing the temperature measurement
at the crystal surface seen by the entrance slit of
the spectrometer. The chopper makes an angle
with the infrared flux to avoid any reflection of the
radiation emitted by the crystal into the spectro-
meter. The crystal is heated by a small electric
furnace at temperatures lower than 800 K. Higher
temperatures are obtained by heating by a CO2 la-
ser working in the continuous regime. Gervais"
has carefully verified by differential analysis that
such a kind of heating by nlonochromatic radiation
does not significantly disturb the normal phenom-
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enon.
Optically polished rutile crystals were supplied

by Brand Djevahirdjian S.A. Crystals have been
annealed for several hours at 1700 K so as to re-
generate the surface after polishing. The uncer-
tainty in the reflectivity is b, R/8 = 2/o, to which
one has to add an absolute uncertainty varying
from 68=0.002 at 900 cm ' to hB =0.01 at 300
cm ' due to the noise in the detection. The reso-
lution in the spectra is intermediate between 2
and 5 cm '.

Two crystals were employed. To get the A2„-
type vibration mode (extraordinary ray) one needs
a gold-wire-grid polarizer together with a crystal
cut parallel to the c axis, whereas a surface cut
perpendicular to the c axis readily reflects the
E„-type mode spectrum (ordinary ray) Sp.ectra
obtained at room temperature are shown in Figs.
2 and 3. Comparison of these spectra with those
obtained by Spitzer et al."shows agreement with-
in experimental error except in the range 500-600
cm ' for the ordinary ray (Fig. 3), where our
data are slightly lower than those of Spitzer et al.
A small dip appears in this frequency range in
both spectra that is not expected from group-theory
analysis (IA, „+3 E„ infrared-active modes). The
same dip is noted in the spectra obtained by
Spitzer et al."but looks less marked in the spec-
tra of Barker and Tinkham. " Thus we think the
small disagreement in Fig. 3 between our data
and those of Spitzer et al. is correlated to the
intensity of the dip that seems to vary from one
spectrum to another. The cause of this feature
will be discussed in Sec. V.

Results at several temperatures are shown in
Figs. 4, 7, and 8.

V. ANALYS1S OF THE DATA

A. A -type mode at room temperature

To fit the A, „mode spectrum, which is incom-
plete in the low frequencies owing to the limit in
the available spectral range of our apparatus, one
needs an additional parameter, viz. , the frequency
of the TO mode. We have used' that determined
by neutron scattering measurements, ' QTo = 172
cm '. A secondary oscillator near 600 cm ' has
been added to take account of the marked dip.
Then a fit of Eq. (18) to the ref lectivity data looks
excellent since it is within experimental error
(Fig. 2). Parameters used for the best fit are
listed in Table I.

The good agreement between the calculated curve
and experimental data tends to indicate that the ap-
proximations made are valid. Particularly, any
peak in the damping function would be observed in
the range 280-550 cm ' as a slight local disagree-
ment in the fit.

It is possible that the additional oscillator near
600 cm ' is a two-phonon absorption. Two-phonon
peaks indeed are observed in Raman spectra' "
and a high phonon density does exist in the
Brillouin-zone boundaries at energies equal to
about half that of the secondary oscillator, par-
ticularly at the X and% points. ' But this sec-
ondary oscillator may be alternatively understood
in term of a forbidden mode, since the oscillator
frequency differs by only 3k from that of the A,
type mode which is known to be strong in the
Raman spectrum. "" Indeed, the existence of a

0.8
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LL
LU

0.2—
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) 0.6-

LU~ 0.4-
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100 300 500 700 900 WAVE NUMBER ( cm 1)

WAVE NUMBER ( cm-1 I

FIG. 2. Reflectivity data {open circles) for the A2„-
type mode spectrum at room temperature, and the best
fit {full curve) to these data with the aid of the four-
parameter dispersion model.

FIG. 3. Reflectivity data {open circles) for the E„mode
spectrum at room temperature. The data obtained by
Spitzer et al. {Ref. 17}have been added {full circles in
the range 500-600 cm ~} when they differ from ours.
They complete our data in the lo~v-frequency range. The
full curve is the best fit of Eq. {18}to the data.
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TABLE I. Temperature dependences of frequencies, frequency shifts, and damping of the A2„-type mode spectrum
as obtained from the best fit to the ref lectivity data.

Mode

A~ TO

LO

T«

T2
T3
T4
T5
T6

T2
T3
T4
T5

Te

Qj
(cm ')

142~-
172~«l

(191)
(212)
(250)
275

796
798
798
794
788

"jTO
(cm ')

b,w (5j, Q&, T}
(cm «)

2I:2j

36C23

226

jLO
(cm «)

Ace (P, 0j,T ) + 6r j
(cm ')

2I 2l

31523

(55)
(»)
(145)
190

= 7.8

Yj To
(cm «)

Yj

(cm ')

(76)
131
158
169
178

38
60
90

135
157

I'(Oj, Qj, T)
(cm ')

(45.4)
90.5
117
147
170

19
30
45
67
78

=144 cm «~2~
TO

secondary
mode

T2
T3
T4

T5
T8

592
592
588
580
570

589.5
587
582
571.5
559

55
80
110
(135)
(150)

T«=4K, T2= 295K, T3= 563 K, T4=840K, T5=1285K, T6= 1550K

small amount of a (3+) impurity such as Fe",
substituted on a Ti" site, locally removes the neu-
trality of charges in the A, vibration mode, thus
giving a slight polar character to the mode. This
reasoning is compatible both with the amount of
(3+) impurity in our sample and with the siight
change in the intensities of the dip observed by
different authors, since impurities may vary from
one crystal to another.

Finally it is possible that the addition of both ef-
fects creates the dip near 600 cm '. These argu-
ments also hold for the pronounced dip observed
in the same frequency range in the E„spectrum
(Fig. 3).

B. E -type modes at several temperatures

There is no problem in fitting the E„spectrum
at room temperature since our data which extend
from the high-frequency side down to 300 cm '
may be completed by those obtained at still lower
frequencies by Spitzer et a/. " in agreement with
neutron scattering result' (Fig. 3). The dip near
600 cm ' is treated again as a secondary oscil-
lator. Results from the best fit are listed in Table
II. A comparison of the TO and LO frequencies
with those determined by neutron scattering mea-
surements shows reasonable agreement within un-
certainties due to experimental errors inherent to

TABLE II. Frequencies and damping of the E„-type
modes as deduced from the best fit to the ref lectivity
data as a function of temperature.

Transverse mode Longitudinal mode

jap YjTp j Lo ~jLp
(cm «) (cm «) (cm «) (cm «)

1 T«189
T2 (201)
T3 {208)
T4 (215)
7, (218)

27 831
43 831
54 831
82 828
95 826

50
65
86

115
145

2 T
T2
T3
T 4

T5

3 T f

T2
T3
T 4

T5

secondary T
&

mode 72
13
T

4

T 5

381.5
377.5
374
362.5
355

508
502
501
496
492

585
585
585
580
580

16.5
27
33
50
60

24
38
52
87

110

65
75

100
120
140

367
364.5
363
356.5
353

443.5
439
433
424
415

575
573
573
563
560

10
16
23
35
47

21.5
33
42
67
76

65
75

100
120
140

e„=6
T« =.29m K, T2= 535 K, T3= 740 K, T4= 1170K, T5 = 1475 K
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TABLE III. Comparison of existing frequency data
obtained by neutron scattering (Ref. 1) at room temper-
ature with our data.

Mode

Neutron
determination

(cm ~)

Our data
(FPSQ-model fit)

(cm ')

A2g (TO)

Z('& (TO)

Z~'& (LO)

Z'„» (TO)

E{3~ (LO)

@(3) (TO)

A 2„(LO)

S"& (LO)

172

189

429

189

3S1.5

443.5

508

Deduced from a fit to the data of Spitzer et al . (Ref.
17) with the aid of the FPSQ model.

both techniques and to the simplicity of the model
used to fit the data (Table III).

Fifteen among the sixteen parameters that
formula (18) requires to fit the ordinary ray at
higher temperatures are unambiguously imposed
by the experimental results. Indeed the TO and

LO frequencies are approximately positioned at
the highest-slope points in the ref lectivity band

edges while damping determines the slope of the
curve at these points. Besides, for wide bands,
it is well known that damping is connected to the
difference between the ref lectivity maximum and

unity. Also when the TO frequency of a weak polar
mode (such as Ei„2l Or E~„'l) is located between the
TO and LO frequencies of a strong mode to which
a large TO/LO splitting thus corresponds (E~„'l

mode), the lifetime of the weak phonon mode de-

termines the depth of the resulting dip in the main
wide reflectivity band. It is known that the static
dielectric constant e, (Ref. 2) decreases with in-
creasing temperature according to a modified
Curie-%'eiss law. Thus we have estimated the
frequency of the E„"(TO}mode at several tem-
peratures from the c, values calculated by using
parameters given in Ref. 2 and with the aid of a
generalized Lyddane-Sachs- Teller relation [by
putting &u =0 in Eq. (18)). The result is a hardening
of the E„'"(TO) mode with increasing temperature.

Because of the simplicity of the model together
with the relatively large spectral range where
each parameter locally influences ref lectivity,
one obtains a single set of parameters (Table II)
that permits the best fit to the experimental data
at several temperatures (Fig. 4}.

It is to be noted that Kramers-Kronig analysis
is incorrect as long as the ref lectivity spectrum
is not known in the whole spectral range.

The imaginary parts of the dielectric functions
e and q have been calculated by using parameters
given in Table II, at room and high temperatures
(Fig. 8).

VI. SELF-ENERGY OF THE
TO {FE)AND LO A MODES

A. Frequency shift

Results obtained from dielectric measurements22
show that the real part of the phonon self-energy
of the A, „(TO) mode amounts to -20% of the phonon

energy at 300 K. Thus an estimation of the shift
of frequency as made for the E„'l(TO) mode is no

longer valid for this mode.
In addition to the anharmonic frequency shift, it

is well known that the thermal lattice expansion
creates a frequency shift

08-
Eu

~ 0-6-

lUg 04-
LL
UJ
lK

Q.6-
I—

LLI 0.4-
LL
Ui
Ct'

02-

300 500 700
WaVE NUVBER (cm-~)

900 500 700
N4VE NUMBER ( cm t)

900

FIG. 4. Temperature dependence of reflectivity for the E„mode spectrum. Best fits (full curves) to these data with

the aid of the four-parameter model.
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)0 2

)02

lo

&00

)0-1

-2

100
I I I I I

300 S00 700
FAYE NUMBER tcm-&)

900

ha, (T) = -(u(0j) gq(T)o.„(T)dT,
0

where g& is the mode Gruneisen parameter and

a„ the volume expansion coefficient. The func-

FIG. 5. Imaginary dielectric functions ~" and q
showing the change in the E„-type mode structure with
increasing temperature.

tions g&(T) and 5ur&(T) are known' between 4 and
300 K for the A, „(TO) mode, together with the
anharmonic frequency shift n.pro(0j, 0&, T).

The first approach we have employed to fit the
spectrum obtained at 1550 K was to use the value"

%o= (~+2~(~~To+ 5~ro) l
'"

calculated at 1550 K by using an anharmonic shift
Ace~ and a pure-volume effect 5~To deduced from
a linear extrapolation up to 1550 K (Fig. 6) of
existing data' which indeed exhibit a linear be-
havior in the range 150-300 K. The best fit to
the ref lectivity data by using such a value, viz. ,
QTo=250 cm ', departs from the experimental
points in the range 275-300 cm ' (Fig. 7, dashed
line). A better fit is achieved by using a value for
Qro equal at least to 275 cm ' (Fig. 7, full line).
This determination should be regarded with some
caution because the accuracy of the ref lectivity
data decreases by approaching the low-frequency
limit available with our apparatus. Nevertheless,
since the ref lectivity data keep a constant level at
lower temperatures (Figs. 2 and 8), we think the
slight decrease in the ref lectivity observed at high
temperature on the low-frequency side is effective.
Besides the uncertainty has been lowered by per-
forming high-temperature experiments for several
times and by taking the average of the results.

If then one admits that the shift 5mTo remains
linear at temperatures higher than 300 K, the an-
harmonic frequency shift exhibits an increase with
temperature which is more rapid than a linear
one, since the result found at 1550 K is 40 cm '
higher than the linearly extrapolated value. This
behavior may be explained in terms of a contribu-
tion to the phonon self-energy due to the process

~ )00-
t

8 50-
84 3O-

/

T2./ I
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/
I r 08
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LLl~ 0&
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03 05 1
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I I I I

300 500 700
WAVE NUMBER (cm-~ )
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FIG. 6. Temperature dependence of the anharmonic
frequency shift of the FE A& (TO) mode (full line) as
obtained by Samara and Peercy (Ref. 2) and the extrap-
olation up to 1550 K of these data (dashed line). The
anharmonic frequency shift deduced from the fit of the
reflectivity at 1550 K appears higher (open circle) than

the extrapolated value.

FIG. 7. Reflectivity data (open circles) for the A2„
mode at 1550 K. The best fit to these data by imposing
the TO frequency 250 cm ~ deduced from the extrapola-
tion of existing data (Ref. 2) (dashed curve) departs
from the observed results in the low-frequency range.
A better fit (full curve) is achieved by using a TO fre-
quency equal to 275 cm ~.
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represented in the diagram of Fig. 1(c), since the
corresponding term [Eq. (9)], which is expected
positive, has a quadratic temperature dependence
in the high-temperature limit, whereas the two
other terms have a linear dependence. The effect
of this kind of anharmonic interaction might be
even more pronounced than is apparent in this re-
sult. Formally, higher-order quartic anharmonic
terms" might indeed give a negative contribution
to the frequency shift that would balance a part of
the contribution of term b, u& (Oj, T). But since
higher-order terms do not contribute to the
damping function as we shall see below, there
exists little support to this latest speculation.
Thus our experiment indicates the contribution of
an anharmonic coupling which involves the sixth-
order Hamiltonian, together with the effect of the
quartic Hamiltonian to the lowest order. Both an-
harmonic effects stabilize the vibrational motion
of the ferroelectric TO mode at high temperature.

The values of Q~o at intermediate temperatures
have been determined by interpolation of data found
at 300' and 1500 K, On this basis one obtains good
fits to the ref lectivity data as shown in Fig. 8. The
change in the phonon mode structure at high tem-
perature with respect to that at room temperature
is show'n in Fig. 9. The imaginary parts of the
dielectric functions c and g have been calculated
by using parameters given in Table I.

Since the pressure dependence of frequency QLp
is not available for now, it is not possible to sep-
arate the pure-volume effect from the anharmonic
contribution to the shift of the LO mode. %'e note
the weakness of the shift even over a wide range
of temperatures since it does not exceed 1.25%
up to 1550 K. There are two main ways to explain
this result. First a negative Gruneisen mode pa-

rameter would cause a shift of frequency which
might counterbalance the usual cubic anharmonic
shift, as observed for the B„Raman-active mode, '
or negative and positive contributions to the real
part of the phonon self-energy expressed through
the terms b,&ui i(0j, QLo, T) and A&@i'i(0j, T) balance
each other. " Finally it is to be noted parentheti-
cally that the approximation made by Samara et al.
[Eqs. (4) and (5) of Ref. 2] appears quite valid;
that is, the observed frequency of the LO mode
may be regarded as nearly temperature indepen-
dent.

B. Phonon lifetime

One may generally consider that summation pro-
cesses in Eq. (11) dominate difference processes
at frequencies equal or higher than the TO fre-
quency, to which the top of the ref lectivity band
corresponds. This is verified by recent calcula-
tions. " Difference processes may be neglected
a fortiori in the relaxation of the LO modes. Thus,
according to a procedure commonly used, ""we
neglect the difference processes and introduce the
frequency 0&/2 that is the average frequency of the
phonons interacting with the studied phonon (Oj} so
that Eq. (11) may be simplified and rewritten in the
form

[1,(0 T)] [( no i r)i a r I) -
]
(23}
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FIG. 8. Temperature dependence of the reflectivity
(symbols) for the A2„mode and the best fits (full curves)
of Eq. (18) to these data.

FIG. 9. Structures of the TO and LOA2„modes at
two temperatures. Imaginary dielectric functions are
calculated by using parameters listed in Table I.
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where a& may be called the cubic anharmonic pa-
rameter, equal to 41'i6i(0j, AJ, 0) by putting T = 0
in Eq. (23}.

F(5j, 0&, T) has been evaluated at several tem-
peratures from the damping data of the TO mode
(Table I) and also from the width at half height of
the neutron peak at 50 and 300 K, ' by making use
of the equivalence relation (15) at &u =Q&.

I (Oj, (u, T) Yj.=o. 2~(&j)
(24)

&zu

—100-
I

E
50-

I—

C
lcd

10—

A fit of Eq. (23) to these data as a function of
temperature by adjusting the parameter a& only
gives good agreement apart from the neutron value
at 300 K (Fig. 10) and allows one to conclude that
the TO-phonon lifetime is essentially limited by
anharmonic three-phonon coupling. A fit of Eq.
(23) to the LO damping data (Table I) also shows
good agreement (Fig. 10), thus allowing the same
conclusion. Higher-order anharmonic terms' "
indeed would involve a 1 temperature dependence
in the high-temperature limit with e higher than 1.

The unusual shape (less than linear in the high-
temperature limit) of the curve I'Yo(T) in a log-log
scale is to be noted (Fig. 10}, owing to the large
increase of the QTo frequency with increasing tem-
perature. The success of the fit here gives an ad-

ditional argument to indicate the hardening of the
transverse mode with increasing temperature.

Thus the anharmonic behavior of the TO and
I.O A,„modes is correctly described by retaining
terms up to the sixth order in the phonon self-
energy only.

VII. TEMPERATURE DEPENDENCE OF
E -TYPE MODE DAMPINC

In the absence of any value of the mode Gruneisen
parameters, the effect 6cu, of thermal lattice ex-
pansion is unknown and consequently the real part
of the self-energy cannot be evaluated. However,
since the frequencies are linearly shifted with
increasing temperature, one can say that cubic
anharmonicity together with thermal expansion
effects are dominant processes for all modes,
apart from the E~„'l(TO) mode which looks stabil-
ized by quartic anharmonic ity, but to a lower
extent than the ferroelectric A.,„(TO) mode.

The shifts of frequency from 300 to 1500 K are
small enough for the E„-type modes in order that
I'(Oj, 0, , T) may be replaced by y,./2 in Eq. (23)
apart from the Et„'l(TO) mode for which the trans-
formation, Eq. (24), has been made.

Reasonably good fits of Eq. (23) to the TO and

LO damping data are achieved (Fig. 11-13)and
one may conclude that anharmonic terms of higher
order than the cubic one do not contribute to limit
the phonon lifetime.

The fact that y, « is significantly different from

y, To for the E„'~ mode, where the splitting TO/LO
is weak (Table 2, Fig. 12), together with imper-
fections in the fit of the infrared ref lectivity in the
vicinity of the TO frequency of mode E„' at room
temperature (Fig. 2), indicates that the use of
the FPSQ dispersion model to treat the case of

F00

~ 50
E

l0

5-

t

05 3 5 10 20
T (&02K}

FIG. 10. Temperature dependence of the quantum
damping function averaged in the vicinity of the reson-
ance frequency for the TO (open circles) and LO (tri-
angles) A2„-type modes. The width at half-height of the
neutron peaks for the transverse mode from Ref. 1 have
been added after transformation according to Eq. (15)
(full circles). Full curves are fits of Eq. (23) to these
data.

Oi
I

0 3 0.5 ~ 2
T(~03K)

FIG. 11. Calculated curves [Eq. {23)]of the quantum
damping function averaged in the vicinity of the resonance
frequency (full curves) compared to the observed values
(symbols) for the TO and LO E( ~-type modes as a func-
tion of temperature.
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VIII. POLAR CHARACTER OF THE MODES

%hen the polarization of the electromagnetic
radiation implies the infrared activity of only one

optic mode, as is the case for the A,„-type mode,
the equivalence of the real part of Eq. (18) for

j = 1 and the real classical dielectric function

(Q2 ~2}2 ++2 +2 (25}

gives the following relation

QLo —Qgo

QTp
(26)

The substitution of Eq. (13) into formula (26)
yields

rutile lies at the limit of validity in some respects.
It is apparent from the results for the E„' mode
that the function l,(~, T} is a rapidly varying func-
tion of frequency, contrary to the assumptions of
the model. Nevertheless, the actual form of

y, (&u, T) probably does not depart significantly
from a monotonic change from y, ~o up to y»o in

the range Q, „o-Q, To as assumed by the model, '
since the fit to the ref lectivity data is good. The
utilization of a frequency-dependent function for
$3To and y, «would improve the fit in the range
500-600 cm '. But it is to be emphasized that
the addition of other adjustable parameters tends
to involve several solutions to a fit problem where-
as the sets of parameters found to obtain the best
fit to the present ref lectivity curves are unique as
long as one uses the FPSQ model.

e„ku Q/o —+o
~TO

(27)

Thus in terms of the usual classical dispersion
theory, the rapid increase of the A, „(TO) mode

frequency with increasing temperature, while

QLo remains nearly a constant in Eq. (26}, causes
a large decrease of the classical oscillator strength
~c from 160 at 300 K down to 56 at 1550 K. Ap-
parently this would mean that the A, „mode loses
its polar character. Actually if one makes use of
the quantum-theory results, Eq. (2V) indicates
that the product of dipolar-moment components

M&M, decreases by less than 10% when the tem-
perature changes from 300 up to 1550 K and thus
the polar character is nearly conserved in spite
of the hardening of the TO mode.

The same consideration also holds for the polar
characters of the E'„" and E„' modes as well,
since the products &@M„.look nearly temperature
independent.

However this is not verified for the E„'i mode,
where the TO/LO splitting diminishes markedly
(Fig. 14) and thus the mode loses its polar char-
acter with increasing temperature. M»M„, (also
he, ) is reduced indeed by a factor =5 when the
temperature increases from room temperature up
to 1500 K.

A temperature dependence of a dipolar-moment
component M&& in Eq. (4) is inconsistent with the
usual quantum theory of the linear dielectric sus-
ceptibility and necessitates a renormalization of
the dipolar moment as a result of the change of
the relative positions of the ions during the ther-
mal lattice expansion. This problem of renormal-

S00-
E(3)

)00-

E 50-

F00

E 50

&0 &0-

0305 1 2
T(103K)

01 0.30.5 i 2
T(~03K)

FIG. 12. Best fit of Eq. (23) to the TO and LO damping
data of the Z~~2~ mode.

FIG. 13. Best fit of Eq. (23) to the TO and LO damping
data of the Et3~ mode.
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2)
TABLE IV. Comparison of the cubic anharmonic pa-

rameter and the ratio a&/&u (t)j) for the TO snd LO modes
in rutile with data found in two other crystals.

Mode

0
(at 300 K)

(cm ~)

a&

(cm ~) a, /v(0j )

CQ

n 340-X
x

3000
I I

S00 $00
T (K)

I

]500

FIG. 14. Temperature dependence of the To and LO
frequencies of the E(2)-type mode. The mode loses its
polar character since the To/LO splitting diminishes
with increasing temperature.

ization is removed by using the factorized form
(18) of the dielectric function since the dipolar-
moment components do not enter the function
explicitly.

IX. DISCUSSION AND CONCLUSION

Though the FPSQ dispersion model is simplified
with respect to quantum theory, since the actual
frequency dependence of the cubic anharmonicity
[Eq. (8)] is neglected (though partly taken into ac-
count since it is measured at two frequencies per
polar mode) to retain the temperature dependence
only, this model has allowed us to obtain informa-
tion concerning the phonon self-energy in rutile
crystal.

First, cubic anharmonicity alone limits the
phonon lifetimes in the whole temperature range.
The strength of this anharmonic coupling is mea-
sured through the parameter a&. The ratio a&/

~(0,) is a dimensionless number which is a char-
acteristic of the summation over j phonon branches
and k wave-vector space of the cubic potentials in

Eq. (11) and thus corresponds to a kind of two-

phonon summation density of states. Results
found in rutile may be compared (Table IV) to that
found in other oxide crystals having several polar
phonon modes such as corundum Al, O, (Ref. 8) or
the most simple of silicate crystals, viz. , zircon
ZrSi04. ' Cubic anharmonicity appears large in
rutile in comparison to other crystals owing to
the value -0.050 for the average ratio a&/~(0j)
for the E„-type modes in this crystal. Further-
more a&/u(Oj) is found equal to 0.30 for the
A,„(TO) mode (Table IV). Taking account of the

Tio2 A 2„(TO)

Z(„'~ (TO)

(2) (Lo
g(2) (To)

E(') (r.o)

E(„"(TO)

189

381.5

443.5

508

19.5

0.30

0.083

0.022

0.034

0.044

0.053

A 2„(LO) 796 60

E'„" (r.o) 831 65 0.078

0.075

ZrSio4 value for each of the three A&„{TO) modes (Ref.
9): 0.019.

AI.20~ average for r 0 and TOE„-type modes (Ref. 6):
0.014

hardening of the mode through fourth- and possibly
sixth-order anharmonicity, the ratio evaluated at
the frequency QTo renormalized at 1550 K is still
equal to 0.16. The shape of the Raman spectra' "
also indicates large anharmonicities in rutile.

Even if one admits the reliability of the fit of
the A, „-type mode spectrum at 1550 K, me have
no direct evidence for the occurrence of the pro-
cess represented in Fig. 1(c). It is, however,
reasonable to suspect this process because this is
the lowest-order one which can cause a dependence
of the mode hardening on temperature that would
be more than linear.

On the other hand, the large value of the anhar-
monic shift found for the A, „(TO) mode at 1550 K,
viz. , 226 cm ', in comparison to the harmonic
frequency ~» = 144 cm ', raises the problem of
the consistency of the perturbation treatment to
evaluate the self-energy shift. A limiting case
of this problem is the utilization of the theory
when the harmonic frequency is zero or purely
imaginary, as is done by several authors. ' Ac-
tually the problem may be solved by incorporating
in the unperturbed Hamiltonian the part of the an-
harmonic contribution which stabilizes the mode
energy by employing a renormalization procedure.
Treatments with' and without"'" renormalization
yield similar analytic expressions for the square
of the observed frequency [Eq. (14)]. This is es-
sentially due to the fact that the stabilizing en-
harmonic processes cause a purely real contribu-
tion to the phonon self-energy [Eqs. ( t) and (9)].

Finally we mant to point out that there is no
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doubt that the studies of anharmonic coupling at
low temperatures, as made by the majority of the
authors, are necessary and give valuable infor-
mation, but they should be completed by high-
temperature studies that may permit the observa-
tion of higher-order processes. Furthermore
the usefulness of reflectivity measurements at
high temperature is to be emphasized because the

uncertainty on damping data is lowered with in-
creasing temperature as a result of the lowering
of the band top.
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