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Method for measuring the contribution of the nonlinear dipole moment

to multiphonon absorption*

Robert Hellwarth and Metin Mangir
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A method is proposed by which one may determine the separate contributions of (a) the anharmonic

interionic forces, and (b) the nonlinear electric dipole moment {the nonlinear dependence on ionic

displacements) to the integral over infrared frequencies of the imaginary part e,{co) of a material's

dielectric function (times the frequency co). The results can be used to determine parameters needed to
calculate other features of multiphonon absorption. The method does not depend on the nature or
magnitude of the anharmonic forces, but does require a model for the quadratic term in the dipole
moment. The parameters in this model are then determined from measurements of e,(co) at several

temperatures. We use the method to show from existing data that the multiphonon contribution to the

integral of co&,(co) for cubic LiF arises predominantly from anharmonic forces.

I. INTRODUCTION

The absorption of infrared radiation by an "ideal"
polar crystal occurs only at a small number of
discrete fundamental lattice-vibration frequencies
called the (}t=0) transverse-optic (TO) modes of
the crystal. In this context, an ideal crystal is
one in which the interionic forces are strictly
linear in all ionic displacements, and the force on

any ion of an external electric field is proportional
to the field. In actuality, even the purest real
polar crystal exhibits, in addition, a lesser and

varying amount of absorption throughout the in-
frared. This additional absorption is called multi-
phonon absorption because the absorption of any
infrared photon results in the creation and/or
annihilation of two or more phonons in the crystal.
Such multiphonon absorption arises from either or
both of two possible mechanisms: (a) anharmonic
interionic forces, and (b) the nonlinear dependence
of the electric dipole moment on ionic displace-
ments (or the "nonlinear moment").

The relative contribution of these two mechan-
isms to multiphonon absorption in specific crystals
is still uncertain to a greater or lesser degree. It
is least uncertain for alkali-halide crystals, for
which it has been found consistent, in albeit
approximate, calculations to neglect mechanism
(b). ' However, for many important infrared-
mindow materials, such as ZnSe, CdTe, ZnTe,
and GaAs, the relative importance of the two mech-
anism is quite uncertain. '

In the interest of enabling better calculations of
multiphonon absorption, we show here how the
foregoing uncertainty in mechanism can be re-
solved using measurements of the imaginary part
e, (&u) of the dielectric constant at infrared fre-
quencies ~. Our method is based on the mell-
known fact that the changes in peak frequency or

frequencies and width(s} of the fundamental in-
frared lattice-absorption resonance(s) with density
or temperature do not depend on the nonlinear
moment, whereas multiphonon difference- and
summation-absorption bands are sensitive to both
mechanisms (a) and (b}.' In Sec. II we show how

it is immediately evident from the measured inte-
gral of ue, (+}at two temperatures if the nonlinear
moment is negligible. If it is not negligible, its
form must be modeled as in Sec. III and an average
of an expression quadratic in the ionic displace-
ments must be performed in the harmonic-lattice
approximation. There we show how two different
models for rocksalt-structure crystals give very
similar results for the relative importance of
mechanisms (a.) and (b), lending confidence in our
nonlinear-moment models for the present pur-
poses. In Sec. IV, we apply the method to LiF, for
which the data is not accurate enough to conclude
more than that the anharmonic force mechanism
is mainly responsible for the multiphonon contribu-
tion to the integral of ~e,. Unfortunately, suffi-
cient data for the more interesting semiconductor
materials do not yet exist.

Our method requires the measurement of the
imaginary part e, (&u) of the dielectric constant,
throughout the infrared, and at two or more tem-
peratures. From this measurement one obtains
an experimental determination of the integral in
the following exact sum rule, in esu (proved in
the Appendix):

in which M„ is the operator representing the mac-
roscopic electric dipole moment in some small
fiducial volume P, along the principal dielectric
g axis for which e, was measured. For optically
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isotropic materials this g axis can be any axis
and all principal dielectric constants are equal.
The r~ are the spatial coordinates (i =g, y, z) of
all the N ions (o, =l, 2, . . . , N), with masses m
inside the small but macroscopic volume V of the
crystal. The brackets () indicate the quantum
average.

The usefulness of (1) lies in the fact that the con-.
tribution to the averaged expression of the linear
term in the dipole moment can easily be calculated
exactly for many important types of crystals. To
see this, we first write each ion coordinate as

+ia ia +i a ~
+ (2)

the sum of its average value R,. =-(r, ) (for some
temperature) and its deviation x,. from this aver-
age value. Then the dipole moment in a volume V
of the crystal at this temperature can be expanded
in a Taylor series in the g,.„.

+1'"'» ~ e»ia +ia 2 ~fxiai 8+in xiii+
' ' '

&

i Q iaj8
(3)

where the e„. and f„, ,s are the Taylor-series ex-
pansion coefficients, the former being an *'effec-
tive-charge" tensor for the eth ion. The terms
in M„ third and higher order in the x, may be
assumed to contribute less to (1) than the quadratic
term whenever the quadratic term gives rise to
sum- and difference-absorption bands that con-
tribute less to the integral in (1) than does the
fundamental a.bsorption line(s) arising from the

leading, linear dipole moment term. (In fact for
all potential ir-window materials, we may neglect
higher than quadratic terms in M, when computing
the right-hand side of (1) to within the experimen-
tal errors in determining the left-hand side. )

II. CRYSTALS WITH LINEAR DIPOLE MOMENTS

where e is called the effective charge of the ion
a and 5„, is the Kronecker delta. For diatomic
cubic crystals such as the aforementioned, the two
effective charges must be related by

(6)

in order that no moment develops from (3) when

all ions are uniformly translated. This charge e*

If the mechanism of anharmonic forces dominates
that of the nonlinear moment, we may neglect all
but the term linear in g, in the expression (3) for
the dipole moment. Then we need study only the

e„i, whose forms depend on the symmetry of the
site at R, . For ions at sites having point sym-
metries T, T„, T„o, or O„(such as the iona in
the alkali halides, GaAs, ZnSe, and CdTe),

exi -e

has been called the Born effective charge and gives
the total change in the macroscopic electric mo-
ment accompanying an ionic displacement.

If all the prominent features of e, (i»i) arise from
a linear dipole moment, acting with anharmonic
interionic forces, in alkali-halide and other di-
atomic cubic crystals, then we see from (3)-(5)
that (1) reduces to

d (d (de2((af) 27I' p e (6)

III. CRYSTALS WITH NONLINEAR DIPOLE MOMENTS

If the imaginary part of the dielect:ric constant
fails to obey (6), then it can only be because the
nonlinear quadratic, of "f", term in the dipole
moment (3) must be contributing to the average in
(1). To see what a deviation from (6) means, one
must construct a theory for the form of the f
coefficients, and use experimental values of the
left-hand side of (1) to determine the parameters
in the theory. Fortunately, the averages over the
(fx)' term required in (1) can always in principle
be performed because, to the desired order of
accuracy, the lattice may be assumed to be per-
fectly harmonic. %e illustrate the foregoing proce-

where p is the number density of molecules and

g
' = m '+ m 8' is the molecular reduced mass.

In this case, furthermore, the crystal must ex-
hibit a dielectric function e, that obeys (6} at dif-
ferent temperatures and densities, with an essen-
tially invariant effective charge e*. This can be
seen as follows: As the temperature is raised
and the crystal expands, the Taylor series (3) for
the dipole moment must be reexpressed in powers
of the deviations g,'. about the new average ionic
positions R,.' = p,. + 5g, Substituting

x; =x~+I,
in (3) gives for the effective-charge coefficients of
the linear term in the dipole moment expansion, at
the new temperature,

+ REP +» ~ ~xia xia ~&xiaj8 ~ ~j8

j8

The form of f„i j8 must be such as to involve only
differences in displacements with respect to not-
distant neighboring iona, and hence (8} must in-
volve mainly the relative average lattice displace-
ments (5R,. ii

—5R,.„). These relative displacement
changes with temperature are of the same order
of magnitude as the rms thermal fluctuations of the

x, „about (x,. ) =0. Therefore, if the nonlinear
moment term can be neglected in (3), then so can
the change in effective charge„proportional to the
5R, in (8). @ED.
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dure with two models for a rocksalt-structure
crystal: (i) the independent-molecule model and

(ii} a more complex model in which the nonlinear
moment depends only on relative nearest-neighbor
displacements. It will be comforting to find that
these models give similar results for the small
nonlinear moment contribution in LiF w'hen they
are applied to existing data on its e, (+} in Sec. IV.

A. Model of independent molecules with nonlinear moments

The independent-molecule model of the lattice
has been used extensively in estimating multi-
phonon absorption. ' In this model, each one-
dimensional molecule in the crystal contributes
independently to the total dipole an amount

one another closely. This nonlinear moment is
expected to be directed mainly along the line be-
tween the centers of the near ions; the relative
positions of more distant neighboring ions ought
not to affect it much. Let us use these properties
to construct an expression for the component M„
of the total electric moment along a principal axis
(x) of a rocksalt-structure crystal. (For a cubic
crystal we would of course obtain the same final
result for the multiphonon absorption, whatever
component we considered. ) Since we wish a. form
that is quadratic in the nearest-neighbor displace-
ments, we are led to an expression (appropriate
to a particular temperature T)

m„= ex+ —,'efx', M„=pe„[x +-,'f (x„—x,)'], (12)

where x is the deviation from the equilibrium inter-
atomic distance at the temperature under consid-
eration. Equation (1) then reduces to

(10)

At another temperature (indicated by primes) the
frequency integral becomes

2s'p'e'[(I+f 5R)'+f'(x")]/p. (1la}

The linear expansion of the lattice constant with
temperature 5g and the densities p and p' are
known, and (x') is easily calculated for the har-
monic oscillator at any temperature T, assuming
its mass to be the reduced mass p and its fre-
quency to equal the transverse-optical, or rest-
strahl, frequency ~o.

(11b)

where the temperature parameter y is -', k&uYo/kT .
Note that now the Born effective charge e does
change with temperature as e[1+f5R(T)].

The two expressions (10) and (11) can be solved
for the two unknowns e and f Then t.he contribu-
tion to the integral of multiphonon absorption
arising from the nonlinear moment is simply the
value of the second term in (10) or (ll). Subtract-
ing this value from the total measured multi-
phonon contribution to the integral in (10) gives
the estimate of this model for the anharmonicity
contribution to the integral. To obtain an esti-
mate of the error of this procedure for rocksalt-
structure crystals we develop next a more exact
model which can also be evaluated simply.

B. Model with nonlinear moments as functions

of nearest-neighbor displacements

Deviations from a linear relation between the
crystal electric dipole moments and the ionic dis-
placements are largest when two ions approach

which is manifestly invariant to translational, and
other symmetry operations of the crystal. Here x
is the x displacement from its average position of
ion a and x, is the corresponding displacement
of the ion nearest n in the negative x direction.
The constant f will be determined from experi-
ment and is actually a component of the f tensor
in (3) which transforms like xxx.

Performing the derivative required in (1),
squaring, averaging, and performing the indicated
sum gives

=pe'[(I+f 5R)'+ ,'f'((x„„—x~, )')]/—m~, (12)

where 5R(T) is the displacement, if any, of the
average nearest-neighbor distance from the aver-
age distance at some fiducial temperature for
which the original Taylor series (3) was defined.
(This is just as in the Secs. II and IIIA preceding. )
Again e = -e8=e.

We expect (13) to give the nonlinear moment
contribution accurately (to within a few percent)
for rocksalt-structure crystals, provided the
indicated average over relative square displace-
ments is done in the harmonic-crystal approxima-
tion with correct force constants. Since the data
do not warrant such accuracy we will perform
these averages with the following wrong force con-
stants, and as if the ion masses were equal. Since
in (13) the average of the light-ion mean-square
displacements is always divided by the heavy-ion
mass (and vice versa), and since the sum of aver-
ages does not change to first order in the devia-
tion of the masses from equality (at fixed reduced
mass), the equal-mass approximation should intro-
duce only an extra few percent error. Worse will
be our lattice model having only nearest-neighbor
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forces. After adjusting the force constant to give
the correct ~ we estimate we may have intro-
duced a 20-30% error in the sum of averages

For a rocksalt-structure crystal having equal
ion masses (m =m

& =m} and nearest-neighbor
forces, the average in (13) is easily performed,
and is

2@x ~ (sin'28„)coth(y sin8, }
m(u L, ~ sin80 fl

(14)

where the sum is over the integers n labeling ions
spaced by a along a fiducial length I. of the x axis;
8„-=van/L; and the temperature parameter is
y =- ', ter, /k-T, where ~„ the exact transverse-optic
frequency for the model, will be chosen to equal

aloof the crystal.
The sum in (14) is well represented by an inte-

gral with n as a continuous variable in the limit
L +&g. Changing variables in this integral to
u = sin8„gives for (13}used in our theorem (1)

l 2m pe 2}I '
dzaa, ta)- (1+f5Bj'+ 1(yl},

mp (uo

(15)

where the integral

1

f(y) -=du u(1 —u')'~' cothyu
0

temperature limit and is less by a factor 4/(3v)
in the low-temperature limit. This lowering is
expected physically because the difference-band
absorption on the low-frequency side of &To vanish-
es at low temperature whereas the summation-
band on the high-frequency side does not. The
cruder "independent-molecule" model has no
"acoustic branch'* or difference bands, whereas
the "simple-lattice" model here exhibits both dif-
ference and summation bands when either a non-
linear moment or anharmonic forces exist, bands
which are similar to those in the real crystal.

%e now proceed to calculate the nonlinear mo-
ment parameters for LiF, applying both models
to data on e„and find similar results for both
models.

ioo-—

I t I
i

l I I
i

l I I

IV. APPLICATION TO LITHIUM FLUORIDE

A. Summary of pertinent data

The only crystal for which e, (&u) has been mea-
sured over a wide frequency range at several tem-
peratures is LiF. Klier has measured its e, by

is plotted in Fig. 1 alongside the corresponding
quantity 4m cothy which occurs in the independent-
molecule-model result (11b). It is comforting that
the result (15) coincides with (11) in the high-
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FIG. 1. Plot of the temperature-dependent function
I(y) of Eq. {15)with the correspond&I„ function in Eq. {11).
y= ~Ihcv~/kT.

FIG. 2. Measured imaginary part of the infrared di-
electric constant ~2 vs frequency for LiF at 295 K. Solid
line is from Ref. 7. The points x are from Ref. 5. The
square points are from a Kramers-Kronig analysis made
of his own unpublished data by A. Kachare gFrivate com-
munication). The dashed lines indicate the range of un-
certainty in the c2 values which we have assumed in
estimating the errors quoted in Table I.
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7 10 Jp" d(d (det((d} E mp

(K) (sec 2) (%) (cm)
M To

(cm '}

77
295
573

365 ~6
360~6
371+5

&3 -1.009 317.5 + 0.8
&6 0 307.5+ 0.8
16+6 2 060 300 +1

a Reference 8.

transmission measurements in the ranges 8 to
14',m and 40 to 400 gm, at 300, 22, and -196'C.'

From their reflectance measurements on LiF in
the range 7.5 to 1060 K, Jasperse et gl. ' obtained
a two-pole analytic functional form for e(&u) at
frequencies near ~, where Klier was unable to
measure transmission. Kachare et al. varied the
parameters of this two-pole function so as to im-
prove the agreement between calculated and ob-
served reflectance and to establish better the

I.O—
d

+ 0

0,9—

o
CJ
lv 08
O
E
0
C

TABLE I. Experimental values of the dielectric inte-
gral of Eq. (1), the fraction E ~ contributed to it by
multiphonon absorption, the lattice-constant expansion,
and the transverse-optical frequency, at three tempera-
tures. Sources discussed in Sec. IVA.

probable errors in this determination of e(a).' A

plot of e, (u) at 295 K from the foregoing measure-
ments is shown in Fig. 2. We have integrated
tde, (td) from this and similar plots for 77 and 573
K to obtain the desired values for the integral of
(1). These results are given in Table I along with
the estimated errors obtained by performing the
integrals with slightly different functions consis-
tent with the experimental uncertainties„such as
displayed in Fig. 2 and given by the analysis of
Kachare et al. '

For completeness, the data for 77 and 573 K are
given in Fig. 3, but in a different form: J dtd ~e,
vs v. When p»cuTo this gives the desired integral
in (1). In Fig. 3, the sharply rising central portion
of each curve derives from one-phonon absorption
(a sharp line centered at Id g whereas the fillets
are contributed by multiphonon absorption (differ-
ence and summation bands) whose origin can be
either anharmonic forces or nonlinear moments.
Kachare et al. ' point out that reflectance data give
very inaccurate values for e, (&d) for w near tdro
below room temperature (although they give fairly
accurate values for our integral) as one can see
in Fig. 3. Therefore, we believe that a significant
estimate of the multiphonon contribution to ~, near
&To can only be made at high temperatures. We
have done this as follows.

The full width at half-maximum y, of the main
one-phonon peak in ~, is 0.016 or 0.014 times coTo

at 573 K according to Jasperse ef gl. ' and Kachare
et gl. ,

' respectively. One can see from Fig. 3
that if one excludes from the integral a range of
frequencies 3y„centered about ~o, then the re-
mainder contributes 20 to 21.5%. If one excludes
a range 6y„centered about ~~ then the remaind-

TABLE II. Results of independent-molecule model.
(a) Nonlinear moment parameter f and Born effective
charge e (in units of the electronic charge eo). (b) Cal-
culated fraction of fdic ~et from nonlinear moment and

its ratio to the total multiphonon contribution of Table I.

Data T (K)

(a)

f (A ') e/eo

0.1—

0 +
+

000( .( i

I

I, i ( i

2&/4) To

573, 295
573, 77
295, 77

all

T (K)

1.1 + 0.5

0.8~ 0.4
0.6 + 0.6

0.9 + 0.3

(b)

ENLM (%)

1.03 + 0.02
1,05 + 0.01
1.044 *0.005

1.04 + 0.01

m.M/E mu
(1)

FIG. 3. Imaginary part of the dielectric constant of
LiF, integrated as indicated, vs upper frequency limit of
integration. The 0 represent values at 573 K from Hefs.
5 and 7. The + represent values at 77 K from Bef. 6.
The ~ represent values at 77 K from Bef. 7.

77
295
573

1.0+ 0.6
1.5 «1
2.6 + 1.5

&0.5
&0.4
0.23 ~ 0.18
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er contributes 10 to 11.5% of the integral. There-
fore, we feel that the total multiphonon fraction
E ~ of the integral in (1) may be safely said to be
in the range 16+ 6/0 as listed in Table I.

Although e, (+) is uncertain near ~oat 293 and

77 K, the reflectance data clearly show a bump
near 1.6cuzoabout whose area and central frequency
both Refs. 6 and 7 agree well. Klier's absorpiton
data in the far wings give a further unambiguous
contribution of -2 and 0.5% at 273 and 77 K, re-
spectively. When added to the above reflectance
bumps, these data give the limits on the multi-
phonon fraction I' „ listed in Table I.

B. Determination of nonlinear moment parameter f
In order to deter mine what par t of the multi-

phonon contribution arises from a nonlinear di-
pole moment, we use the data of Table I either in
Eqs. (10) and (11) or (15) to determine the non-
linear moment parameter f in each of the two
lattice models. The last term in these equations
represents the nonlinear moment contribution to
the integral. Data at any two temperatures give
two simultaneous equations for f and for e (the
"Born" effective charge). Once a convenient set
of average ionic positions is chosen (by choosing
a fiducial temperature) about which to write the
Taylor series (3), then data from any pair of tem-
peratures should yield the same pair of values for
f and e. We now verify this by using the three data
sets at (77, 295 K}, (295, 573 K), and (573, 77 K),
respectively, in each of our model formulas. In

these we take the reduced mass p, to be 8.44' 10 "
g, and the density of molecules at 295 K to be
6.125 x10" cm '.' From the derived values of f,
each model predicts what part of the multiphonon
contribution to (1) arises from the nonlinear mo-
ment. The results are as follows.

IndePendent-molecule model. The nonlinear mo-
ment parameter f of (10) and (ll) as derived from
three sets of data is given in Table II(a) along
with the corresponding values of the effective
charge e. The higher-temperature data give the
most accurate estimates for f because multiphonon
absorption is more prominent at higher tempera-
tures. The value 0.9+0.3 A ' for f as listed is
consistent with all estimates with this model.

The fraction E~~ of the integral over e, (u) in

(10) and (11) contributed by the nonlinear moment

term of this first model is seen from these equa-
tions to be

temperatures in Table II(b). These are compared
there with the total observed multiphonon-absorp-
tion contributions listed in Table I. According to
this first model, the nonlinear moment contributes
to a minor fraction of the multiphonon absorption.

Simp/e-cubic-latti ce model. We have calculated
the nonlinear moment parameter f of the more
accurate lattice model of Sec. III B above by using
three sets of temperature data in Eq. (11). The
results of this are given in Table III(a) along with
the corresponding values of the Born effective
charge t.. It is comforting that these parameters
turn out to have essentially the same values as
they did for their counterparts in the first model.

From (15) the fractions F~~of the nonlinear
moment contribution to the integral of (1) are

TABLE III. Results of nearest-neighbor-moment mod-
el. (a) and (b): quantities as in Table II.

(a)

Data T {K) f 4'A ~)

573, 295
573, 77
295, 77

all.

1.1-0.4
0.8 + 0.3
0.6 + 0.3

1.034 + 0.015
1.049+ 0.007
1.044 + 0.004

1.04 ~ 0.01

T (K)

{{f{{{{)'g~)
'

2lf2I(y)

as a function of temperature. Using f = 0.9+0.3
A ' in (IS}gives the fractional nonlinear moment
contributions listed in Table III(b) at various
temperatures. The results are essentially the
same as for the first model at 295 and 573 K.
However, they give about half the fraction at 77 K.
We already noted that this was to be expected at
lower temperatures where the difference-band
contributions must vanish: The "independent-
molecule" model exhibits no difference bands
whereas this second "simple-cubic-lattice" model
does.

In summary, we have developed an experimental
method for determining the absolute contributions
of (a) the anharmonic forces, and (b) the nonlinear
electric dipole moment of a polar crystal to its
absorption of infrared radiation by multiphonon
processes. The method makes no assumption about

{{+fl!R{'2l.
)f 'h cothy

(17)

Using the value of f derived in Table II(a} in (17)
gives the values of this fraction at the different

77
295
573

0.5 + 0.4
1.3 +1
2.5 ~1.5

g0 3
&0.4
0.23 + 0.18
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the nature of the anharmonic forces, but requires
a model of the nonlinear moment. %e developed
two models for the nonlinear moment in rocksalt-
structure crystals and found that they lead to the
same qualitative results for the multiphonon mech-
anisms. Applying the method to LiF (the only

crystal for which the required data exist) we find
that its nonlinear moment contributes a minor
fraction of a certain average of its multiphonon ab-
sorption, and we determine parameters which can
be used for other multiphonon calculations.

e, (v) = 4n'V 'g(P —P„)

x l&m IM, In) I'5(n ~ —E„+E ), (Al)

where P is the probability of the material inside
V being in state Im) with energy E . Integrating

APPENDIX

According to a well-known quantum-mechanical
formula (in esu), '

(Al) by +de from -~ to ~ replaces the 5 function
in (Al) by (E„-E )/h Then the P„ terms give
the same result as do the I', and may be dropped
if the latter are doubled. Next, use the identity

1
H=2 PP,'„/m„+ U.

la
(A&}

Since both the full lattice potential energy U and
M„are functions of the ion positions only, U does
not contribute to the commutator. Using the cora-
mutator identity

[)}f„P,.„J=-fa BM„
Bx, ~

(A4)

in (A2} leads then directly to the desired sum rule,
Eq. (I).

Q(E -E.) 1(mlM. In} I'-=2(mi[IH, ~,J, Af, ] Im},

(A2)

and then evaluate the commutator using
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