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Thermoelectric power of the extrinsic Mott semiconductors
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The thermoelectric power for the non-half-filled band Mott semiconductor is calculated for the
single-band Hubbard model both in the absence and presence of coupling of the electrons to the

vibrational degrees of freedom of the sites. The results for the very-near-half-filled band are studied in

detail and compared with results for a conventional semiconductor. The thermoelectric power changes

sign as a function of temperature. The quarter-filled-band case is also discussed.

I. INTRODUCTION

In a, previous paper, ' the thermoelectric proper-
ties of a half-filled-band model were obtained in
the very-narrow-bandwidth regime. The strong
electron-electron interaction was accounted for as
in the Hubbard model and intrasite vibrations were
coupled to the electrons as well. The one-electron
spectral ~eight function and the frequency-depen-
dent conductivity were found to be Gaussian broad-
ened.

The Gaussian behavior resulted from a short-
time expansion of the vibrationa. l displa. cement pa.—

rameter. This approximation was used to simu-
late (with a single Einstein oscillator) the line-
widths that would result from a more complete and
realistic treatment of the many modes (including
dispersion) of a planar organic molecule. The ex-
act calculation of the spectral weight function for
the Einstein oscillator spectrum yields an infinite
number of 5-function peaks with spectral weights
given by a Poisson distribution. A straightforward
calculation yields

—A(&u) = e ~, 6((o —U, + —,F —nQ)
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(1.1)
In Eq. (1.1), A(&u) is the usual on-site one-electron
spectral weight function' and it has been evaluated
at zero temperature. —,

' I' is the small-polaron
binding energy, 0 is the Einstein oscillator fre-
quency, and U, = U- I", where Vis the intrasite
mutual Coulomb repulsion. Equation (l. 1) is to be
compared with Eq. (3. 18) of Paper I, which ap-
proximates the two 5-function series in Eq. (1.1)
by Gaussian peaks at ~ = U, and ~ = —I'. In Eq.
(1.1) the 5-function peaks have spectral weights
given by the Poisson distribution

e """(&/2&)"/~! .
For 1/2A» 1, the Poisson distribution is peaked

a = —(I/T)(p. /e —"/o) . (I 2)

Here p, is the chemical potential, e is the electric
cha. rge (a negative quantity), and o is the appro-
priately calculated dc conductivity. = is a trans-
port coefficient related to the electrical response
associated with a thermal gradient according to the
relation

at n= F/2II and (its envelope) approximates a
Gaussian function. We see that the largest spec-
tral weights will be associated with u= U, and w

=- r.
In Paper I, the thermoelectric power (TEP) was

formulated in site space for the strongly interact-
ing model Hamiltonian. An expression was derived
for the energy current, and the TEP was calculated
using the quantum statistical formalism.

The intrinsic Mott semiconductor contains, on

the average, one electron per site. The TEP wa. s
calculated for this case both in the presence and
absence of phonons, and it was found to be exactly
zero in each case. In the case of a noninteractin~
one-dimensional cosine band, Cha. ikin et al. noted
that the TEP vanished for the half-filled band. On
the other hand, it can easily be seen that the TEP
is linear in T for the non-half-filled cosine band.
This is the result expected for metals, and the
half-filled band appears to be a pathological case.

Sma, ll deviations from the half-filled band can be
expected even in high-purity materials. For the
TEP, then, the study of the almost-half-filled band
becomes important since the TEP can be sensitive
to impurities and changes in carrier concentration.
We also note that for some models of interest the
TEP is zero in the perfect half-filled band —an ap-
parent consequence of particle-hole symmetry.
As we have seen, for the metallic case the TEP re-
veals its signature (li'near T dependence) for the
non-half-filled-band case. In this paper we calcu-
late the TEP in the non-half-filled band of strongly
correlated electrons.

We recall some pertinent results from Paper I.
The TEP z is given by the relation
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(&) =~[&- (&Ie)V(/il&)]+-. (- V&/&) (1 2)

a is then the ratio of the effective electric field
8- (I/e)V//. to the thermal gradient VT that pro-
duces the former at zero net current ((8)= 0).
Unlike in Paper I, here we use the customary sign
convention for the TEP.

The quantum-mechanical expression for = is

d& JJ' 7

Here J is the one-dimensional current operator in
site space:

Z= ieakg (Ct„.C„-C',.C„„),
and 2' is the energy-current operator (derived in
Paper I):

jy = ifr2a Q (C'r.2. C,.—C',.C„,.)
ibUa ~ )( 1 +n )

l, e er =- —(k/e) [x/(I + R e") + ln R] . (l. 6)

Q, and P, are the coordinate and momentum oper-
ators that describe the vibrational degree of free-
dom at the / th molecular site; V is the coupling
energy to the electrons; n„ is the occupation-num-
ber operator for an electron on the lth site with
spin cr; 5 is the one-electron transfer integral;
C„destroys an electron on the lth site with spin
0; and n„= C „C„.The parameter a is the inter-
site spacing.

In Paper I, the bandwidth was taken to be the
smallest energy in the model. The conductivity
a.nd TEP were calculated to second order in the
bandwidth. This approach is consistent with the
treatment of the single small polaron~ in the non-
adiabatic regime 0 & t.

Our present calculation is a straightforward ex-
tension of the calculation of the TEP in Paper I.
The chemical potential and the relevant thermal
averages are calculated for the non-half-filled-
band case.

In Sec. II the analysis is carried out for the case
of V=0. This is just the narrow-hand Hubbard
model. It is found that z can. be expressed as

ibVa ~+
2 ~ (C „,, Cr, —C r, Cr. r )(Qr+r+Qr) .

l, e

P=(kT) ' and I, is the crystal volume. J'(v)
= e'"'J' e ' ' and the angular brackets denote the
thermal average. The parameters in the electric
and energy-current operators are related to the
model Hamiltonian

H =—g(P2 + Q', ) + Vg Q, (n„+n„)

+ U n, , n, , —b~ C„q, C„+C„C„j,
l, a

Here k/e is the ratio of Boltznrann's constant to the
electric charge (= —86 )ip/'K); x= PU; and

h + [(' + (1 —]') e "]'"
1 —( (l. 9)

where $ = (n„+n, , ) —1. This expression is analyzed
in detail for the nearly-half-filled band I ( I «1 and
the quarter-filled ba, nd $ = ——,'. Note that for the
half-filled band, o. vanishes identically.

The TEP in the presence of coupling to phonons
is straightforwardly evaluated in the non-half-
filled-band case by following the methods of Paper
I and Sec. II. The resulting expression for ~ is

(612ey r
) -U2/4$61 y-I /4$ r 612 2y-U /4$2

a = —— ln(R+ ye .,-; -,.„.....,.-" -,....,-. ...) (1.10)

Here
~ + [~2 + (1 ~2) e-y]1/2

1 —$
(l. 11)

11. EXTRINSIC MOTT SEMICONDUCTOR

In the absence of vibrational coupling, the prob-
lem is that of calculating the transport coefficient
:- to second order in b in the Hubbard model. The
conductivity has been calculated to this order for
the half-filled-band case by Bari and Kaplan, and

y=P(U-r), U, =U-2I', S=-,' V2coth( —,'PA), r= V2/

Q. Limiting cases of this expression are dis-
cussed and compared with those in Sec. II.

we shall extend their result to the non-half-filled-
band ca.se.

We must determine the chemical potential and
partition function for the non-half-filled band for
b = 0. This is straightforwardly obtained by writ-
ing

I

Z = Tr exp —pU+n„n»+ /3/i+(n„+n„)

=(1+2e"+ e"" 'e)"4, (2. 1)

where N, is the number of sites. The average num-
ber of particles per site is just f( r/+n n;, )
= S/8(radii)lnZ. We define $ as the carrier-per-site
deviation from half-filled band
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~=&n„+ s„)-1.
Then

+2g2&-eU

1+2'+ g2e 'U

(2. 2)

(2. 3)

Casell. ]gl&&l and $ && e

This is the high-temperature regime, and the
TEP is given by

a = —(k$/e)(e eve +1)(1 PU) (2. 9)

or

(2. 4)

where fI is given by Eq. (1.8} and ( = e
The dc conductivity for the non-half-filled band

is straightforwardly obtained following the methods
of Ref. 4, and is given by

a=(4e aebePg/Ze)(Reea+ReeeeU)vb((u), (2. 5)

where q is the number density. For the half-filled-
band case, fl = e eU~e and Eq. (2. 5) agrees with the
result obtained in Ref. 4.

The transport coefficient:- in Eq. (1.4) is also
straightforwa. rdly evaluated. We use Eq. (l. 6) for
the energy current with V=O. The second term in

Eq. (l. 6) leads to the contribution to = that is sec-
ond order in b. We find that

:" = (4ea be@U/Ze) Ree ee"v5(~) .

We combine Eqs. (2. 5) and (2. 6) and obtain

(2. 6)

U g3& 28U

e Re'U+83e "U ' (2. 7)

The thermoelectric power follows from Eqs.
(1.2), (2. 4), and (2. 7) and is given by Eq. (1.8).

In the very-near-half-filled-band case, l $ l «1,
the TEP takes a particularly simple form in the
high- and low-temperature regimes that are de-
termined by [a.ccording to Eq. (1.9)] $'eeU.

Casel. ](]&&J and $ &&e "

This is the very-low-temperature regime and
the TEP is given by

~ = '(k/e)»
I
2(

I
(2. 8)

The upper (lower) sign corresponds to the slightly
greater (less) than half-filled band, and since e&0
the TEP is negative (positive) when the number of
carriers is slightly greater (less) than the number
of sites.

We note the appearance of twice the excess con-
centration of carriers in the semiconductor in Eq.
(2. 8) . In analogy to the results for the ordinary
semiconductore one might have anticipated (k/e} ln)
rather than (k/e)ln2$. However, the latter is a
characteristic result of the narrow-band Hubbard
model and the counting of states therein. This
point was noted by Adler6 in connection with the
Hall effect in the Hubbard model.

We see that the thermoelectric power is positive
(negative) for the slightly greater (less) than half-
filled-band case.

Hence [by comparing Eqs. (2. 8) and (2. 9)], we
see that the TEP must change sign as a function of
temperature for the very-nearly-half-filled band.

In the case of a quarter-filled band, the TEP is
negative and varies monotonically from (k je)ln2
to (k/e)ln3 as kT increases from zero to infinity.

III. DISCUSSION

n = —(k/e) ln[(l +()j(I —k)] . (3. 1)

For $ « I, a = —2(k/e)$ and the TEP is positive
(negative) for the greater (less) than half-filled
band. For the quarter-filled band, o. = (k/e) ln3.

In summary, we have calculated the TEP for an
extrinsic Mott semiconductor in both the presence
and absence of coupling of the electrons to intra-
molecular vibrations. Because of impurities and
possibly incomplete charge transfer, TCNQ (tetra-
cyanoquinodimethan) charge-transfer salts that are
believed to be Mott insulators will not be exactly
half-filled band systems. Therefore the study of

The thermoelectric power for the case of elec-
tron-phonon coupling is given by Eq. (1.10). In the
limit V- 0, Eq. (1.10) reduces to Eq. (l. 8). How-

ever, the presence of vibrational coupling in the
second term of Eq. (1.10) does not allow us to re-
duce that expression in the very-nearly-half-filled
case to expressions as simple as Eqs. (2. 8) a.nd

(2. 9); i. e., the relative sizes of the vibrational
overlap terms, exp(-1'e/4S), exp(- Uee /4S), and
exp(- Ue/4S), must also be taken into account.

We study Eq. (l. 8) for the particular choice of

( = e '. In this case —the TEP in the absence of
vibrational coupling —Eq. (1.8) varies monotonical-
ly from n= —5. 31k/(e( at T= 0 to n= 0. 002k/(e( at
T= ~. The TEP changes sign for kT/U= —,'. In the
low-temperature regime given by (2» e ~Ui, we
have also estimated the contribution to the TEP for
the second term in Eq. (1.10). We find that for
the choice of parameters taken in Paper I, I" = 0
= —U

1
5

~

n —(k/e) ln2$
~

= —,'y e'

where, since ( = e, e ' » e '. Hence we see that
the corrections to the TEP from the vibrational
coupling are small in this regime and for this
choice of parameters.

For the special case U= I', the TEP in the pres-
ence of vibrational coupling [Eq. (1.10)] becomes
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the nearly-half-filled band becomes important,
especially for the TEP. This is also true for some
transition-metal oxides, such as lithium-doped
nickel oxide.

Nofe noded in pyoof E. quation (l. 8) has been
independently derived by G. Beni. G. Beni and
C. Coll III have independently arrived at the re-
sult given in the Appendix. I thank Professor C.
Coll III for informing me of these facts.

where h(r) is the energy density and n(r) is the
particle-number density; the integral is taken over
the volume of the system. We then have the con-
tinuity equation

where

APPENDIX

The vanishing of the TEP under general condi-
tions of. particle-hole symmetry can be seen in the
following way. From Eqs. (l. 2) and (l. 4) and
with the conductivity cr given by

o = — dr& JZ(r)),P
2J

If 0- pN is particle-hole symmetric, then it
follows from Eqs. (A2), (A3), and (A4) that J'
—(g/e) J must also be pa. rticle-hole symmetric.
The integrand of Eq. (Al) should not depend (is
invaria. nt) on whether the averages are calculated
in terms of an electron representation or a hole
representation; i.e. ,

(Z[Z'(r) —(p/e) Z(r)])„
n= — ch J J' v ——Jw (Al)

= (~[&'(T)—(V/e) &(~)]&„„., (A5)

0- p, N= dr h r —pn r (A2)

we see that the TEP can be expressed as
The integrand of Eq. (Al) contains the correlation
of the electric current operator with a quantity
which can be regarded as the free-energy current
operator. Quite generally this quantity (J'
—g/e) 8) can be obtained from the free-energy
density defined by

On the other hand, the electric current operator
changes sign under a particle-hole transformation.
Hence, given that J'(v) —(p/e) J(T) is invariant un-
der a particle-hole transformation, we are led to
the conclusion that the right-hand side of Eq. (A5)
is also equal to the negative of the left-hand side
and consequently that the correlation function is
zero. Thus if 8- p, X is invariant under a particle-
hole transformation, the TEP is zero.
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