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The bond-orbital model is reformulated taking explicit account of the large overlap of two hybrids in
the same bond rather than absorbing it in a pseudopotential. This gives a correction to the cohesive
energy but other changes are absorbed in the V|, V,, and V; for each material. These parameters are
reevaluated taking band calculations as the standard for V| (but using the atomic term values to scale
from material to material) and taking the energy of the optical-absorption peak as the standard for V,
and V; (but using the dielectric constant to scale from material to material). Using the new parameters
we test the model by comparison of predictions with experiment (or accurate calculations) for various
valence-band gaps, the pressure dependence of the dielectric constant, the macroscopic transverse charge,
the piezoelectric constant, the photoelectric threshold, and the cohesive energy. Discrepancies in the
cohesive energy are found to scale with a reasonable form for the interbond correlation energy, giving a
semiempirical expression for the cohesive energy in terms of parameters of the bond-orbital model. The
covalent energy is found in this study to scale with a kinetic energy (with the inverse square of the
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bond length) both under pressure and for variation from material to material.

I. INTRODUCTION

Many years ago Hall' proposed a crude linear-
combination-of -atomic-orbitals (LCAO) model of
the valence-band structure for diamond. Coulson,
Redei, and Stocker? extended this to partially ionic
solids and defined an ionicity parameter in terms
of the model. Friedel and co-workers® adopted
the same point of view in discussing a range of
bonding properties and materials. Infact, the
intuitive picture of a valence band composed of
tight-binding combinations of bond orbitals, each
composed of an even combination of s-p hybrids,
is a part of the thinking of many solid state physi-
cists and chemists. The total energy calculations
of Watkins and Messmer* using extended Huckel
theory are conceptually related to this, though they
did not strip the model to its simplest form as did
the others. Quite recently Lannoo and Decarpigny®
in treating the transverse effective charge, at-
tempted to graft the simple LCAO model onto the
somewhat vaguer ionicity concept of Phillips®
(which has its conceptual origin in pseudopotential
theory) in order to obtain parameters from the
measured dielectric constants. At the same time
one of us’ formulated a very specific model, which
he called the bond-orbital model (BOM), out of this
general intuitive background. This made specific
the assumptions, made clear the relation between
the bands and the bond orbitals, systematized the
notation, incorporated the effects of metallization
as well as those of ionicity, extended the applica-
tion to a wide range of properties, and explicitly
evaluated the dielectric constant in terms of the
model. This last step allowed the conceptual and
computational unification of this semiempirical ap-
proach to the understanding of tetrahedrally ori-
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ented and partially covalent solids. We will refer
to that work” as I.

The purpose of the present paper is threefold.
First we reformulate the model more carefully to
allow a more precise definition of the parameters.
Second we evaluate and tabulate these parameters
for a large range of materials. Third we test the
approach for many properties and systems; only
one or two illustrative examples were carried out
in I. The principal results of I are confirmed in
this more careful formulation though the param-
eters change slightly in value. The form of the
valence bands remains the same. The change in
parameters scales the transfer term of e# [the
last term in Eq. (18) of I] by 2. The form of the
dielectric constant is reconfirmed and the varia-
tion of V, with bond length is found to be changed
considerably. An additional term - 8SV, is to be
added to the cohesive energy [Eq. (31) of I] and
correlation corrections are found to be large.
These would also modify the considerations of
structural stability given in I. These are changes
in details and to a first approximation the scheme
is the same with refined parameters.

II. REFORMULATION OF THE MODEL

One of our principal purposes here is to select
material parameters for the bond-orbital model.
It is clear that there is no “best” way to do this.
First, a choice which fits one property exactly
may do badly on others and a compromise is to
be made. Second, and more important, a com-
promise must be made on the number of param-
eters used. In the original formulation we took
a universal parameter y (we took the value y?
=2), relating dipole moments to polarities, though
of course a much better fit to experiment can be
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made if y is allowed to vary from material to
material, or even from row to row in the Periodic
Table. We will here follow the procedure of allow-
ing only the three energies Vi, V,, and V; to vary
from material to material and will seek compro-
mises on the values for more universal param-
eters such as y. We will be aided considerably in
this by a more complete formulation of the model
taking explicit account of the nonorthogonality of
the hybrid orbitals rather than absorbing that non-
orthogonality in a pseudopotential. This will be
more rigorous, more accurate, and allow discus-
sion of a wider range of properties without serious-
ly complicating the model.

We again consider tetrahedrally coordinated
atoms and construct four hybrids on each atom,
denoted | %% on the anion and | %°) on the cation.

The hybrid energy on the anion

€= (| H| 1) =5(e+3¢€5) (1)

may differ from the corresponding energy €° on
the cation. We write the difference

My =3( - €%). (2)

We will shortly relate 3/; to the parameter Vj,
which is to be obtained from the measured dielec-
tric constant for each material.

There are matrix elements of the Hamiltonian
between two hybrids on the same anion,

Mi== H| WY =5(5 =€), (3)

and M between two hybrids on the same cation.
We will in fact take V{ and V7§ to be 0.8 times the
value obtained from Eq. (3) using the term values
of Herman and Skillman, ® for reasons to be dis-
cussed.

There are also matrix elements of the Hamilto-
nian between two hybrids extending into the same
bond:

My == H| KB . (4)

These two hybrids are not orthogonal to each other
and in fact the overlap

S=(n°| 1 (5)

is quite large. Our estimate® for silicon, based on
atomic orbitals appropriate to the solid, was 0.5
and we will use that value for all materials in the
analysis though it does not enter explicitly until we
discuss cohesion. All other matrix elements of
the Hamiltonian and all other overlaps are ne-
glected (or absorbed in the parameters we have
retained).

We now obtain bond orbitals

[B) =g | By + | 1) (8)

by minimizing the bond energy

1517
& = (b| H |b)/(b| b) (7
by variation of u, and u,. This yields
o MpS~— [M2S%+ (1 = S?) (M2 + My)]* ®)

b (1-52) ’

which would equal the earlier result (M2 + M2)/2
if S were equal to zero. We may now define our
parameters. The covalent energy is written

Vo =M,/(1-S%). 9
The polar enevgy is written

V= M/ (1 - S?)/2 (10)
and Eq. (8) becomes

€= VoS — (VE+ VE/2, (11)

The maximum energy, which we identify with
the antibonding state, is similarly found to be
VoS+(VE+ V22, 1t is convenient to call half the
difference the bonding energy,

(€, €)/2=(Vi+ VHE. (12)

The variational calculation for the bonding state
also yields the coefficients %, and u.:

1{1-5(1- a3)/? o

7‘2:_2-< 1_Sgp +(1_Sg)ll2)’ (13)
1/1-S(1 - a2)t/? a

"3:5( 15 “-syE) 9

which reduces to the earlier result for S=0. Here
@, is the polarity defined again as

o, = Vy/(VE+ VB2, (15)

Of central importance in the model is the di-
electric constant and the dipole associated with a
bond. We will, as before, consider an isolated
bond in a field and discuss corrections afterward.
The geometry is simple if we consider a bond in a
[111] direction in a cubic crystal and apply a field
in the x direction; then all four bond directions are
equivalent. Then we add to the Hamiltonian of
Eq. (7) a term - e8x. Treating the two hybrids
as symmetrically disposed and measuring x from
the bond center we find a change

AD|H|b)= (i B x| B +1lH | x [ 1)) (- €) 8.
Defining v’ by

| x|y =B x | hSy=v'a/4, (16)
we obtain
(b|(-e)x8|b) = (% -ud)y'(~e)8a/8. (17)

Note ¥’ would be unity if the center of gravity of
each hybrid were at the nucleus. We expect it to
be less than 1. Equation (17) corresponds to a
dipole, in the absence of the field, from the two
electrons in the bond and a compensating proton
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FIG. 1. Energy band structure of GaAs [F. Herman,
R. L. Kortum, C. D. Kuglin, and J. P. Van Dyke,
Methods Comput. Phys. 8, 193 (1968)] showing a transi-
tion which contributes to the absorption peak E,. Also
given are the symbols for the bands at symmetry points
of interest. On the right is the corresponding valence
band obtained in the BOM. All energies are in eV.

at each nucleus (so the system is neutral and the
result is therefore independent of origin) of

P,=-vea,a/4, (18)

where we have defined the parameter y to corre-
spond to the earlier formulation:

y=y'/(1-S¥2, (19)

We may follow the earlier calculation of the di-
electric constant treating the system as indepen-
dent polarizable bonds. Adding Eq. (17) to Eq.

(7) has the effect of adding ye8a/8 to V,;. We may
calculate the total energy to second order in § and
identify the dielectric constant

€o=1+ 7y nNe?d?Vi/3 (VE+ VE)P/2 (20)

as before, where N is the density of electrons and
d the bond length.

There are approximations in this approach that
are most easily understood by calculating the re-
sponse of the system to a long-wavelength poten-
tial V,cosgx in perturbation theory. Again the
unitary transformation from band states to bond-
ing and antibonding orbitals can be made, now
taking the energy difference between valence and
conduction band as constant at 2(VZ+ V3)!/?; this
approximation is best for large band gaps. There
are, however, matrix elements between bond or-
bitals and antibonding orbitals in adjacent bonds
as well as those in the same bond which we have
included here. These terms appear not to be so
large, but add to the effective ¥? of Eq. (20). In
addition the local distortion of charge distribution
can give local fields, different from the average,

which could also modify the effective value of y2.
It may well be true, on the other hand, that elec-
tron charge is transferred through the material
without much local distortion so that these effects
are small.

In any case, we adjust y to experiment and all
of these corrections are thereby absorbed. Com-
parison of a number of predictions of the model
with experiment did not reveal any large trends
with polarity or with metallicity among the Si,
Ge, and Sn rows, though the carbon row appeared
different. Thus we evaluate y from experiment
for C and for Si and use the Si value for the heavi-

TABLE I. Material parameters for the tetrahedral
compounds. d is the bond length; Vj, V,, and Vj are the
metallic, covalent, and polar energies, respectively;
(V% +V§)‘/2 is the bonding energy; o, is the polarity and
o, the metallicity.

Semicon- d v, v, v, (Vi+vh!/?
ductor &) V) (V) (V) V) o, O
[¢ 1.54  1.70 6.10 0 6.10 0 0.28
si 2,35  1.41 2.20 0 2,20 0 0.64
Ge 2.44  1.60 2,15 0 2.15 0 0.74
@-Sn 2,80 1.33 1.76 0 1.76 0 0.76
sic 1.88 1.62  3.66 1.54 3.97 0.39  0.41
BN 1.57  1.98 6.10 2.76 6.70 0.41  0.30
AlP 2.36  1.57 2.20 1,18 2,30 0.47  0.63
GaAs 2.45 1,74 2,15 1.21 2,47 0.50 0,70
InSb 2,81 1.41 1.76 1,04 2.04 0.51  0.69
BP 1.97 1.47 3.66 0% 3.66 0 0.40
BAs 2.07 1.53  3.62 0 3.62 0 0.42
AIN 1.89 2,06 3.66 2.68 4.54 0.59  0.45
AlAs 2,43 1.65 2,18 1.06 2,42 0.44  0.68
AlSb 2,66 1.41 1.97 1.26 2,33 0.54  0.60
GaN 1.94  2.12 3,62 2,89 1.64 0.62  0.46
GaP 2.36  1.65 2,18 1.33 2.55 0.52  0.65
Gasb 2,65  1.45 1.94 0.94 2.16 0.44 0,67
InN 2,15 2,10 3.27 2.75 4.28 0.64 0,49
InP 2.54  1.62 1,97 1.4l 2,42 0.58  0.67
InAs 2,61 1.70  1.94 1,22 2,30 0.53  0.74
BeO 1.65  2.61 6.10 5,07 7.93 0.64  0.33
Mgs® 2.44 1.58  2.38 2,12 3.4 0.63  0.47
ZnSe 2.45 2,00 2.15 2,26 3.12 0.72  0.64
CdTe 2,81 1.61 1.76 2,08 2.72 0.76  0.59
BeS 2,10 1.59 3.66 0,78 3.75 0.21 0.43
BeSe 2,20 1.70 3.62 1,23 3.83 0.32  0.45
BeTe 2,40 1.26 3,27 03 3.27 0 0.38
MgSe® 2,54 1.96 2,20 2.06 3,02 0.68  0.65
MgTe 2.76 1.55 1.97 1.79 2,66 0.67  0.59
ZnO 1.98  2.70 3.62 3.55 5.07 0.70 0.53
ZnS 2,34 1.96 2.18 2.32 3.18 0.73  0.62
ZnTe 2,64  1.61 1.94 1,99 278 0.72  0.58
cds 2,53 1.96 1.97 2.37 3,08 0.77  0.64
CdSe 2,63 2,01 1.94 2.35 05 0.77  0.66
Hgs® 2,53  1.95 2,19 2,51 3.33 0.75  0.59
HgSe® 2.64 2.01 2,00 2,45 3.16 0.77 0.64
HgTe® 2.76 1.60 1.84 2,18 2,85 0,76  0.56
CuBr 2.49 2,28 2.15 2.77 3.51 0.79  0.65
Agl 2,80 1.81 1.76 2.65 3.18 0.83  0.57
CuF 1.84  3.54 3.62 5.45 6.54 0.83  0.54
cucl 2,34 2,28 2.18 2.47 3.29 0.75  0.69
cul 2,62 1.80 1.94 2,44 3.12 0.78  0.58

%ur procedure led to small negative values of Vi for
these compounds.

bFor these compounds we found no experimental €, for
the tetrahedrally coordinated form. We therefore used
ionic radii to obtain d and Figs. 7 and 4 to obtain V, and
Vs.
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FIG. 2. Observed values of the absorption peak E,,
(Ref. 10) plotted against the BOM prediction. The empty
points (C, Si, Ge, InSb) were-fit but all others are in-
dependent predictions based ultimately upon the observed
dielectric constant, All energies are in eV.

er elements.

The principal results of this formulation, once
written in terms of Vj, V;, V3, and y are essential-
ly the same as in the earlier treatment though the
difference, for nonzero S, in Eq. (11) is important
and it is very desirable to have seen how the other
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FIG. 3. Polar energies V; obtained from the measured
dielectric constants [compiled, along with band lengths,
by J. A. Van Vechten, Phys. Rev. 182, 891 (1969)] (and
from covalent energies V, from the optical-absorption
peaks), plotted against values obtained from Egs. (1) and
(2) and atomic term values (Ref. 8). The dashed line,
slope 0.8, is suggested by consideration of the energy
bands in Sec. III. Energies are in eV.
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effects of this large overlap can be absorbed in
the model parameters.

11l. CHOICE OF PARAMETERS

We ftried a series of procedures for determin-
ing parameters before selecting the one which
seemed to work best. We will not describe those
we discarded, but only the one we used. Basical-
ly, the approach is to identify the energy of the
principal optical-absorption peak E, with the bond-
ing -antibonding energy gap. The kind of transition
with which the peak is usually associated is in-
dicated in the GaAs band structure shown in Fig.
1. This gives a value of the covalent energy V,
for diamond of 6.1 eV, for silicon of 2.2 eV, and
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FIG. 4. (a) Polar energies V; (as in Fig. 3) plotted
against values obtained from the hybrid energies of
Table II. (b) Hybrid energies of Table II plotted against
values from Eq. (1) and the atomic term values. Ener-
gies are in eV,
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for germanium of 2.15 eV, using the table of
Phillips!® for the positions of these peaks. Un-
fortunately, the peaks are only known for a lim-
ited number of polar materials so we have used
the dielectric-constant formula, and the assump-
tion that V, depends only upon the row in the Peri-
odic Table, to extend these results to the com-
pounds and obtain the polar energy V;; this seems
preferable to using a different scheme on different
materials and the method is tested by comparing
predicted E, values with those which have been
measured. Using these values of V, and the ex-
perimental dielectric constant of Eq. (20) we solve
for y and obtain 1. 08 for diamond and 1. 2 for sili-
con. We could proceed similarly to obtain a y for
germanium; however, we should recognize, as
emphasized by Phillips, ® that there are contribu-
tions to the dielectric constant from the polar-
izable core d states and that these corrections
will enter the dielectric constant but not other
properties. Thus we take the silicon value of y
for all materials below the carbon row in the Peri-
odic Table and introduce a correction factor

6 (i.e., we replace ¥% by ¥26%)and obtain the val-
ue #=1.18 for germanium using the measured
dielectric constant. We do not have a value for
the absorption peak E, for tin but we use the ob-
served value for InSb, correcting for the polarity
obtained from the respective dielectric constants.
This leads to a value of V,=1.76, and a value of
6=1.41 for the tin row. For any compound, both
of whose components are in the same row of the
Periodic Table, we take V;, 7, and 6 to be the
same as that for the column-four element in that
row. Then from Eq. (20) and the observed di-
electric constant we obtain directly V;. For skew
compounds, consisting of elements from two rows,
we take V, to be the geometric mean (V§VE)!/? of
the values for the two rows, and take one factor
of y and one factor of 6 from each. Then again
from Eq. (20) and the measured dielectric con-
stant we obtain directly V;. The corresponding
values of V, and V; are listed in Table I.

The determination of V; values was completely
straightforward in all cases except BP and BAs.
In both of those cases the dielectric constant cor-
responded to a bonding-antibonding gap slightly
less than V,; for these we have taken V;=0. We
suspect that this inconsistency arises from an
inaccuracy of the model rather than of the experi-
ment, but that it does reflect correctly a very
small value of V; for these materials.

In obtaining these values we used the optical-
absorption peak E, only for C, Si, Ge, and InSbh.
Having obtained V, and V; for other materials
from the dielectric constants we may directly pre-
dict the abso>rption peaks for any other compound
as a test of the scheme. The observed values,

CIRACI 10
where they are known, are plotted against our cal-
culated values in Fig. 2. The agreement is very
good and strongly supports our choice of param-
eters.

We may compare the V; values we have ob-
tained from those we would have obtained from
the difference in hybrid energies based upon atom-
ic term values. This comparison is made in Fig.
3. The correlation is good but the spread is suf-
ficient to make it clear that the use of experi-
mental dielectric constants is warranted. Indeed
the spread comes principally from the use of
atomic term values. We may choose hybrid ener-
gies which, by direct subtraction, give rather good
values for the polar energy of the compound; i.e.,
Vs =(€; —€3)/2. Such a set of hybrid energies is
given in Table II. The extent to which we have
succeeded in fitting the entire set of polar ener-
gies with a single set of hybrid energies is indi-
cated in Fig. 4. It is preferable in studying any

TABLE II. Parameters for the elements. € and €,
are the atomic term valuesobtained from (or extrapolated
from) the Herman-Skillman tables (Ref. 8). V% and V§
are the matrix elements of Eqs. (21) and (22). The €}
and € are hybrid energies chosen to reproduce approxi-
mately the polar energies using the relation V,
=(€§—€p/2.

-€s _EP VCI‘-G _ei,a

Element (eV) (eV) eV) (eV)
Be 8.17 4.14 .01 6,27
B 12.5 6. 64 1.47 6.18
C 17.52 3.97 2,13 ~T7.65
N 23.04 11.47 2,88 10.10
O 29.14 14.13 5.76 10.58
F 35.80 16.99 4,71 14. 66
Mg 6.86 2.99 0,97 3.88
Al 10.11 4.86 1.33 4,74
Si 13.55 6.52 .76 ~5.70
P 17.10 8.33 2.19 7.10
S 20.80 10.27 2.63 S.12
Cl 24.63 12,31 3. 08 8.70
Cu 6.92 1.83 1.27 3.76
Zn 8.40 3. 38 1.25 3.48
Ga 11.37 4.90 1.62 4.44
Ge 14,58 6.36 2,00 ~5.80
As 17.33 7.91 2,36 6. 86
Se 20,32 9.53 2.70 8.00
Br 23.35 11.20 1,02 9. 30
Ag 6. 41 2.05 .69 3.34
Cd 7.70 3.38 1.08 3.30
In 10,12 4.69 1.36 4,28
a-Sn 12.50 5.94 1.064 ~5.30
Sh 14.80 7.24 1.89 G, 47
Te 17.11 3.59 2,013 7.46
I 19.42 9.97 2,36 8. 64
Hg 7.68 3. 36 1.08 ~3.10
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FIG. 5. Principal valence-band splitting at X plotted
against the BOM calculations using the parameters of
Table I. The line corresponds to 3=0.8 in Egs. (21) and
(22). Values were obtained from band calculations of
Herman and co-workers. All values are in eV.

property to use the V; value from Table I, but the
hybrid energies provide an estimate if V3 is not
known and will be of interest in their own right
when we consider photoelectric thresholds.

The determination of V; values was a consider-
ably different problem. The quantities entering
the calculations of bands are of the form A =M%
and C=Mgé. The crudeness of the resulting
bands suggested that the use of the complex for-
mulas, Egs. (13) and (14), was not justified. Use
of the approximate forms 3M{(1+ ,) and 3M5(1
- a,) and values of AM{ and M{ from the Herman-
Skillman tables led to principal valence-band gaps
which were 20% too large on the average. It
seemed appropriate to conclude that on the aver-
age the s-p splitting in the solid is less than that
in the atom and scale the values of V;. We there-
fore took

1=B(; - €9)/2, (21)
Vi=B(e; - €)/2, (22)
with 8 =0. 8, and used term values from the Her-

man-Skillman tables.® We also use the simplified
expressions

A=3Vi(1+a,), (23)
C=3Vi(l-qa,). (24)

A comparison of the results with full band calcula-
tions appears in Figs. 5 and 6. The correlation
is indeed very good and the same value S =0.8 ap-
pears appropriate in both cases. In making a
choice for 3 we absorb not only corrections to the
matrix element A, but also corrections to 2 and

2 from S. The average value, which we call the
metallic enevgy,

V,=A+C (25)

is listed for each compound in Table I. The values
for the individual elements are given in Table II.
The variation of parameters, particularly the
covalent energy, with volume plays an important
role in the model. We have not, as in I, used the
bond length in determining V,; we have instead
established values for C, Si, Ge, and Sn from
absorption peaks, assumed compounds from two
elements of the same row with one of these will
have the same covalent energy (e.g., V, for GaAs
the same as that for Ge), and taken a geometric
mean for skew compounds. However, the bond
length increases monotonically with row in the
Periodic Table, is about the same for compounds
made of elements from a single row, and is inter-
mediate for skew compounds. Thus the covalent
energy will be a monotonic function of d. In Fig.
7 we have plotted InV, against Ind for C, SiC, Si,
Ge, and Sn (compounds fall on the same line). We
see that the covalent energy varies as d %, not as
d"? as found in the earlier determination of param-
eters. This is indeed a plausible result. The
pseudopotentials for Si, Ge, and Sn, normalized
to the free-electron Fermi energy, are almost
the same functions of ¢/2kz.'" To the extent they
are the same, the bands and all band gaps would
scale precisely with d 2, The ultimate origin of
this tendency may well come from the virial the-
orem with its scaling of kinetic and potential ener-
gies. 2

10
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FIG. 6. Principal valence-band splitting at L plotted
against the BOM calculations using the parameters of
Table I. The dashed line corresponds to §=0.8 in Eqgs.
(21) and (22). Values were obtained from band calcula-
tions of Herman and co-workers. All values are in eV.
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FIG. 7. Logarithm of the covalent energy versus the
logarithm of bond length. The straight line corresponds
to V, proportional to d?. The lines through Si and Ge
represent the experimental variation of V, with pressure.

We cannot, of course, deduce that the covalent
energy will follow the same curve when d is changed
for a given material under pressure. However,
to some extent the pseudopotential, normalized as
above, is rather insensitive to pressure®® so it is
a reasonable possibility. Fortunately the varia-
tion of the principal absorption peak E, with pres-
sure has been measured by Zallen and Paul.

They give a value of

= =8 2E;

"E, ad (26)

[which equals ~ (d/ V) 3 V,/ad for nonpolar sys-
tems] of 2.0 for Si and 3.2 for Ge. These are in-
dicated also in Fig. 7. The precision of such
measurements is not high and it is reasonable to
proceed with a universal value of s=2.0 for
column-four semiconductors.

We may also expect the polar energy to vary
with volume. Physically, V; contains a differ-
ence in atomic energies but also a Madelung ener-
gy which increases with decreasing d. Thus we
expect V, also to increase as d decreases. Mea-
surements by Zallen and Paul* on GaSb (s=2.1)
and InSb (s =1.7) are consistent with a dependence
of V3 on d similar to that of V,, but the informa-
tion is not very conclusive.

Further information about the volume dependence
is obtainable from the pressure dependence of the
dielectric constants. For nonpolar materials ¢,
depends upon d through the factors N, dZ, and
V5!, assuming that y is independent of volume.
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We obtain immediately

4 A= g 27
€ -1 ad
which is unity for s =2. Recent measurements by
Biegelsen®® give 0. 74, in reasonable agreement
with the prediction of unity. Earlier measure-
ments on Ge by Abrams and Pinnow'® give the very
large value of 12, for reasons we do not understand.
Variations in the parameters when one ion moves
with respect to its neighbors are also of consider-
able interest. There are important differences
from the case of uniform compression. We may
expect the matrix element between two hybrids,
represented by M,, and the overlap S in each bond
to shift with bond length the same way in both
cases, and therefore V, should have the same de-
pendence on d. However, we expect no change in
V3 linear in the change in d; the Madelung energy
must by symmetry be quadratic in displacements
of a single ion. The change in V, linear in dis-
placement gives rise to a subtle effect when we
seek the induced dipole due to such a displace-
ment; the point has been carefully discussed by
Martin.'” If we displace an ion the polarity of the
bonds in front of that ion is decreased (as V, in-
creases) while the polarity of those behind is in-
creased (as V, decreases). The net charge on
the ion is unchanged to first order in the dis-
placements (just as V; is unchanged to first order)
but the charge transfers add up and contribute to
the bulk polarization. (For long-wavelength
spacially varying polarizations this leads to ac-
cumulation in the bulk; for uniform polarizations
in finite systems it leads to surface charges.)
Such extra contributions are absolutely essential to
the understanding of effective charges to be dis-
cussed in Sec. IV.

IV. CALCULATED PROPERTIES

We have already discussed a number of proper-
ties while establishing the parameters. Our pur-
pose here is to further test our choice using a
variety of properties. This comparison is con-
siderably more extensive than the illustrative
examples given in I but is not exhaustive. More
complete studies aimed at understanding the
properties in question (rather than testing the
model) are in order. Such a study of the valence
bands themselves is being prepared separately. 18
In addition, studies of quite different properties,
such as states arising at semiconductor surfaces,'®
can be most informative.

A. Valence bands

The energy bands of gallium arsenide from the
best available band calculation were shown in Fig,
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FIG. 8. Secondary valence-band splitting at X plotted
against the predictions of the bond-orbital model using
the parameters of Table I. Band calculations were by
Herman and co-workers. All values are in eV.

1 for the [100] and [111] directions. Various sym-
metry points in the valence bands are indicated
and we will use the same notation for elemental
semiconductors though in that case some of the
gaps must vanish by symmetry and different nota-
tion is customary. We saw in I that in the bond-
orbital model the two upper bands are found to be
completely flat, The distortion of these bands,
which is apparent on the left in Fig, 1, could only
be obtained by the inclusion of more distant neigh-
bor overlaps or the distortion of the basis states
themselves. We regarded the gaps X;-X,; and
L,-L, as the principal gaps and have already in
Figs. 5 and 6 plotted the best available values from
band calculations against our prediction., Other
features of the band structure are not so well given,
In most cases the true values are monotonic func-
tions of our predicted values, as illustrated in
Figs. 8 and 9. At the same time the bond-orbital
model yields significant trends (both with polarity
and metallicity) of the bandwidth I';5-T';, while full
band calculations show that they are rather con-
stant. In other cases (for example, I'5-X;) our
prediction is zero. Even these shifts, which are
not present in the crudest form of the theory, do
correlate with the parameters of the model and it
is possible to use the model as an interpolation
scheme to predict the energies at - symmetry points
for all tetrahedral semiconductors and to under-
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stand in terms of the model various trends among
the band structures, '® Both of these discussions
are beyond the scope of the present article,

Very recently Shevchik, Tejeda, and Cardona®
have shown that the addition of second-neighbor
matrix elements removes the principal discrep-
ancies in these bands. Indeed by adding still fur-
ther overlaps we can presumably reproduce ex-
actly the observed bands., Most importantly, even
with the addition of these matrix elements, the
diagonalization of the 4% 4 matrix to obtain the
valence bands is a unitary transformation which
leaves the total charge density and the total energy
unchanged., The calculation of all of the other
properties we consider is therefore unaffected and
is at the same time consistent with as accurate a
description of the bands as one has the patience to
provide., The refinement of the bands and the cal-
culation of other properties are quite separate
problems,

B. Effective ionic charge

There are essential ambiguities in associating
effective charges with ions, ultimately coming
from the fact that in a periodic structure there are
innumerable reasonable ways to divide up the
charge. In the context of the bond-orbital model
the natural choice is to associate a fraction 3(1+ a,)
of the two electronic charges per bond with the

7
6 IGe
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% 4 '_I“A'ﬁ\—lnSb
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FIG. 9. Secondary valence-band splitting at L plotted

against the predictions of the bond-orbital model using
the parameters of Table I. Band calculations were by
Herman and co-workers. All values are in eV,
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anion and a fraction 3(1 - @,) with the cation. This
leads to an effective ionic charge of magnitude (in
electron charges)

Z*=4a,-AZ (28)

where AZ is 1 for III-V compounds, 2 for II-VI
compounds, and 3 for I-VII compounds. It is strik-
ing that the first term almost always dominates

and Z* tends to decrease with increasing AZ, How-
ever, this definition is somewhat arbitrary and it
makes more sense to define a charge which, at
least in principle, is measurable.

C. Transverse charge

Perhaps the most physical definition for tetra-
hedrally coordinated solids is the macroscopic
transverse effective charge e¥. It could be defined
by displacing every anion by a small distance
with respect to every cation, measuring the sur-
face charge required to neutralize the resulting
volume dipole, and equating ef to the point charge
which would cause such a dipole. In a zinc-blende
structure the result does not depend upon the direc-
tion displaced. It is most conveniently calculated
by using displacements in a [100] direction so all
bonds are equivalent,

In I we distinguished two contributions, one which
would occur if @, did not change with bond length,
and a second due to the change in @,. The first
we correctly identified with the Z* of Eq. (28).
Note that no factor y could appear since as @, ap-
proaches 1 the result must be 4-AZ, If we made
this evaluation in terms of changes in dipole for
each bond, using Eq, (18), we would conclude that
v must change with such distortions. The second
contribution can be seen by moving a metallic ion
to the right (positive x direction) and considering
the bond to a neighboring nonmetallic ion to the
left. The change in bond length is 6 /'3 causing a
change in a, of sa, (1-a?) §/V3d [using Eq. (26)]
and therefore a dipole change in the x direction of
vesa 1 - af) 6/3. The contributions of the four
bonds add to give a total dipole per ion the same
as would be produced by a charge of

e¥=Z*+4ysa,(1-ad)/3 (29)

protons moving with the ion, If s is replaced by 3
this becomes the result obtained in I. Here we
take s=2 and obtain the transverse charges which
are compared with experiment in Fig. 10. The
model reproduces the large effective charges and
the rather weak trend with polarity though the pre-
dictions could hardly be called accurate. It should
be remembered that the input parameters are ob-
tained from quite unrelated properties.

An independent study of e¥ made by Lannoo and
Decarpigny® was conceptually equivalent to this
discussion though they sought parameters in a much
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FIG. 10. Experimental macroscopic transverse
charges (compiled by Lucovsky et al., Ref. 21) (points)
plotted against the predictions of Eq. (29) and experi-
mental piezoelectric charges (compiled by Martin, Ref.
17) (crosses) plotted against the predictions of Eq. (33).

different way. Indeed there is a one-to-one cor-
respondence between their parameters and ours.
Their ag - a, is equivalent to our 2V;; their B is
equal to our V,; their g, is our Z*; and their f,
which they call the ionicity parameter, is related
through the dielectric constant to polarity by f=[1
-(1- as):‘/z]uz.

D. Piezoelectric effect

The piezoelectric effect allows a second and
physically different definition of a measurable ef-
fective charge. We introduce a shear strain and
find that the two ions in each primitive cell are
displaced with respect to each other, If we know
the displacements and measure the polarization
density we may define an effective charge e}, which
would equal Z* (just as would the macroscopic
transverse charge) if @, did not change. We will
see that the contributions from the charge transfer
are of opposite sign in this case to those for e%.

We introduce a pure shear strain

ou ou
-2y |z
=5, T 8y (30)

by introducing displacements u, = S4z/2 and u,
=S,y/2. This will give rise to internal displace-
ments of the anion sublattice with respect to the
cation sublattice in the x direction of

du, =taS,/4 , (31)

where ¢ is Kleinman’s?? internal displacement pa-
rameter, which has been calculated by Martin'? by
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FIG. 11. Experimental cohesive energy in eV plotted
against the bond-orbital model result which does not in-
clude overlap energy nor correlation energy. Experi-
mental values taken from C. Kittel, Introduction to Solid
State Physics (Wiley, New York, 1971), and N. N, Sirato,
Semiconductors and Semimetals edited by R. K. Willard-
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fitting force constants to the observed elastic con-
stants, It was defined so that it would equal 1 if
all bond lengths remain the same under a pure
shear, We may directly compute the change in
bond length for each bond surrounding an anion:

6d/d=+S,(1-8)/3 . (32)

The changes in the x components of the dipoles
from four bonds surrounding a given anion are all
equal and subtract from the contribution of the
direct anion displacement. This leads to an effec-
tive charge for piezoelectricity given by

ef=Z*-4ysa,(1-a?) (1-¢)/3¢. (33)

This charge is related to the piezoelectric con-
stant by ey, = efte/a®. We have plotted the ob-
served!” effective charges against those from Eq.
(33) also on Fig, 10. Again the scatter is quite
large but the significant difference between ob-
served ef and ¢f is reproduced. This is indeed a
sensitive test of the bond-orbital model since not
only is there extensive cancellation between the
two terms in Eq. (33), but £ is near 1 (between
0. 64 and 0. 90) and our predictions are therefore
very sensitive to this uncertain parameter,

E. Cohesive energy

The cohesive energy is obtained by moving step
by step from isolated neutral atoms to the solid,
obtaining the change in energy with each step.
Here we imagine promoting the electrons to hybrid
states in each isolated atom (requiring an energy
E_.,) and then bringing the atoms, with frozen
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wave functions, together as a solid. The only en-
ergy change in this second step is the change in
Coulomb energy of the overlapping charge densities.
This overlap enevgy, which was not considered in
I, is increasingly negative as the atoms are brought
together, reaches a minimum, and then increases
as the ion cores near each other. The overlap en-
ergy is presumably important in setting the atomic
spacing but may be less important in the total en-
ergy. We may expect it to depend upon the equilib-
rium bond length d, but not to depend sensitively

on polarity.

In the next step we form bonds, as in I, and ob-
tain the same result [Eq. (31) in I] with an addi-
tional term - 8V,S [see Eq. (11) here] and of course
use slightly different parameters, Finally we
should note'? that there is an interbond, or inter-
atomic, correlation energy which would appear not
to have been included in the parameters V, and V;,
since they only reflect changes in energy as the
wave functions are modified.

Since the correlation energy and overlap energy
are uncertain at this stage we may first compute
the remaining terms, as in I, to obtain

EB®-8(Vi+ V3)'/P-8SV,- 20ZV, - E,, (34)

per atom pair. (The term - 8SV, did not appear in
1.) The observed cohesive energy is plotted against
this in Fig., 11, At first glance this would appear

a disaster; the new term - 8SV, has made most
values negative, However the trend with V, (see

C, SiC, Si, Ge) is approximately correct, whereas
the variation was seriously overestimated in I,
Further, the deviations from experiment appear to
systematically decrease with polarity, This sug-
gests correlation energies may be the most im-
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FIG. 12. Discrepancy between experimental cohesive
energy and the bond-orbital result plotted against a form
of contribution motivated by consideration of the interbond
correlation energy.



1526 W. A,

9

8 / Zns
q cds

7L CdSe /—ZnSe

CdTe

6 GaAs \ ZnTe
InAs
GaSb\‘;
\ AfSb
Si

InSb

¢um

w»
T

q’BOM

FIG. 13. Experimental photoelectric threshold in eV
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portant terms omitted and it is of interest to look
at these more carefully.

We have constructed one-electron energies in
terms of individual bonds., These bonds, however,
are polarizable and there will be van der Waals
interactions between them which go beyond this
one-electron approximation, We may estimate
this interaction but must recognize that there is
also correlation energy within separated atoms and
only some of the difference is hidden in V, and V.
Thus at best we can only hope for a qualitative
form of correction to the cohesive energy.

The dielectric constant of Eq. (20) corresponds
to a dipole matrix element between bonding and
antibonding states in each bond of

(a|x|b)cyd(1 - ad)t/? (35)

For two bonds separated by 7, the matrix element
of the electron-electron interaction between the
ground state and the state with one electron from
each bond in an antibonding state is proportional to

HARRISON AND S.
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Y?e*d%(1 - of) /7%, The van der Waals interaction,
or correlation energy, is the lowering in energy
to second order in this matrix element,

4,4 7401 _ 22\2 4,401 _ ~2)5/2
B Loty gt o LGt
Any estimate of the magnitude of the energy from
Eq. (36) gives much too large a value, indicating
self-consistent screening is needed. Division by
€2 on the other hand gives too small a value, so
the problem is intermediate and difficult.

Because V, varies roughly as d"2, Eq. (36) gives
a result independent of bond length, in accord with
the discrepancies from Fig, 11. On the other
hand, the dependence upon @, in Eq. (36) is too
strong, perhaps because screening is larger when
@, is small, The best account of the cohesion is
obtained when (1 - a?)°/2 is replaced by (1 - a?)'/2,
as suggested in Fig, 12, This leads us to a semi-
empirical expression for the correlation (and over-
lap) energies and a total cohesive energy of

EcothBw + 0. 3374e4/d2(vg+ V§)1/2 , (37)

with Egoy given in Eq. (34). This can of course
not be regarded as a prediction of the theory but
a semiempirical formula, with plausible motiva-
tion, and with the very good correlation with ex-
periment suggested by Fig., 12.

(36)

F. Photoelectric threshold

Because we have hybrid energies, measured
from the vacuum, and band energies relative to
the hybrid energies, we may directly write an ex-
pression for the top of the valence band relative to
the vacuum. This is the photoelectric threshold,

bom =3|€E+€| +(VEi+ VY28V, -V, . (38)

This value is subject to the same omissions as was
the cohesive energy, and in addition omits con-
tributions from surface dipoles, Thus we do not
expect it to agree well with experiment. However,
the plot in Fig, 13 of the experimental values
against Eq. (38) shows at least a good linear cor-
relation., A line such as that drawn could be used
as an empirical formula though Eq. (38) itself is
very inaccurate,
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