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The pressure dependence of energy gaps for a number of elemental and compound semiconductors is
investigated employing the empirical pseudopotential method. The compressibility and the empirical
pseudopotential form factors appropriate for describing the band structure at normal pressure are the
only required input parameters in this calculation. The calculated pressure coefficients of several
critical-point band gaps for group IV and III-V compounds are generally in good agreement with
experimental data. The results are then utilized, along with a Penn type of single-oscillator model for
the dielectric constant, to calculate the pressure coefficient of the refractive index. The results are good
for elemental semiconductors and reasonable for III-V compounds. Similar calculations of pressure
coefficients of both the energy gaps and the refractive index for several II-VI compounds yield results
which are less satisfactory. Possible reasons for this discrepancy are discussed.

I. INTRODUCTION

Many experiments!™ have been performed to de-
termine the pressure coefficients of various energy
gaps and/or optical transition energies in semicon-
ductors. The general results indicate that the sym-
metries of the initial and the final states involved
in an optical transition play an important role in
determining the pressure dependence of that energy
gap. Theoretical calculations, on the other hand,
are relatively linited. Herman et al.* calculated
the pressure coefficients of several band gaps for
Si and Ge using a self-consistent orthogonalized-
plane-wave (OPW) method. Goroff and Kleinman®
have calculated, also by the OPW method, the vol-
ume-deformation potentials for selected band gaps
of Si. Brust and Liu® have calculated the high-
pressure band structure of Si and Ge. The pres-
sure derivatives of the pseudopotential form factors
required in their calculation were determined em-
pirically by fitting the calculated pressure coeffi-
cients of certain critical-point band gaps to ex-
perimental values. Recently, Melz’ performed a
calculation for some elemental and III-V semicon-
ductors, where the change in pseudopotential form
factors due to pressure was obtained from the gen-
eral shape, in reciprocal space, of the Heine-
Abarenkov model potential.® The OPW calcula-
tions are, in general, rather cumbersome to per-
form, and are not easily extendable to the case of
compound semiconductors. The empirical ap-
proach of Brust and Liu is unsatisfactory in that it
requires fitting pressure coefficients of some band
gaps to experimental data in order to determine
changes of form factors with pressure; thus, it is
less desirable as a predictive method. Further-
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more, an extension of the method to compound
crystals is highly unpracticable, because in the
latter case, aside from the three symmetric form
factors required for elemental semiconductors,
one also has three antisymmetric form factors
whose pressure derivatives must also be fitted.
Melz’s calculation, on the other hand, is relatively
straightforward. However, in addition to requiring
the empirical pseudopotential form factors, which
yield satisfactory band structures at atmospheric
pressure, it also relies on the Heine-Abarenkov
model potential for determining the wave-vector
(¢) dependence of the pseudopotential form factors.
The results obtained for several III-V compound
semiconductors were only within about a factor of
2 of experimental values.

In this work, we first present a simpler scheme
for calculating the pressure dependence of critical-
point energy gaps for a number of elemental and
compound semiconductors. We use as input data,
only the compressibility and the empirical pseudo-
potential form factors (PFF’s) appropriate for band
structure at normal pressure. In contrast to
Melz’s calculation, no model potentials are used
to determine the ¢ dependence of the PFF’s; in-
stead, these are established numerically, With a
few exceptions, our calculated pressure coeffi-
cients of several important band gaps are, in gen-
eral, within 25% or so of experimental results;
and the good agreement is rather uniform for group
IV as well as III-V compounds, in contrast with the
results of Melz, where it was found that the agree-
ment became worse going from elemental to com-
pound crystals. Encouraged by this improvement,
we next present a calculation of the pressure de-
pendence of refractive indices of these crystals,
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using a single-oscillator model. The calculated
values of dn/dp generally agree fairly well with
available experimental data, as well as with re-
sults determined semiempirically from an exten-
sion® of Van Vechten’s dielectric theory in the case
of elemental and III-V semiconductors. Results of
similar calculations for II- VI compounds are less
satisfactory. Possible reasons for this discrepan-
cy are discussed.

II. METHOD OF CALCULATION

The pseudopotential-energy-band calculation®
involves the solution of the wave equation with a
crystal pseudopotential V(F), which is much weaker
than the real potential and is normally taken as the
superposition of atomic (or ionic) pseudopotentials.
For crystals of interest here, V(r) can be conve-
niently written

Vi)=Y [ve(G)eos(G- 7)
I¢]
+iVA(G)sin(G: D] S F (1)
where
Vs(é) = Vl(a) + Va(a), VA(G): Vl(a) - Va(a) )

and 7= }a(l,1,1), where q is the lattice constant
and G is a reciprocal lattice vector. V,(G), where
i=1or 2, is the atomic PFF obtained from V,(d),
the Fourier transform of the ith screened ionic
pseudopotential, for cI= G. The latter can be for-
mally written!®

- 1 - 2 -
V,-(q):mf V() e 87 47, (2)

In Eq. (2), Q(=%d) is the primitive cell volume;
€(@) is the wave-vector-dependent dielectric func-
tion, !! which accounts for the screening effect of
the valence electrons; and V;(f) is the ionic pseudo-
potential of the ith ion. Equation (2) provides a
prescription for calculating band structure of a
crystal at a higher pressure.

If no phase transition occurs, then the effects of
pressure on the crystal band structure will arise,
essentially, from just the change in lattice con-
stant. From Eq. (2), it is obvious that V(@) is af-
fected by the lattice constant through the cell vol-
ume 2, the dielectric function €, and the reciprocal
lattice vector G, and possibly also through the de-
pendence of V,(T) on the lattice constant. In the
present work, however, we adopt the rigid-ion ap-
proximation, 3 where V;(r) remains unchanged for
small variations (of the order of a few percent) of
the lattice constant. Similar assumptions were
also made in previous works. =712 It follows that

v@= [ v, et uE - v, @@ ®)

will not depend explicitly on the lattice constant
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(the implicit dependence arises through d). The
same statement holds true for

USA@=vSA@Red). (4)

To calculate the band structure at a higher pres-
sure, one needs the symmetric and antisymmetric
PFF’s at pressure p,

V$(G,), for G,=(/3,V8,V1I )2n/a,,

and

vA@G,), for G,=(3,2,vIT)2n/q, ,

where the subscript p refers to quantities at pres-
sure p. V3 and V§ are now given by

V3G, =USA@G,)/ e, (G,), (5)

so that values of U4(G,) are required. These can
be readily obtained if the q dependence of US4(g)
are known.

In principle, one can establish the cT dependences
of US4(J) by making use of analytical expressions'®
derived from certain model potentials, along with
an appropriate €(q). However, since most model
potentials are based on drastic and/or unphysical
assumptions, it is felt that the q dependence estab-
lished from them may be inadequate for the present
purpose; this was partially reflected in the results
of Melz’s calculation, where one of the most care-
fully constructed model potentials, namely, the
Heine- Abarenkov model potential, was employed.

In the present investigation, we find that better
results are obtained by simply fitting polynomials
to each set of empirical values of US(G) and U4(G),
thereby establishing their respective q depen-
dences. The values of US(G,) and U#(G,) needed
for high-pressure calculations, then, are readily
obtainable from these polynomials,

Next the dielectric function €(q) and its pressure
dependence have to be determined. Several calcu-
lations of e(a) based on realistic band-structure
models have been reported.*® However, they are
invariably presented in numerical forms from which
it is impossible to deduce the pressure dependence
of e(a)g To get around this difficulty, we make use
of a model dielectric function €* ((D first derived
by Penn!? and subsequently modified by Brust, '3
namely,

€*(@)=1+0.65[e@) - 1][1-f4(],
where

€@ =1+ (rw,/ EF{1+(Ep/E)q/KgPFY2T?
and

F=1-0.25(E,/Ep).

w,, Ep, and K are, respectively, the plasma
frequency, Fermi energy, and Fermi wave vector
corresponding to the appropriate valence-electron
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TABLE I. Pressure coefficients of important band gaps? (in 10°° eV bar™).
dE, dEy dE dEry, dEr,
dp dp dp dp dp
Calc Expt. Calc Expt. Cale. Expt. Cale. Expt. Cale. Expt.
Si 1.3 1+1° 6.6 6.2+0,4° 3.6 3 5.5 0.5~=0.1 =15
Ge 16.2 14,2 8.8 7.8+0,4° 5.4 5.5 6.6 5 2.7 -1.5
GaAs 13.3 10.7~11,7 7.4 5.0 4.6 e 6.2 . 1.5 LA
GasSh 16.1 14.7 10 7.5 6.5 6 8.5 5 3.1 .
GaP 8.6 10,5+1.6 3.5 5.8 1.8 e 2.1 .. -1.7 -1.1
InAs 11.1 9.6~10,8 6.3 7.0 3.5 . 4.8 . -0.02 .
InP 13.4 8.5 7.5 4.6 . 6.8 . 1.8 .
InSb 15.2 15.5~17.6 9.5 8.5 5.9 6 8.3 . 2.7 ..
AlSb 14,7 102 7.5 b 4,0 e 6.4 . 0.5 -1.5
ZnTe 8.1 7 4.0 6.0° 1.3 e 3.0 . -1.6 .
ZnSe 5.8 7 2,5 . -0.3 e 1.4 . -3.7 -2
ZnS 3.6 6.5+1 0. 86 -1.9 . -0.1 .. -5.2
CdTe 2.8 8 1.5 6.0° -1.0 M 0.5 . -4.3 ..

°E is taken as the transition I'ys ,—~T'y  (or I'y5 ,—T'5 , for Si) (inzinc-blende notation), which is the top valence band state
and lowest conduction one at the Brillouin zone center. E; is identified as the gap at 2=(2x/a) (0.5,0,5,0.5), Ex as the gap
at k=(27/a) (1,0,0). The indirect gaps Ery and Ery are identified as the energies of the lowest conduction states at
k=(21/a) (0.5,0.5,0,5) and 2 =(2n/a) (1.0,0.0,0.0) [or & =(27/a) (0.85, 0.0, 0.0) for Si], respectively, measured from
the top of the valence band at zone center. All the pressure coefficients are calculated assuming linear variations of

band gaps between p =1 bar to 20 kbar,
PReference 2.

°C. D. Langer, in Proceedings of the Seventh International Conference on the Physics of Semiconductors, Pavis, 1964,
edited by M. Hulin (Dunod, Paris, 1964), p. 241, All other experimental values are those cited in Ref. 9.

density; E,(7w,) is the average Penn gap!*; and

0.5
1+K§/q2+Ki-/qz

fu@)= (here K =2Kg/T)

is the Hubbard exchange and correlation correction, '°
It should be pointed out that for values of q relevant to
the present calculation, €*(q ) agrees very well with the

results obtained from more sophisticated calculations.

The pressure dependence of €* @) can readily be
calculated provided the pressure dependence of E,
is known. In the present work, we shall determine
dE,/dp self-consistently by requiring the value used
in calculating the change of €*(q) with pressure to
be equal to the pressure coefficient of the band gap
at k=(27/a)(0.5,0.5,0.0). This latter identifica-
tion is suggested by various theoretical and experi-
mental studies of the optical spectra of the crys-
tals considered: In his original calculation!” of the
optical spectra of Si and Ge, Brust found that the
strongest peak in the ¢, spectrum (imaginary part
of the dielectric constant) of these crystals was
the result of two nearly degenerate critical-point
transitions, X, ,~X;, . and Z, ,~Z; .. The former
is located at k= (27/a)(1, 0, 0), the latter at K
~(21/a)0.5,0.5,0). Heine and Jones!® later gave
a heuristic interpretation of the optical spectrum
of diamond-type crystals. They showed that the
region of the Brillouin zone (BZ) which embraces
the two transitions and their vicinities can, in fact,
be mapped onto the surfaces of a Jones zone, which
contains four times the volume of the BZ and is a

good approximation to the Fermi “sphere” of these
crystals. If one assumes that the energy bands
within the Jones zone are approximately free-elec-
tron-like, except near the zone boundaries, where
they have nearly constant energy gaps, then one
would expect the optical spectrum to consist of a
single strong oscillator with energy roughly equal
to E(X,,,~ X;,,) or E(S,,,~%; ). This, however,
is almost identical to the Penn model, * which has
an isotropic free-electron energy band throughout,
except near the Fermi surface, where it has a gap
E,, the Penn gap. The work of Heine and Jones is
significant in that on the one hand, it lends physical
insight into the conclusions reached by Brust via
detailed calculations, while on the other hand, it
justifies the simple Penn model as applied to tet-
rahedrally bonded semiconductors. More recent
theoretical!® and experimental? investigations have
identified and/or confirmed similar origins of the
strongest peak in the optical spectrum of most
compound semiconductors. However, the contri-
bution from the I, ,~Z; . transition is found to be
far more predominant. In the present work, we
find that better results are indeed obtained by
identifying E, as the gap at k~ (27/4)(0. 5, 0. 5, 0)
rather than at K= (27/4)(1,0,0). Similar identifi-
cation of E, was also made previously by Brust. 15

IIl. PRESSURE DEPENDENCE OF BAND GAPS

In Table I, we present the pressure coefficients
of several important band gaps, direct as well as
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indirect, of Si, Ge, and the II-V and II-V semicon-
ductors. The form factors of Cohen and Berg-
stresser?! have been used. For all the semicon-
ductors considered, the agreement of calculated
coefficients with experiment is uniformly good for
most of the gaps, with the possible exception of the
indirect gap Ery. The calculated pressure coeffi-
cients are generally within 25% or so of experi-
mental values, which we feel is within experimental
uncertainty. As for the discrepancy that exists be-
tween the calculated and experimental coefficients
of dEr/dp, the following comment can be made: It
is found the dEry/dp is extremely sensitive to small
changes in PFF’s, Since all the calculated dEry/dp
are rather small in magnitude, it is felt that slight
modification on the PFF’s might effectively reverse
the sign of calculated dEry/dp. This is manifested
in the case of GaP, where a negative dEr,/dp is
predicted, in agreement with experiment. Also in
Si, we found that the indirect gap Ery first in-
creases with p, then decreases, so that Er, at 10
kbar is larger than at 20 kbar; this shows nonlin-
earity of Ery as a function of pressure, which could
be important, at least in Si.

Previous high-pressure band-structure calcula-
tions (except those by Melz) were concerned with
elemental group-IV semiconductors such as Si and
Ge. A comparison with these calculations reveals
that except for the indirect gap Ery, our calcu-
lated pressure coefficients for other important
band gaps are at least in as good agreement with
experimental data as those obtained from more
complicated models. For III-V compounds, our
results are definitely in better agreement with ex-
periments than Melz’s, which are the first high-
pressure band-structure calculations for these
crystals. Regarding the fact that in our calcula-
tions only the compressibility and normal-pressure
PFF’s are used as input data, the good agreement
obtained, particularly for direct gaps, is rather
gratifying, The fact that the pressure coefficients
of direct gaps are accurately predicted in the pres-
ent work would make our simple scheme useful for
calculations of the pressure dependence of optical
spectra, where usually only direct electronic tran-
sitions are taken into account. ® It is also of in-
terest to point out that the success of the present
scheme seems to imply that the ¢ dependence of the
Fourier transform of the pseudopotential is well
represented by the empirically determined PFF’s,
so that a numerical interpolation scheme as de-
scribed here is adequate for determining the high-
pressure PFF’s. Furthermore, along with the
“tranferability” of atomic (ionic) pseudopotentials,!®
the scheme can also be effectively used to calculate
the band structure of hitherto unexplored crystals
composed of atoms (ions) whose PFF’s have been
determined from cther calculations.
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The analogous calculations for II-VI compounds,
however, yield results which are rather disappoint-
ing. For example, the calculated dE,/dp are much
too small compared with experimental data. This
seems to stem from too strong a pressure dependence
of the antisymmetric PFF’s, especially the V4(3)
component. Because of this, results in Table I are

based on calculations in which the antisymmetric
PFF’s are assumed to be totally independent of
pressure. Except for CdTe, the E,-gap pressure
coefficients are in fair agreement with available
experimental data. Although no rigorous justifica-
tion can be made for this procedure, a partial jus-
tification is forthcoming from the quantum dielec-
tric theory of Phillips and Van Vechten, 22 where
the hetropolar (ionic) energy gap C is some sort
of average of the antisymmetric PFF’s. Van
Vechten?® further arrives at the conclusion that for
highly ionic crystals, dC/dp=0. He argues that
since the Madelung energy makes the dominant con-
tribution to the cohesive energy in highly ionic
crystals, the condition dC/dp=0 is compatible with
the condition that the equilibrium lattice constant
maximizes C, and hence the cohesive energy of the
crystals. This very condition was, in fact, em-
ployed by Camphausen ef al.® in their calculation
of the pressure coefficients of band gaps, which is
based on a modified version of the quantum dielec-
tric theory. Since II-VI semiconducting com-
pounds are more ionic than III-V’s, we expect
their antisymmetric PFF’s to be less pressure
dependent. Hence, as a first approximation, they
are assumed to be independent of pressure.

IV. PRESSURE DEPENDENCE OF REFRACTIVE INDEX

The recent emergence of a variety of high-power
laser applications has generated much interest in
the careful determination of parameters character-
izing optical distortion phenomena in solids.? In-
cluded among the latter parameters is dn/dp, the
pressure derivative of the refractive index, which
characterizes pressure-induced distortion. The
frequency regime of interest for optically trans-
mitting materials is the transparent region well be-
low the energy gap w, but well above the fundamen-
tal phonon resonance w,. We will here be con-
cerned with dn/dp for pure semiconductors, where
only band-to-band electronic contributions need be
considered. Lattice contributions are negligible
for all practical purposes, except very near to w;
likewise, free carrier effects are negligible in pure
materials at reasonable temperatures, except for
very narrow gap materials which will not be of in-
terest here.

Camphausen et al.® (CCP) calculated dn/dp em-
ploying the modified version of Van Vechten’s di-
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TABLE II. dn/dp of semiconductors,
dw, % % (107%/bar)
a this
Crystal K(10™/bar) w (eV)? €, (1078 eV/bar) work ccpP Experiment®
Si 1.02 4.8 12,0 4.1;3,1,%,6° —-0.31 -0.3+0.05 -0.3
Ge 1.338 4.3 16.0 7.0;5.8,‘14.6e -0.89 -1,0+0.2 -0.7to~1.0
GaSh 1.77 4,1 14.4 9.1 -1,23 —0.8+0.2 s
GaAs 1.34 5,2 10.9 5.9 -0,44 —-0.5+0.2 -0.7+0,1
InSh 2,20 3.7 15,7 9.2 -1.30 -1,1+0,2 o
InAs 1.72 4.6 12,3 5.9 -0.39 -0.7+0,2 e
GaP 1,13 5.8 9.1 2.0 +0,20 -0.3+0.2 ..
AlSb 1.69 4,7 10,2 5.7 -0,33 -0.5+0,2 e
InP 1.38 5.2 9.6 6.2 —0.45 —0.4+0.2 s
ZnS 1.39 7.8 5.2 1.9 +0.36 0,05+0,1 -0.1
ZnTe 2,00 5.8 7.3 4.9 +0,14 0.01+0,1 L
ZnSe 1,70 (.4 5.9 3.5 +0,32 0.07+0,1 ce .
CdTe 2,36 5.5 7.2 3.8 +0,53 0.140.1 e

3Reference. 22,
PReference, 9,

®Values cited in Ref, 9.
d9Calculated values in Ref. 4.

electric theory, as mentioned above. Here we
make use of results obtained in the last section to
calculate dn/dp of diamond and zinc-blende-type
semiconductors.

Adopting an approach similar to that employed
by Tsay et al.? for calculating the temperature de-
pendence of n, one takes for w, » w> w,, Where
wy is the long-wavelength transverse-optic phonon
frequency

(8)

where w, is an effective plasma frequency and w,
is an effective band gap, taken here simply as the
gap at the point k= 27a"1(}, 5, 0) of the Brillouin

zone as discussed above, From (6) one obtains

_ .2 2. 2
€=n"=1+w,/ wg,

-1 dn - 1dw
155:%(1-681><1<-zw,17pi) , (7)

where K is the isothermal compressibility. The
latter is known reasonably accurately for most
crystals; thus, the central task becomes the eval-
uation of dw,/dp. A similar approach was sug-
gested by Heine and Jones, *® although no detailed
calculations were performed.

The final calculated values of dw,/dp and dn/dp
are listed in Table II, alongside the calculated val-
ues of CCP and available experimental data.?® Our
values for dn/dp are observed to be similar to those
of CCP for diamound and III-V crystals, except for
GaP. The origin of the positive value of dn/dp for
GaP is an unusually small value of dw,/dp calcu-
lated for this crystal. In the case of II-VI’s, how-
ever, our results differ substantially from those
of CCP. The present calculated values display
good agreement with experiment for Si and Ge,
fair agreement for GaAs, and poor agreement for

®Calculated values in Ref. 6.

ZnS. Some comments are in order regarding our
results for the II-VI’s: On the one hand, the trend
to more positive values for the II-VI’s is in agree-
ment with the larger values of K and w, associated
with increasingly ionic materials (dn/dp is large
and positive for highly ionic materials such as
alkali halides). However, it must be pointed out
that since the agreement between our calculated
pressure coefficients of band gaps and experimen-
tal data for II-VI compounds is not as good as the
cases for group IV and III-V compounds, the dn/dp
calculated for the former might be less reliable,
although adequate experimental data are not avail-
able at present for a more thorough comparison of
theory with experiment. Also, for the II-VI com-
pounds, aside from the uncertainty which results
from the assumption of pressure-independent anti-
symmetric PFF’s, another uncertainty appears to
be the stronger variation in dE,/dp for different
points in the BZ not accounted for by the simple
assignment discussed above.

V. REMARKS AND CONCLUSIONS

In the present paper, we have shown that a sim-
pler scheme, in which only the compressibility and
atmospheric-pressure PFF’s are required, is fair-
ly adequate for describing the pressure-dependent
band structures of a large number of semiconduc-
tors. However, since the q dependence of PFF’s
is determined from their empirical values by nu-
merical interpolation, the results for each crys-
tal calculated within the present scheme are nec-
essarily dependent on the particular set of em-
pirical PFF’s used. We found that the Cohen-
Bergstresser empirical PFF’s on the average gave
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better results compared with experimental data,
even though rather similar results are obtained for
a slightly different set of PFF’s. We believe that
the present scheme is sufficiently simple and ac-
curate to be useful in calculating pressure-depen-
dent band structures, and also optical spectra of
semiconductors. Previously, the present authors

demonstrated the usefulness of the empirical
pseudopotential method for calculating the temper-
ature derivative of the refractive index of semi-
conductors., The present results show that the
same method is also a promising one when applied
to the calculation of the pressure derivative of the
refractive index.

*Support by Air Force Cambridge Research Laboratories
(AFSC) under Contract No. F19628-72-C-0286.
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