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The structure of the electromagnetic field in a spatially dispersive model medium occupying a plane

parallel slab is obtained, free of several customary ad hoc assumptions made in other theories. The

model medium is characterized by a dielectric response function appropriate to the neighborhood of an

isolated-exciton transition frequency. The exact mode expansion for the electromagnetic field in the slab

is derived and it is found that, unlike in the case of an unbounded medium, a single plane wave

cannot be generated in the slab. An elementary solution (a single mode) is found to consist, in general„
of six plane waves (four transverse and two longitudinal ones), coupled by two linear relations. These

relations are shown to be equivalent to two nonlocal boundary conditions (of the form encountered in

connection with the Ewald-Oseen extinction theorem in molecular optics), which the nonlocal

contribution to the induced polarization must satisfy on the faces of the slab. This result resolves a

long-standing controversy about the nature of the so-called additional boundary conditions that are gen-

erally believed to be required for solving problems of interaction of an electromagnetic field with a spa-

tially dispersive medium. The results are applied to the problem of refraction and reflection on a spatially

dispersive model medium occupying a half-space and a generalization of the classic formuhs of Fresnel
are obtained. The behavior of the reflected and transmitted w'ves as functions of the angle of incidence
and of the frequency are illustrated by several figures. Our results are shown to differ from those obtained

by Pekar in a well-known paper. The difference is traced to the nature of the additional boundary condi-

tions postulated by Pekar; they are found to be inconsistent with the additional boundary conditions that
we derive as an exact consequence of Maxwell's theory. Comparisons with several other theories, espe-

cially with those of Sein and Birman and of Maradudin and Mills are also made.

I. INTRODUCTION

In this paper a new theory will be developed,
relating to the nature of electromagnetic fields in
spatially dispersive media. Even though spatial
dispersion was discovered as early as 1957 by
Pekar' (in the context of the theory of excitons,
where it appears rather naturally), the subject is
even now a rather controversial one. Many ex-
periments on spatial dispersion effects have been
carried out, but the interpretation of the result-
ing data has been hampered by the lack of a satis-
factory theory.

It may be useful to begin by a brief review of the
concepts relating to electromagnetic fields both
in ordinary and in spatially dispersive media.
Let us consider first an electromagnetic field in

an ordinary homogeneous isotropic nonmagnetic
dielectric which, to begin with, will be assumed
to fill the whole space. Let E(r, t) and D(r, l) rep-
resent the electric field vector and the electric
displacement vector, respectively, at a point r
in the medium, at time t. Let E(r, w) and D(r, cu)

denote the Fourier transform of these vectors, de-
fined as

+~

E(r, (u) = E(r, t) e""'dt,
m CO

with a similar expression for D(r, &e). The as-

sumption of linearity, homogeneity, and isotropy
implies that the {electric) constitutive relation in
the frequency domain is of the form

5{r,~) =e (u)) E(r, (,~). (1.2)
If we ta,ke the Fourier frequency tra. nsform of
(1.2) and use the convolution theorem, we obtain
the following constitutive relation in the time do-
main:

D(r, t)= f &{t—f ) E(r, l )df', (1.3)

where, of course, q(t) is the Fourier transform of
i(&). The principle of causality demands that
e(t) =0 for k &0.

According to Eq. (1. 3), the relation between
5 and E is local in the sPatial argsmenf r, but.
nonloca/ in the tinge argument t; i.e. , the elec-
tric displacement vector D(r, l) at a point r in the
medium depends on the value of the electric field
at that point only, but its value at time t depends
on the values of the electric field not only at that
particular instant of time, but also on other (ear-
lier) times t &t. This nonlocality with regard to
time is responsible for the phenomenon of ordinary
dispersion: In the course of time a wave packet
in the medium will be dispersed.

As is well known, a frequency dependence of
the dielectric constant e (w) that describes well the
response of most linear homogeneous isotropic
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media is of the form
2

47T 0j CO j
«(&u) = 1+~ a a

EOy (d &CO
(1.4}

It may be derived from classical considerations
based on the Lorentz oscillator model, in which
case the ~,.'s are the natural frequencies of the
oscillators, the ~,.'s are proportional to the prod-
uct of the atomic polarizability and the number of
oscillators per unit volume, and the F&'s are
phenomenological damping constants. A formula
essentially of the form (1.4) (the Kramer-Heisen-
berg formula) may also be derived quantum me-
chanically, in which case the ~,"s are the transi-
tion frequencies, the a,.'s are essentially the
oscillator strengths, and the F,.'s are related to
the lifetimes of the excited states of the atoms.
In the vicinity of an isolated resonance w =up
(1.4) may usually be approximated by the formula

2
Hi Qco p«(~) =«o+ a a

(0 p
—(d —&Q) F

where cp, which is assumed to be independent of
&, is the "background dielectric constant" associ-
ated with all transitions other than the transition
under consideration (r = ~a).

Under certain circumstances the constitutive
relation connecting 5(r, t) and E(r, t) will be non-
local not only in the time argument, but also in the
spatial argument (r), even when the medium is
macroscopically homogeneous. In that case the
medium is said to be sPatially disjersive and the
constitutive relation (1.2) is replaced by

D{r,~) = f «{r—r, a) E(r', ~)d r' . (1.6)

Alternatively, if we introduce the spatial Fourier
transform of the three functions appearing in (1.6),
1. e. ,

linear function of k, viz. ,

«(k, &o) =«~(&u)+terms linear in k . (l. 9)

Some of the most important differences between
the nature of the electromagnetic field in an ordi-
nary medium and in a spatially dispersive medium
may be appreciated by comparing monochromatic-
plane-wave solutions of Maxwell equations in the
two media. We have, from the first two Maxwell
equations, viz. ,

1 BH 1 BDvxE= —— —,vxII= ——
c Bt c Bt

(1.10)

on eliminating the magnetic field H, that

Vx(vxE)+~ a
= 0.1 BD

C Bt
(1.11)

We also have the Maxwell equation

V D=O (1. 12)

and

2

kx [kxE(k, (u)]+ ~ «(k, (u) E(k, ~)= 0c

[k ~ E(k, m)]«(k, &o) = 0 .

(1.14)

(1. 15)

There are two possible cases to be distinguished,
depending on whether «(k, w) c 0 or «(k, a) = 0.

(i) If

Let us now consider a monochromatic-plane-wave
solution of Eqs. (l. 11) and (1.12), i. e. , a solution
of the form

E(k }ei(a I s&t'|

(1. 13)
D(r t) D (k ) ei( ra-rat)

On substituting from (1.13) into (1.11) an3 (1.12)
and on using the constitutive relation (l. 8) we ob-
tain the equations

«(k, (u) w0 (1. 16)

etc. , and take the Fourier transform of (l. 6) we
obtain the constitutive relation in the form

D(k, (u) = «(k, (u} E(k, (o), (1.8)

where k and ~ must be regarded as independent
variable s.

It is known that a medium exhibits such a spatial-
ly dispersive response when the frequency v of the
electromagnetic field is close to the exciton tran-
sition frequency of the medium or when the wave-
length of the field is of the order of magnitude of
the lattice constant of the medium. Although much
of the current research on spatial dispersion was
motivated by Pekar's work, some phenomena as-
sociated with spatial dispersion were known pre-
viously, e. g. , optical activity; it may be under-
stood by assuming that the dielectric constant is a

we must have, according to (1. 15).

k E(k, (u) =0. (1.17)

Using this condition in (1.14) we obtain the relation

k = — i(k, ~. {1.18)

q(k, ~) =0 (l. 19)

Eq. (1. 15) is satisfied and from (1.14) we see that
in this case

k xK(k, (u) = 0 . (1. 20)

In the first case («c0) Eq. (1.17) shows that the
waves are necessarily transverse and {1.18) is the
disPersion equation for such waves. For an ordi-
nary, (i. e. , spatially nondispersive), medium, the
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h~o(k)= K(ye+ g k
2m.*

(l. 22)

where ~n,* is the effective mass of the exciton.
[Actual1y certain care must be exercised in em-
ploying approximations such as are implicit in (l. 22),
since ~0(k) is not continuous at k=0. J If the k
dependence of o.(k) and I'(R) may be ignored, we ob-
tain for e(k, ~) the expression

Xl (ki (d) 60+ k2 2ik —p, ((d)
(1. 23)

where

(1.24)

We will assume throughout this paper that m ~ &0.
The case when m,*&0 may be treated in a similar
way. The parameters a, I', and «0 are, of course,

dielectric constant. is independent of k and hence,
for a given frequency ~, (1. 18) becomes a quadrat-
ic equation in k. For a spatially dispersive medi-
um, e depends on k and Eq. (1. 18) will, in general,
be of order higher than second in the components
of the propagation vector k. Hence more mono-
chromatic plane waves of a given frequency can be
generated in a spatially dispersive medium than in
an ordinary one. Moreover, since the phase ve-
locity may be defined as @~=c/Re [e(k, &u)J

monochromatic plane waves of the same frequency
& propagate with the same velocity in an ordinary
medium. But in a spatially dispersive medium,
they are seen to propagate with different veloci-
ties, in general, even if they propagate in the
same direction.

In the second case (e =0), we see from Eq.
(1.20) that the waves are longitudinal and Eq,
(1.19) is the dispersion equation for such waves.

We will now briefly discuss the functional form
of the dielectric constant e(k, &), that may be ob-
tained from the simplest microscopic model that
takes account of spatial dispersion. The model is
a natural generalization of the classical Lorentz
oscillator model. Many workers ' have found from
quantum-mechanical calculations that in many
cases of interest, e(k, &u} is well approximated in the
vicinity of a resonance by an expression of the form

4wa (k)(uIi(k}
+ z~ 0(k) —~~ —s~X'(~

For the case of a dielectric resonance due to an
exciton band at frequency (d = ~, and wave number
k= 0 one has, in the effective-mass approximation,

also taken to be positive. In the formal limit
m~-~, the expression (1.23) becomes k indepen-
dent and, as expected, has the form (l. 5).

For a, medium with a dielectric constant «(k, w)
given by (1.23), the dispersion equations (1.18)
and (l. 19) imply that for a plane wave of any par-
ticular frequency ~, in the vicinity of the reso-
nance frequency ~, , the permissible values of k2

are
2

k] = — «O —
2 +P, ((g))

2 2 1/2

x% + — eo —
a

—u (~}c 4 c
(l. 25)

is incident on this half-space from vacuum and let

E„(r,~}=-e„e'"', (1.28)

(1. 29)

represent the reflected and the transmitted fields,
respectively. (There are, of course, similar ex-
pressions for the magnetic fields. } Now, if the
squares of the propagation vectors k,'~' that appear
in Eq. (1.29) are assumed to satisfy the dispersion
equations (1.18) and (1.19), one finds that the usual
electromagnetic boundary conditions at a surface
of discontinuity do not determine uniquely the re-
flected and the transmitted fields from the knowl-

edge of the incident field. For this reason many

previous workers found it necessary to introduce

k)'= }L('(~)— (1. 26)

Here, and in our subsequent discussion, suffixes f
and / label. quantities associated with transverse
and with longitudinal waves, respectively.

Strictly speaking, the preceding discussion ap-
plies unambiguously only to a field in an infinite
unbounded medium. However, in all realistic prob-
lems the medium is bounded. For example, in
order to check various theories relating to spatia, l

dispersion and excitons one often analyzes mea-
surements on the field that is reflected from a
spatially dispersive medium which forms a plane
parallel slab (possibly of great. enough thickness
to consider it as effectively occupying a half-
space). It is clear that from such measurements
one may infer information about the various param-
eters entering the expression for the dielectric
constant of the medium, such as the effective mass
of the excitons or the natural frequencies of the
transitions. In past treatments of such problems
a difficulty was encountered, which we will il-
lustrate by the problem of reflection from a spatial-
ly dispersive half-space. Suppose that a plane
monochromatic wave, with electric field

Eo(r, ~}= eoe'"0', (l. 27)
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"additional boundary conditions" (to be abbreviated
as abc s), suggested by various physical models
for the behavior of excitons in the medium; the
question of the correct form of the abc's has been
a rather controversial subject. It is clear that the
different abc's lead to different solutions for the
reflected and the transmitted fields.

We consider it highly unsatisfactory that, with
the form of the constitutive relation being given,
it should be apparently necessary to go beyond
Maxwell's theory to solve the problem of refrac-
tion and reflection by a mixture of quasiclassical
and quantum-mechanical considerations. In this
paper we present a theory of electromagnetic fields
in spatially dispersive media based entirely on
Maxwell's electrodynamics. In Sec. II we intro-
duce a spatially dispersive dielectric model medi-
um and set up the appropriate integro-differential
equation for the electric field in the medium. In
Sec. ID we derive the general solution of this equa-
tion, in the form of a mode expansion, for the case
when our medium forms a plane parallel slab. We
find that the electromagnetic field in the slab may
always be represented as a superposition of plane
waves (both transverse and longitudinal), whose
wave vectors obey dispersion relations that are
identical with those appropriate to plane waves in
the medium, of the same kind, occupying the whole
infinite (unbounded) space. However, we also
find that, unlike in the case of the unbounded medium,
a single plane wave cannot be generated inside the
slab. An elementary solution (mode) consists in
general of six plane waves (four transverse and two
longitudinal), coupled by two linear relations which
we call mode-couPLing conditions. In Sec. IV we

apply these results to the problem of refraction
and reflection of a monochromatic plane wave in-
cident from vacuum onto a half-space occupied by
the spatia. lly dispersive medium and find that our
mode-coupling conditions ensure a unique solution
to the problem; i. e. , no abc's are needed to solve
this problem. Qur solution is shown to differ from
Pekar's. The reason for this difference is traced
to the fact that the abc's assumed by Pekar are in-
consistent with the mode-coupling conditions. We
also present curves that illustrate the behavior of
the transmitted and reflected waves. In Sec. V we
discuss the relations between mode-coupling con-
ditions, additional boundary conditions, and ex-
tinction theorems for spatially dispersive media
of a more general class, with regard to both con-
stitutive relations and geometry. In Sec. VI we
compare our theory with other theories relating to
the nature of the electromagnetic field in spatially
dispersive media. In this connection we wish to
point out at the outset that our theory is similar,
both in spirit and in the main conclusions, to that
developed recently by Maradudin and Mills. Our

main conclusions are also in agreement with re-
sults obtained by Sein and Birman and Sein from
a self-consistent analysis. However, unlike all
theories proposed previously, our analysis is free
of any ad hoc assumptions, being a rigorous con-
sequence of Maxwell's electromagnetic theory ap-
plied to our model medium.

Xe (k, &u) = e p+ -pk —p (~)

where

(2. 1)

p (&u}=
' (~ —(u, +i(uI')

@co~

(2. 2)
On taking the Fourier k transform of (2. 1), we find
that

e(r ~) =ep5(r)+ ~4 G~(lr I) (2. 3)

where

(2. 4a)

In (2.4a), p is that root of the second expression
in (2. 2) for which

Rep &0, Imp&0, (2. 4b)

consistent with our choice of the Fourier kernele""' in (1.1) and with the obvious physical require-
ment that the waves in the medium should decay
and not grow in amplitude as the wave propagates.
From (1.6) and (2. 3) we then obtain the following
constitutive relation:

P

5(r, w) = e p E(r, up) + ~ G „(
l

r —r'
l
)E(r', (u) d'r'

7T

(2 5)
Since from now on we will confine our attention to
Fourier frequency components only, we have omit-
ted in Eq. (2. 5), and in subsequent equations, the
caret symbol; i. e. , we write D(r, &u) in place of

D(r, ~), etc.
From (2. 5} we see that the polarization P(r, e)

= (I/4v) [D(r, u) —E(r, &u)] may be expressed in the
form

P(r, (u) = P~(r, ~) + P„„(r,~), (2. 6)

where PL and P„Lare contributions that are local
and nonlocal, respectively, in the electric field,
and are given by

II. MODEL MEDIUM AND BASIC EQUATIONS

In this section we will derive a basic integro-dif-
ferential equation which must be satisfied by the
electric field in a homogeneous isotropic nonmag-
netic spatially dispersive dielectric medium whose
dielectric constant in the k, ~ domain is of the
form given by Eq. (1.23), viz. ,
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P, (r, (u)= '~-- E(r, (u), (2. 7a)
III. GENERAL SOLUTION OF EQ. (2.9) AND THE NATURE OF

THE ELECTROMAGNETIC FIELD IN A SPATAILLY
DISPERSIUE PLANE-PARALLEL SLAB

PNL(r +)
(4 2 Gu(g r ~) E(r ~)d

(2. 7b)

P„Lrepresents what is customarily referred to
as exciton polarization. Now, strictly speaking,
{he form (2. 1) of the dielectric constant &(k, +) ap-
plies only to the idealized case when the dielec-
tric occupies the whole infinite (unbounded) space.
The preceding relations apply, therefore, rigorous-
ly to this case only and the volume integrals in
Eqs. {2.5) and (2. 7b) extend then over the whole
space. When dealing with the more realistic case
of a dielectric occupying only a portion V of the
whole space one has to resort to approximations,
as the exact form of the dielectric constant for
such cases is not known and is clearly exceedingly
hard to determine, because of complicated effects
arising from the presence of the boundary of the
medium. It seems reasonable, however, to as-
sume that as long as one is interested only in bulk
effects, such as reflection and refraction, and not
with the detailed nature of the field close to the
boundary, one may, to a good approximation, re-
tain the constitutive relation (2. 5), with the inte-
gration extending over the volume V occupied by
the dielectric. One may expect that this approxi-
mation will be especially appropriate for media
whose linear dimensions are large compared to the
effective range of the Green's functions G „[ofthe
order of (imp) '] that characterizes the size of the
effective region of nonlocal response. We will
therefore take as our model medium a spatially
dispersive medium which is characterized by the
constitutive relation

D(r, u)=eoE(r, &u)+ ~ G (~r —r '~)E(r', m)d r'.
(2. 8)

We now eliminate the electric displacement vec-
tor D(r, u) between the Fourier time transform of
Eq. (1. 11) and the constitutive relation (2. 8) and

obtain the following integro-differential equation
that the electric field in the spatially dispersive
medium has to satisfy:

2

Vx [V xE(r, &u)] —k', &oE(r, w) = G, (~r —r'~)
7T

where

xexp[i(u(x- x') +~, (y -y'}
+ u

„ i

z —z' i)] du dv, (3. 3)

26~ = (P —M —Z' }
2 2 2 1/2 (3. 4a)

and the square root in (3. 4a} is defined so that

Re8)@& 0, Imgf)~ & 0 (3. 4b)

That the choice of the real and imaginary parts of
nr„, indicated by Eq. (3.4b), is possible, follows
readily from (3. 4a) and the definition of p (&)
given in {1.24), if we recall that I' ~0.

On substituting from (3.2) and (3. 3) into (3. 1),
we find after a straightforward calculation that
E(u, v; z; fg ) satisfies the equation

ei fthm ~ Ig-a' I

{u +v —koeo)E —
z E+1 =

'N~

xE(u, ~;~';{d)d~',
{3.5)

where L is a vector wi th corn ponents

We will now obtain the general solution of the
integro-differential equation (2. 9) for the electric
field, when the domain V occupied by the spatially
dispersive medium is a plane parall. el slab 0 ~ z
~d. Equation (2. 9) then takes the form

2 ~+oo

vx[vxR(r, u)] —kocoE(r, ~) =
i, I dr dy

4~ „'„.
„d

x dz'G, (~r —r ~)E(r, &u).
a 0

(3. 1)
As we will see shortly, the form of this equation
allows us to express the general solution as an
angular sPectrun~ of plane waves. ' "' For this
purpose we first express the electric field as a
two-dimensional Fourier integral with respect to
the x andy variables:

E(r (u) = f f E(u g' z; }e' ' 'dud p. (3 2)

Next we express the kernel G, , defined by (2, 4),
of the integral transform in (3. 1) in this form also.
The explicit expression, which is a genera1. iza-
tion of a well-known formula due to Weyl, ' ' is

r r+~
G „(/r —r'/) =-

27K „„gJ

x K{F',+)d'r', (2, 9) I.„=iu(, I. = ir $,
Bg

Bz
where

O'o = R/C (2. 10)

Equation (2. 9) is the basic equation from which our
considerations start.

(3.8)BE
( = iuE„+ivE,+

Bz

We note that if the E field were tra. nsverse (V
= 0) then $ and hence the vector L would vanish
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identically. However, as we shall see shortly,
Eq. (3. 1) admits transverse as well as longitudinal
so lu tions.

In order to solve the integro-differential equa-
tion (3. 5) we convert it first into a differential
equation. This can easily be done if we note that
the kernel of the integral transform in (3. 5) satis-
fies the equation

E (u, v; z; o! ) =~ C
& (u, v; z; o!) e' '!', (3. 14)

where m,. are the ze roots of the equation

is the determinant; of Z. The fact that the ele-
ments of Z „of2 are operators creates no prob-
lem, since any two elements of Z commute with
each other.

The general solution of (3. 12) is

2 +%~ = 27A 5(z
5)I(u, v, zv; N ) = 0 (3. 15)

where 5 is the Dirac g function.
If we apply the operator [(S!'Szz)+zv„]to both

sides of (3.5) and use (3. 7) we readily find that
E obeys the equation

2BE 2 2 2 2 BE
Bz

+(k

ohio

u —z! +so ) Bz

and C&(u, z);z;~) is a polynomial in z whose degree
depends on the multiplicity (if any) of the root
se=e), . If te, has a multiplicity. V, then C, is a
polynomial of degree N —1. From (3. 10) and
(3.11) one finds after a straightforward calculation
that the equation (3. 15) for u! has the following
more explicit form:

+ [u!„{fzoeo—u —z! ) —X!zzo]E =
p +uz~ I .2 2 2 2 2 B 2 5R, (u, v, zv; o!) 5P, (u, v, zv; o!) = 0, (3. 16)

(3.8)
Equation (3. 8), when separated into Cartesian
components, gives a set of three coupled fourth-
order linear differential equations for the com-
ponents E„E„andP, of E, the coupling arising
from the presence of the vector L on the right-
hand side of (3.8). These equations may readily
be uncoupled by the use of a procedure well known
in the theory of differential equations. For this
purpose we rewrite (3. 8) in the form

B
u, v; —;~ E (u, z,'; z; e = 0, (3.9)

Bl—= iu, i,z,', —
Bz

(3. 11)

Then the set of the uncoupled equation is

A

3R u, z.", —;& E (u, z'; z; (d ) =- 0 (nz = x, y, z),
z

(3. 12)

B
Q P ' —'

utg = g (3. 13)

where Z is a 3&3 matrix operator, with the com-
ponents

,2 2 2 2
4 2

4 +(koeo —u —v +u! )mn Bz

~ [u'„tk',c, — ' — ') —gk', ])0 „—,~ I'„)I 1„,
Bz

(3. 10)

g„„beingthe Kronecker symbol and l, etc. , are
components of the vector

3R, (u, v, u!!",o!) = 0 (3.20b)

and A, , 8;, and A, are arbitrary vector functions
ofu, z, and~.

It is clear from our derivation that any solution
of the integro-differential equation (3. 5) satisfies
both the coupled set of differential equations (3. 8)
and the uncoupled set (3.12), and hence is neces-
sarily expressible in the form (3. 19). The con-
verse, however, is not true, since in proceeding
from {3.5) to (3. 8) and (3.12) we differentiated sev-
eral times. In order that (3. 19) satisfy (3. 5),
several constraints must be imposed on the vector
amplitudes A, , B, , and A, %e determine these
constraints in two stages. First we substitute
from (3.19) into (3. 8) and find after a long but
straightforward calculation outlined in Appendix
A that in order that each term on the right-hand

where
4 2 2 2 2 2%,(u, v, u!; o!)= u! —u! (A.'o e o

—u —v + u! )

+u!o(koco u v ) Xfzo (3 17)

5P, (u, v, u!; o!) = zo —ze + ~ (3. 18)

If we assume that the se roots of the equation pg,
= 0 and also of the equation 3R, =-0 are all distinct
and note that each se root of the equation%, =0 is
a double root of the equation (3. 16), it follows that
the general solution (3.14) of (3. 12) may be ex-
pressed in the form

4

E(u, v; z;&u)=g [A&(u, v; o!)+zB&(u, v;cu)]e'"'!'
&=1

2

+ P A,'(u, z! ' o!)e' z' (3. 19)
j=1

Here the u),. and gp& are the roots of the equations

5)Iz(u, z!|u!bio!) (3.20a.)
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side of (3. 19) be a solution of (3. 8) one must have

kj Aj=O,

k, ~Aj'= 0,

and that, in general,

Bj=O, (3. 23)

where the (generally complex) vectors kj and k,.
are defined as

(3 22)

Sx f Ikj=—Q, v, Nj, kj=w, v, m}j (3. 24)

Next we substitute from (3. 19) into the integro-
differential equation (3. 5) and also use (3. 21)-
(3.23). We then obtain, after some calculations
carried out in full in Appendix B, the following
two additional constraints:

tVq K~

Ag

Q)~ —81~
{3.25)

Aj

j 1 ul j + tel,

A,
SUj + l8~

where

(3. 26)
From (3. 2), (3. 19), and (3. 23) it follows that

the general solutiou of our integro-differential
equation {3.1) may be expressed in the form

E(r, &u) = ff $(r, e;u, v )dud&,

satisfies the original integro-differential equation
(3. 1) so that (3. 27) is a true mode representation
of the electric field in our spatially dispersive
slab. It is important to appreciate that each ~node
[each ${r,w, u, v) j consists of a number of plane
b'av es (six in general, four of whi ch are trans-
verse and two longitudinal), coupled by the two

relations {3.25) and (3.26). A single transverse
or longitudinal plane wave cannot satisfy the
integro-differential equation (3. 1), since it is
impossible to satisfy the constraints (3. 25) and

(3.26) with only one nonvanishing vector ampli-
tude. We will refer to the relations (3.25) and
(3. 26) as mode couPlin-g conditions and will dis-
cuss them in detail in Sec. V. Here we only
mention that these conditions play a crucial role
in the understanding of the controversial subject
of additional boundary conditions, referred to in the
Introduction.

To complete the description of the ele ctr omag-
netic field in the spatially dispersive slab we
must also derive expressions for the electric dis-
placement vector D, for the magnetic field H, and
for the magnetic induction field B. These may be
obtained readily from Maxwell equations and from
our mode expansion (3. 27). The Fourier time
transforms of the first Maxwell equation in (1. 10)
and of Eq. (1.11) give, if we also recall that we
assumed the medium to be nonmagnetic,

${r,w;u, v}=-Z A, (u, v;(u) e'"~'

p

+ A,'.(w, v;(d}e'"j' .
j=i

(3. 28)

B(r, ~) = H(r, ~) = . gxE(r, ~},
iA'o

D(r, ~) = ~ ~ x [~ x E(r, ~}].
0

(3. 30)

(3. 31)

For each pair of the parameters (u, v) (- ~ &u &~,
—~ &» & ~) with ~ fixed, the propagation vectors
k& and k,'. a,re given by (3. 24), with u'&, u),. being
solutions of Eq. (3. 20) and with the vector am-
plitudes Aj, A,. obeying the constraints (3.21),
(3. 22), (3. 25), and (3. 26). The constraint (3. 21}
implies that each of the four plane waves under
the first summation sign in (3.28) is transverse.
The constraint (3.22) implies that each of the two

plane waves under the second summation sign in

{3.2S) is longAwdinal. It may be verified that the

values k,. and k, defined by (3.24) and (3. 20) are
identical with the values k, and k, given by Eqs.
(l. 25) and (1. 26), respectively, so that each k,.
satisfies the transverse dispersion relation (1.18)
and each k,. satisfies the longitudinal dispersion
relation (l. 19) for a plane wave in our spatially
dispersive model medium, i. e. ,

2

«(k„;(o)= ~', «(k,', cu)=0 (bo=ux'c)
0 {3.29)

It may be verified that for each pair of values of

(u, v) and with &u fixed, $(r, u; u, v) given by (3.28)

D(r. (u) =- Jf ~{r, (,),.u, v)dud~,

where

'IPI'. :, I=K( ' xA,
j=i 0

4

X)(ir, w,' u, v) =g —'
A,.e'+" .

j=l o

(3. 33)

(3. 34)

(3. 35)

We note that the longitudinal plane waves do not
contribute to B, H, or D. This fact is consistent
with Eqs. {3.30) and (3. 31); these equations ex-
press the three fields in terms of V ~ E and for a
longitudinal E wave V&&h =0.

It is straightforward to verify that for each
pair of parameters (u, v) the four vector fields

$, B, K, and St (=X) satisfy the four homogeneous
Maxwell equations. Thus our solution, expressed

On substituting from {3.27) into (3.30) and (3. 31),
we obtain the following expressions for the electro-
magnetic field vectors:

B{r,&u)=R(r, u) = fJ 7t(r, ~,'u, &.')dud»,
(3. 32)
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by Eqs. (3.2'I), (3.32), and (3.33)as a superposition
of these four vector fields for all possible values
of u and v {-~ & u & ~, —~ & v & ~), is a true mode
representation of the complete electromagnetic
f?eld of frequency 1d, in oar spatially dispersive
slab.

We conclude this section with a few remarks
about the nature of the six plane waves that con-
situte a typical u, r, & mode, If we set

pagates from the face z = 0 of the slab towards the
face z =a and the other is a wave that propagates
from the face z =0 towards the face z =0, and each
of the two waves decays exponentially in amplitude
as the wave progresses.

Let us now consider the four transverse waves.
We have from the "transverse" dispersion rela-
tion [Eqs. (3. 20a, ) and (3. 17)], if we again substi-
tute from (3.4a) and 1.24),

ref = O.f+iPf,
l l ~ l

mf = Of +ZPf

(3.36a)

(3.36b)

Bv, —2PN/, + q = 0 (j = 1, 2, 3, 4),

where

(3. 43)

where n, , p, , nf, pf are all real, then each of the
four transverse plane waves belonging to the mode
has the space dependence

2&=00~0- u' — v'+ ' ((d' —(d'+~r}
he@,

(3.44a}

(Ilx+1$+df/t ) e B/E (j I 2 3 4) (3. 37) q = ((d —Q3 ~ + vd F ) —lc —v
m e 2 2 2 2

and each of the two longitudinal modes belonging
to the mode has the space dependence

e f'(ux+vy+0(f'8) e-B'.g
(j 1 2) (3. 38)

?v/ =a +ib' (a, b real),

where

(3. 39)

Let us now examine more closely the parameters
Q f pf Qf pf which determine the nature of these
waves. It will be convenient to examine the longi-
tudinal waves first.

We have, according to the "longitudinal" dis-
persion relation [Eqs. (3. 20b) and (3. 18)], if we
substitute for Bv„from (3.4a) and use the expres-
sion given in (1.24) for t1 {&u),

2 2,2 2
&((I?Be2 —u —v ) —l{bB .

)

Since the quartic equation (3.43) involves Bv/ in
second powers only, we may solve it at once for
sef2 and obtain

~2 p (p2 q)1 /2 (3. 45)

Here and below we define for the sake of precision
the positive square root of a complex number z as
that particular square root whose imaginary
part is non-negative. Let us label the two roots
Bv, for which the upper sign is taken in (3.45) by
suffixes 1 and 2, and the other two roots, for
which the lower sign is taken, by the suffixes 3 and
4. Thus we have

a = {1v —w,)-a —v + —,l H1e 2 2 2 2

Iz(d e
{3.40a)

Bv1 = Bvz = p + (p —q )
'

?02 = Q/4 = P —{P —q)2 2 2 1/2

{3.46a)

(3.46b)

(3.40b)

l l l l
&2= ») P2= Pj. . {3.41)

m~~(d&

@(d~

From (3.39) we see that the two roots?v1 and?v2
are connected by the relation so&= —av&, which,
according to Eq. (3.36b), implies that

It is clear then that the four roots are

+ [p (p2 q)1/?]1/2

~ =- [p+(p'-q)'/']'/'
, [p (p2 q)1/2]1/?

~, = - [p - (p'- q)' "]'".

{3.47)

Next, on squaring (3. 36b) and comparing it with

(3. 39), we obtain the relations
l2 l2 l l l l

nf —pf =a, 2af pf =b (3. 42)

Now in view of the assumptions that we made about
the constants appearing in our expression for the
nonlocal dielectric constant, it follows at once
from (3.40b) that b &0. The second relation
(3.42) then implies that for each of the two values
of j, nf and p& have the same sign; i. e. , they are
either both positive or both negative. And it is
clear from (3.41) that both of these two eventuali-
ties occur: i. e. , for one of the longitudinal waves
o. f & 0, pf & 0; for the other o

&
& 0, pf & 0. Recalling

(3. 38) it is clear that the first is a wave that pro-

Since se2= —ee&, se4= —m3, we have, if we recall
Eq. (3. 362.), that

&2= &S 82= —PS

a4= —n3, p4= —p3 .

If now, by analogy with (3. 39), we write

zg ~ = af + zbf (af, 5f l eal))

(3. 48)

(3. 49)

we clearly have, on squaring (3.36a) and compar-
ing it with (3. 49),

n; —p,- =af, 2&f pf =bf (3. 50)

Since && is the imaginary part of zef, we have from
(3.46) and the second relation (3. 50)
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n&P&&0 (j=1, 2) . (3. 52a)

Further, from Eqs. (3. 44) one may deduce by a
straightforward but long calculation that one also
has Im[P —(P —Q) ~ ] & 0 (recalling our earlier
assumption that m~ & 0) and (3. 51b) then implies
that

n, p)&0 (j= 3, 4). (3.52b)

The conclusions one can draw from these relations
are analogous to those that we reached in connec-
tion with the longitudinal waves. Equations (3.52)
imply that for each of the four transverse waves
n j and P& have the same signs; i. e. , they are
either both positive or both negative. And it is
clear from Eqs. (3. 48) that for two of the waves

(o', , p,.) are both positive, for the other two waves
they are both negative. Hence two of the trans-
verse waves are propagated from the face z =0 of
the slab towards the face z =d, the other two waves
are propagated from the face z =d towards the face
z = 0, and each of the four transverse waves decays
exponentially in amplitude as the wave progresses.

Also, since eu2 ———M)&, A@4= —go~, se2= —so& there
are also obvious geometric relations between the

complex wave vectors k2 and k&, k~ and k„and
k2 and k,', which one could, of course, expect from
symmetry considerations.

The general representation that we obtained in

this section for the electromagnetic field in a
spatially dispersive model medium forming a plane

parallel slab may be used in analyzing a variety of
problems of current research interest. In Sec.
IV we will employ it to investigate refraction and

reflection on a spatially dispersive half-space.
The representation has also been used to study
surface polaritons in a spatially dispersive medi-
um occupying a half-space. '~ 23

IV. REFLECTION AND REFRACTION ON SPATIALLY
DISPERSIVE HALF-SPACE

We will now apply the general theory developed

in the preceding sections to the problem of refrac-
tion and reflection on a spatially dispersive medi-

um whose dielectric constant in the (k, &) domain

is given by Eq. (2. 1}. The medium will be as-
sumed to occupy the half-space z &0. As explained
in the discussion following Eq. {2.7b), the con-

2o&ti& -—Im[P+(P —Q)~~~] if j = I, 2, (3. 51a)

=Im[P —(P —Q)
~ ] if j=3, 4 . (3.51b)

Now, we see at once from (3.44a) and our earlier
assumptions about the constants appearing in that
formula that ImP & 0. Moreover, we have defined
the positive square root of a complex number as
that square root which has non-negative imaginary
part. Hence it follows from (3. 51a) that

where

uo=+(ko-u —v ) whenu +v ~lto2 2 21/2 2 2 2

=+i(u +v —ko)'~ when u +v &ho,

where

kp ——(d, C./

(4. 2)

{4.3)

W'e may expand the electric field of the reflected
wave, in the domain zp & z &0, in a similar way,

E„(r,a) = ff A„(u,v; (u) e" '"~ o" du dv .
(4. 4)

If the medium weW occupying a slab O~z~d,
the electric field generated inside the slab would

have the mode expansion given by Eqs. (3. 27) and

(3.28). In the present case, the medium occupies
the half-space 0~ z & ~ and it is clear that the
appropriate mode expansion in this half-space is
still given by Eq. (3.27), provided that in Eq.
(3.28) we suppress the three plane waves (two

transverse, one longitudinal) with k vectors whose

z components have negative real part. For these
three waves are evidently the waves that are re-
flected from the rear surface of the slab and must
clearly be absent in the limiting case as d -~,
when the slab degenerates into the half-space.
Thus we have the following mode expansion for
the electric field inside the half-space:

E(r, &u) = Jf b (r, cu; u, v)du dv, (4. 5)

where
2

8 (r, (d; u, v) =~ At~~ '(u, v; &}e'"&
/=1

+A, (u, v;(u) e'"~' . (4. 8)

stitutive relation connecting the electric displace-
ment vector D and the electric field vector E in
the (r, &) domain will be taken to be given by Eq.
(2. 8), where the volume V of integration is now the
half-space z & 0 occupied by the dielectric. We
will find that, contrary to statements frequently
found in the literature, the problem can be solved
entirely within the framework of Maxwell's theory;
i. e. , it is not necessary to introduce any boundary
conditions beyond those implicit in Maxwell's equa-
tions.

Suppose that the sources of the incident electro-
magnetic field {assumed to be monochromatic, of
frequency a) are situated in the domain g & z~,
where zp& 0. Then at each point in the domain z
& zp the electric vector of the incident field (i.e. ,

of the field that would be generated by the sources
in the absence of the spatially dispersive medium)
may be represented in the form of an angular
spectrum of plane waves &9(~&.

Eo(r, u)= ff Ao(u, v; &u) e" '"" o" dudv,
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In (4. 6), the subscript t, l label quantities associ-
ated with transverse and longitudinal waves, re-
spectively, so that

k'," A,~'= 0 (j = 1, 2),
k, xAr = 0

{4.7)

(4. 8)

Here

kg =-u, v, u)j)Q)

k, =u, v, sar,

Rew, &0 (j= 1, 2),
Reu), &0,

(4. 9)

(4. 10)

and the eoj's and u)r's are the roots of the disper-
sion relations {3.20) (with so,'. -ud, ), i. e. , of the
equations

K,(,uv, ud~; ~) = 0, 5R, (u, v, w, ; u) = 0, (4. 11)

where K, and 3)I, are given by Eqs. (3.17) and
(3. 18), respectively.

The vector amplitudes AI~' and A, in Eq. (4. 6)
are not independent but are related by the mode-
coupling condition (3. 25), which now reduces to

j
A'j' A

+ ' =0.
'N . —K ~ $0 r

—K'~
(4. 12)

The angular spectrum representation for the
magnetic field in the half-space z &0 is obtained
at once from Eqs. (3.32} and (3. 34) as

H(r, u)) = ff X(r, ,), u, v)dudv, (4. 13)

where

(j)
K(r, ~; u, v) =~ ' x A," '(u, v; ~) e'"t

j=1 P

~ + de 2

d d e" '"" x Tx&+A, -P&&«' —A)=&&
V vdo

(4. 15)

(4. 14)
Our main aim is to determine the amplitude

vectors AI»' (j= 1, 2), A, , and X, in terms of Ao.
For this purpose we make use of the usual bound-

ary conditions of Maxwell's electromagnetic theory,
according to which the tangential components (i. e. ,
the components parallel to the boundary surface)
of the electric and the magnetic fields are continu-
ous across the surface bounding the medium. In
the present case these conditions must be satisfied
at every point (x, y) of the plane e = 0, i. e. ,

flected fields, respectively, i. e. , the vectors

kp = u) v ) liUp ) k» = u, v) —N p . (4. 17)

By taking the Fourier inverse of Eqs. {4.15) and

{4.16) we see that for each (u, v; &u) mode the fol-
lowing relations must hold:

2

zx Ap+A„-Z. A~(j''-A, =0,
j=1

(4. 18)

zx k, xA, +k„xA„- k,"'xA,"' =0.
j=1

(4. 19)

(4. 21)

( A(2)) (2)

(I)

2}

Medium

Equations (4. 18) and (4. 19) imply that each plane
wave made of the incident field couples to only one
P/ane wave mode of the reflected field and to one
mode af the transmitted field, the latter consist-
ing of two transverse and one longitudinal plane
waves. All these modes (i. e. the incident, the
reflected, and the transmitted mode) are labeled
by the same mode parameters, namely, u, v, &.
From the linearity of the angular spectral repre-
sentations (4. 1), (4. 4), and (4. 5) of the three
fields, it is clear that we may fromnow on re-
strict our analysis to a. single mode„' i. e. , we

take the incident field to consist of a single plane
wave, with wave vector ko (see Fig. 1).

We see from Eqs. (4. 17}, (4. 9), and (4. 10) that

all the five wave vectors have the same x
components, namely, u, and the same y com-
ponents, namely, v. Hence it follows that

kr x z = k&' xz = kpxz (j = 1, 2), (4. 20)

k„xz=k,xz .

+ CC!

, { d d e'& ' '* («, x&& k, A,
g v CO

—g ko&xAoij =0. (4. 16)
j=1 r

in Eqs. (4. 15) and (4. 16) z is the unit vector in the

+ z direction and kp and k„arethe wave vectors of
the plane waves in the angular spectrum represen-
tations (4. 1) and (4. 4) of the incident a.nd the re-

ko

FIG. 1. Illustrating notation relating to refraction and
reflection of a plane wave incident from vacuum on a
spatially dispersive dielectric medium occupying the half-
space z & 0. The wave vectors f&, kr, and kr and also
the angles 8&', e& ', and er are, in general, complex, but
for the purpose of illustration all these quantities are in-
dicated as real. The figure represents the plane of inci-
dence.
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The consequences of these relations can be ex-
pressed in the form that is a natural generalization
of the results well known in connection with spatial-
ly nondispersive media, by introducing complex
angles of-refraction. Let k=u, v, so be any one of

the five wave vectors ko, k„,k',", k,' ', or k, and

let us introduce spherical polar coordinates k, 8,

y, with the polar axis in the direction of the z

axis, via the relations

u = k sin8coscp,

v = A sin8 sing,

(4. 22a)

(4. 22b)

u =k cos8. (4. 22c)

For all the five wave vectors the components u and
v are real. For the three wave vectors k,"', k,' ',
and k, the third component. , m, is in general com-
plex. From Eqs. (4. 22) we clearly have

k=(u +v +re )' {4.23a)

We choose that branch of the square root on the
right-hand side of Eq. (4. 23a) for which

ImA - 0 (4. 23b)

From Eqs. (4. 22a) and (4. 22b) it follows that u2

+ v = k sin 8 and, since u and v are real, so is
sin 8. Of the two roots of this equation we

choose the positive square root as defining sin8,
1. e. ,

2 2)1/2
sin8 = (4. 24)

In view of {4.23b), Im sin8 ~ 0. The cosine of the

(generally complex) angle 8 is given by Eq. (4. 22c).
Finally, from Eqs. (4. 22a) and (4. 22b) it follows,
if Eq. (4. 24) is also used, that the azimuthal a.ngle

y is given by

%xz
~

=-u sin8.

Hence it follows from (4. 20) that

k, sin8, = k,~' sin8& = ko sin80,

(4. 26)

(4. 27)

where, or course, the subscripts and superscripts
on the various symbols again labe1 quantities
associated with the appropriate waves. Further,
we also have from (4. 21), (4. 17), and (4. 22c) that
cos8„=—cos8;, so that

8„=&-8, . {4.28)

Let us now define complex refractive indices

u

~(1/2+1 2)1/2 ~ W +(1/2+1,2)1/2

(4. 25)
and these two relations give a unique real azimuthal
angle y, defined in the range 0 ~q &2p.

If x and y denote unit vectors in the positive x
andy directions, we have ~k&&z

~

= lvx —«y I

=+(1/ +1 )'/ or, using (4. 24),

n, 2,nd n,"' (j= 1, 2) for the longitudinal and trans-
verse plane waves forming the (u, 1;1u) mode in
the spatially dispersive medium, by the formulas

p(y)
n(i) t

A'
(j=1, 2) (4. 29)

In view of the inequality {4.23b) we have

Imn ~ 0 Imn" ' ~ 0 (4. 29a.)

If we use Eqs. (1.25) and {1.26) we may express
the three refractive indices in terms of the con-
stants characterizing the macroscopic properties
of the spatially dispersive medium. We then find
that

Bg = 60+ ~ + 2 + — Eo —~

»i= ~K ~ p2

{j=1,2), (4. 30)

(4. 31)

The frequency dependence of the three refractive
indices near the exciton transition frequency ~, is
illustrated for a typical case in Fig. 2.

Using Eqs. (4. 29), the relation (4. 27) may be
expressed in the form

&1, sin8, =n,"'sin8,"'=sin82 ( j = 1, 2). {4.32)

Moreover, on taking the scalar product of each
term in Eq s. {4.20) and (4. 21) with ko and on using
the well-known invariance property of a sca.lar
triple product under cyclic permutation of the
three vectors, it follows that

(kox z) ~ k, = (k2xz) k', '= 0 (j = 1, 2) {4.33)

(ko x z) k„=0. (4. 34)

Now ko&z is a vector perpendicula. r to the plane
containing the wave vector ko of the incident wave
and the normal to the boundary z = 0 of the medium;
i. e. , it is a vector perpendicular to the plane of
incidence. Hence Eqs. {4.33) and (4. 34) imply
that each of the four wave vectors k, , k,", k,' ',

and k„lies in the Plane of incidence. The relations
(4. 32), together with the fact that the propagation
vectors k, , k,", and k', ' lie in the plane of inci-
dence, show that each of the three refracted plane
waves generated inside the medium obeys the usual
Snell's lnie of refraction. The relation {4.28), to-
gether with the fact that the wave vector of the
reflected wave lies in the plane of incidence, shows
that the reflected wave obeys the usual law of
refl ecfion

Next we will obtain expressions for the vector
amplitudes A, , A,"', and A,' ' of the transmitted
(refracted) plane waves and for the vector ampli-
tude A„ofthe reflected wave. For this purpose
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we rewrite the mode-coupling condition (4. 12) in
the form

{4.35)

to it by suffix l. The choice of the positive direc-
tions for the parallel components is indicated in
Fig. 1. The perpendicular components are
at right angles to the plane of the figure.

where

(;& n,"' cosB,' '+ [(p /I& ) - sin 80]'
o t ( U&)z ~2/I a

n, cosB, +[(I& /ko) —sin 80]'~
n2 ~z/yR

, (4. 36a)

(4. 36b)

In writing down the expressions (4. 36) we made
use of Eqs. (4. 22c), (4. 24), and (4. 29). As in
usual treatments of refraction and reflection on a
spatially nondispersive medium, it is convenient
to consider separately the case when the electric
field of the incident wave is linearly polarized
either in the plane of incidence or at right angles
to it. It will be seen that in the former case the
electric field of the reflected and the transmitted
waves will also be linearly polarized in the plane
of incidence; in the latter case it will be linearly
polarized at right angles to this plane. This re-
sult implies that the case when the incident wave

has any other state of polarization may be treated
by decomposing its electric field into these two

states of polarization and applying our results
separately to each of the two "partial" waves.
From now on the components of the amplitude vec-
tors that are parallel to the plane of incidence,
will be denoted by suffix t] and those perpendicular

I

A. Incident wave linearly polarized at right angle to plane of
incidence [(Ao ){~

0

In this case we have (Ao)„=0 and we find from
the relations (4. 16) and (4. 19) that

(Aa). + (A,).= (A,"'). + (AI"). , (4. 37)

[{Ao),—{A„)]cos8 =(An' ),n&" cosB,"'

+ (At )gnt cos~t
(4. 36)

Further, a, ccording to Eq. (4. 6), A, is parallel
to k, . Now, we have already seen that k, lies in
the plane of incidence, and hence A, also lies in

the plane of incidence, so that

(A,),=0 . (4. 39)

On solving Eqs. (4. 37), (4. 36), and (4. 40) for the
perpendicular components of the three unknown

vector amplitudes, we obtain the results

Next, we take the perpendicular component of the
mode-coupling condition (4. 35) and use (4. 39).
This gives

o&
&'&(A&») ~ (& &»(A&») —(l (4. 40)

(A&' ' ' =2cos80 (n&'~&cosB&&~&+cos80)-
&~ » (nI' "cosB,' ''+cosBo)

AQ J. Qt (4. 41)

(A„), c&&&'(cosBO-n& 'cosBP') —o, P'(cosBo —n"' cos 8"')

(A ), n,"'(cos80+n,' 'cos8', ') —o&+'(cosBo+»', "cosB,'") (4. 42)

In addition, we also obtain for this case [(Ao)„=0],
from relations (4. 16), {4.19), and (4. 35) the fol-
lowing expressions for the parallel components:

(A,"')„=(A,"')„=(A, )„=(A,)„=0, (4. 43)

as expected.
We note that according to (4. 39) and one of the

relations in (4. 43) the vector amplitude of the
longitudinal wave A, = 0, implying that cohen the
incident suave is polarized at right angles to the
plane of incidence, no longitudinal breve is excited
in the spatially dispersive medium.

The parallel component of the mode-coupling con-
dition (4. 35) gives

~ (1 & (A& 1 &

) 8 (1 & + (2 &(A (2
&) 8 (2 &

t t ll t t t {{ t

&&&{A(1&) sjnB(1&+o(2&(A(2&) s&nB(2&

{4.46a)

[{Ao)„—(A„)„]cos Bo = (A',")„cos8',"+(A,' ')„cos8','

—(A, )„sinB&, &
(4. 44)

(Ao)„+(A„)„=n"'(A"')+nI '(A,' ')„.

B. Incident wave linearly polarized in the plane of incidence

[{X,) =0} + ol &(A&)ii cosB& = 0 (4. 46b)

We now have (Ao), = 0 and from the relations
(4. 16) and (4. 19) we find that

On solving the preceding four equations for the
parallel components of the four unknown vector

R6
amplitudes we find that
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Q) cos 8, —g@ &'
"=2cos8O nI" cosgo+ cosg& &3j& g &$ J&)

(n', 'cosgo+cosg, ')
(Ao)ii cos(8 —8

e" ' sin -1

o (8 &-8"&"

«&)„ tx& cos(8& —8'& ) &z& (2)= —2cosg&& sing, + &z&, (8&z&
'

&» (n, Cosgo+Cosg, ')
(A&&)„ s&n(8, —g, &

)

os(8& —8I ')
(&)

t t

(A„)„n,"'(n &&'& cosgo —cosgI") cos(8, —8',")—nI &(n &,
"cosgo —cosg,"')cos(8, —8,' ')+ L

(Ao)„aI"(nI"cos8O+cosg,"') cos(8, —8',")—n &'(n,"' cosgo+ cosg,"')cos(8, —8,' ')+L

(4. 48)

(4. 49)

where

(A,"'),= (AI'&), = (A&), = (A„),= 0. (4. 51)

The formulas (4. 41), (4. 42), and (4. 39) and the

Q) cos~o

In addition, we also obtain for this case[(A ),=0],
from the relations (4. 18), (4. 19), and (4. 35), the
results

I

formulas (4. 47)-(4. 49) are 7 generalizations fo a
spatially dispersive medium [characterized by a
dielectric response function of the form (2. 1)] of
the well-known Fresnel formulas for refraction and
reflection We w. ill now examine some of the
consequences of these formulas.

C. Normal incidence (00 =0)

Let us consider the special case when a linearly
polarized wave is incident normally on the half-

)I,
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20—

60 —~
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40—

30—

20—

10—

0 I
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0
I I ~-e

+ 0.005 + 0.0 I e

IO—

0 I

- 0.0 I
—0.005

I Cu- ae
+ 0005 +OOI

3.0—

2.5—

2.0—

I .5—
I.O—

0.5—
I

—0.005

(2)
Ren,

~-~e
+ O. OO5 + 0.0 I

O. I2—

O. IO—

0.08—

0.06—

0.04

0.02—
0 I

-0.0 I

I

-0.005
I

+ 0.005 + O.OI

F&G. p. &eal and imaginary parts of the refractive indices n&~', n~, and n& as functions of the ratio (~ —~,)/'~, near
the exciton transition frequency co =co&. for a spatially dispersive model medium of the kind considered throughout the main
part of this paper. Scu, =2. 553 eV (i~8=3. 875&& 10' pec '); Sl =5&& 10 eV, 47('n =0.0125, m~ =0.9m, (m~=9. 109x10 ' kg
is the electron mass) &p=8.



1460 G. S. AGARWA L, D. N. PATTANA YAK, AND E. WOLF 10

e,"'=0, e, =o, 6„=~,
and Eqs. (4. 36a) and (4. 36b) reduce to

(i) 1
n',"—p/0, '

1
&)==n( —

) /ao

(4. 52)

(4. 53a)

(4. 53b)

The formulas (4. 39) and (4. 41)-(4.43) for the am-
plitude components may then readily be shown to be
expressible in the form (if we recall that we have
chosen the direction of polarization of the incident
wave as the x direction)

rA&&~s( t )x 2 &()) P (s0) &(3 f))(&y +-1}-1
'(4. 54)

(A,)„=0, (4. 55}

and

"'" =(1 —n~)(1+n~} ',(A 3

(Ao}„
(4. 56)

space. Without loss of generality we may choose
the x direction to coincide with the direction of
polarization of the incident wave. Now, in the de-
generate case of normal incidence the concept of
the plane of incidence loses its meaning. However,
we may readily derive the appropriate formulas by
taking the limit 60-0 in the expressions for the
general case. It will be convenient to proceed to
the limit of the formulas for the case when the in-
cident wave is polarized at right angles to the plane
of incidence.

In the limit as 80-0, we have, from Eqs. (4. 32)
and (4. 28), assuming that n', ' and n, are both dif-
ferent from zero,

D. Numerical results

We will now present a number of curves, com-
puted from the above formulas, which show the be-
havior of the reflected and refracted waves. All
the curves refer to a model medium whose param-
eters have the values given in the caption to Fig.
2.

Figure 3 shows the behavior of the amplitude
ratios" l(A„)„/(Ao)„land l(A„),/(Ao), I as functions
of the angle of incidence 80, for the special case
when the frequency of the incident wave is equal to
the exciton transition frequency (d, . Figure 4
show s the behavior of the corresponding ratios for
the transmitted waves.

Figure 5 shows the behavior of the reflection
coefficient R, = I (A, ), /(Ao), I as a function of the
angle of incidence 60 at different frequencies (d, in
the neighborhood of the exciton transition frequency
(d„andFig. 6 shows the behavior of A, as a function
of the frequency (d for several values of the angle
of incidence (90. In Figs. 7 and 8 the corresponding
curves for the reflection coefficient R~ l(A ) ~/
(Ao)„I are given. The curves labeled by 6(() = 3. 13
x10 sec ' in Figs. 5(b) and 7(b), which exhibit
somewhat anomalous behavior, correspond to the
longitudinal frequency" (d = ~, = 3. 87902 && 10" sec '.
The pronounced minima in Figs. 6 and 8 are seen
to appear very close to this frequency also. The
sets of curves representing R, and R, I

are seen to
differ considerably from each other. The differ-
ence is, of course, to some extent connected with
the fact, established earlier in this section, that
when the incident field is linearly polarized paral-
lel to the plane of incidence, a longitudinal wave is
generated in the medium (except at normal inci-
dence), whereas no such wave is generated when it
is linearly polarized at right angles to this plane.
In particular, it should be noted that most of the

(A',J'), = (A, ), = (A „)y——0,

where

(4. 57)

(4. 58)

Equations (4. 55} and (4. 57) show that, with normal
incidence, no longitudinal wave is excited in the
medium. Equations (4. 56) and (4. 57) imply that
the reflection coefficient 8 for normal incidence is

0.8—

(A„)„1—n*

(Ao), 1+n* (4. 59)
04—

Equation (4. 59) is formally identical with the
formula for the reflection coefficient at normal in-
cidence from an ordinary (i. e. , spatially nondis-
persive} medium of refractive index n*. Thus in
the present problem we may regard n~, defined by
Eq. (4. 58) together with Eqs. (4. 30), as playing
the role of an "effective" refractive index.

( l I I l ( 3 I I =800 lO 20 30 40' 50' 60 70' 80' 90

FIG. 3. Normalized amplitude of the reflected wave
as a function of the angle of incidence 60, when the fre-
quency co of the incident wave coincides with the exciton
transition frequency ~~,. (Calculated with the same values
of the parameters as given in the caption to Fig. 2. )
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O. I6-
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0. IO

0.08
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I'IG. 4. Normalized
amplitude of the transmitted
waves as a function of the
angle of incidence 00, when
the frequency ~ of the in-
cident wave coincides v ith
the exciton transition fre-
quency &e. {Calculated
with the same values of the
parameters as given in the
caption to Fig. 2. )
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which, in our terminology, implies the "mode-
coupling condition"

2

Q P(i)A(i) + P A 0 (4. 61)

with

p(A [(n(J))R 2yy2]-)

P) = [n) —
I

'&1 o]'.
(4. 62a}

{4.62b}

The condition (4. 61} replaces, in the theory of
Pekar, our mode-coupling condition (4. 35} and his
formulas for the amplitudes of the reflected and the
transmitted waves follow from our Eqs. (4. 39),
(4.41), and(4. 42) andfromEqs. (4.47)-(4. 50) sim-

curves in Fig. 8, for R, as functions of frequency,
exhibit subsidary maxima and minima near the
longitudinal frequency v, .

In Fig. 9 the behavior of the reflection coeffi-
cients R and R, . as functions of the angle of inci-
dence Ho, is shown for an electromagnetic wave at
the longitudinal frequency &,.

We conclude this section with a brief comparison
of some of our results with those of Pekar. '"'Al-
though Pekar also derived the laws of refraction
[Eqs. (4. 27}]his expressions for the amplitudes of

the transmitted and reflected waves differ from
ours. In Pekar's theory the nonlocal polarization
is assumed to obey the boundary condition

(4. 60)

ply by letting

o(J) p()) p (4. 63)

In the special case of normal incidence, the re-
flectivity R~, calculated from Pekar's theory, is
given by the formula

1-n,* '
1+n,*

where

pg') (n(1)n(R) + e )(n(1) +y((2)}-1 {4.65}

We see that the expression (4. 64) for ref lectivity
at normal incidence, calculated from Pekar's theo-
ry, " is of the same form as that calculated from
our theory [Eq. (4. 59)], but the "effective refrac-
tive indices" n* are different in the two cases,
being given by Eq. (4. 65) in Pekar's theory and by
Eq. (4. 58) in ours. '~

In Fig. 10 we present ref lectivity curves at reso-
nance, (i. e. , for (d = (d, }, calculated for a. typical
case from the two theories. It is seen that although
the two theories predict the same general behavior
of the curves, there are appreciable differences,
of the order of 25%, in the predicted ref lectivity
values at small angles of incidence.

V. MODE-COUPLING CONDITIONS. ADDITIONAL
BOUNDARY CONDITIONS, EXTINCTION

THEOREM, AND GENERALIZATIONS

In Sec. III we obtained certain mode-coupling
conditions [Eqs. (3.25) and (3.26)], which relate
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I.O I.O—

0.9 Q9~

0.7 = 07—
0.6 0.6—

0.5

0.4

0.3-
g

0.2—

O. I—
I I I I I I I I I

0 10' 20' 30' 40' 50O 6QO 70 80' 90

0.3—

O. I—

0 IO 20 30 40 50' 80' 70 80 90

FIG. 5. Beflection coefficient R~ as a function of the angle of incidence 6o at selected frequencies below I {a)] and above
f{b)] the exciton transition frequency ~~&. The curves are labeled by the frequency difference A~ =~ —~,. {Calculated
with the same values of the parameters as given in the caption. to Fig. 2. )

4 ~ w 2k ]p .-
PNL(r m' u v}= ~ —eoA&e

&o

2

~ A~e ~P.r
4m~ (5. 3)

all the plane waves that form a particular mode of
the electromagnetic field inside the spatially dis-
persive slab. In Sec. IV we used these conditions
to derive the solution of the problem of refraction
and reflection on a spatially dispersive half-space.
As mentioned in the Introduction this problem has
in the past been generally treated with the help of
so-called "additional boundary conditions" (abc' s),
suggested by various physical models relating to
the behavior of excitons in the medium. The abc' s
are usually expressed in terms of the exciton part
of the polarization which, in our terminology, is
the nonlocal polarization [cf. Eqs. (2. 7b} and(2. 5)]:

PNz(r, u) =(1/4s)[D(r, &u) —eoE(r, &o)]. (5. 1}

We will now show that our mode-coupling conditions
imply a precise form of the boundary conditions on
the nonlocal polarization.

We express the E and D vectors in (5. 1) in terms
of their respective mode expansions (3.27), (3.28),
and (3.33), (3.35} and obtain the following mode ex-
pansion for P„Lvalid at each point r insidethe slab:

P„L(r,(u)= ff a'„„(r,&u; u, v)dudv, (5. 2)

where

Now, we readily find from the dispersion relations
(1.26) and (1.25), if we recall that k& and k,'. corre-
spond to k, and k„respectively,

X
~0 ~ I2 2

kg —p,

X

J

Now, according to (3.24) and (3.4)
~2 2 2 2 ~I2,I2, 2k ~ = Q)g —zU @+ p. , ky = &'y —~' ~+ p

(5.4)

(5. 5)

(5. 6)

so that Eqs. (5. 4) and (5. 5) may be written as

X
I2 2 ~

SU J —K'i
(5. 7}

(5. 8)

(PNz(r, ~; u, v)= —M z z A, e' &'
4&

~ g 14g —EU~

4&
~ j 28g —M'~

Now the vector amplitudes Az and A~ entering in
(5.9) are not independent, but are related by the
two mode-coupling conditions (3. 25) and (3.26).
On using these conditions one readily finds that on

Using (5. 7) and (5. 8), the (u, ~ ) mode (5.3) of the
nonlocal polarization at frequency e may be repre-
sented in the form
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FIG. 6. Reflection coef-
ficient R~ as a function of
the frequency a for selected
values of the angle of in-
cidence 60. I',Calculated
with the same values of
the parameters as given in
the caption to Fig. 2. )
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the boundaries of the slab O'„Land its normal de-
rivatives must necessarily be related by the follow-
ing two constraints:

1 8(PN„(r, u; u, v)
(PNL(r, v; u, v)+. "" ' ' ' =0,

ZK~ eZ Z=0

(5. 10a)

(
1 9(P„~(r,u; u, v)

(PNL(r, (d; M, 5) —.
ZQ&~ 8Z z= if

(5. 10b)
The relations (5. 10) are homogeneous boundary
conditions that each (u, v, a) mode of the nonlocat
potarization must satisfy on the two faces of the
slab. We stress that these boundary conditions
were obtained as a direct consequence of our anal-
ysis regarding the nature of the electromagnetic
field in a spatially dispersive medium and are
therefore not additional postulates.

It should be noted that since, according to Eqs.
(3.4) and (1.24),

w~ —(/I —u —v }= ((d —(de + z(dZ e) —1P —v2 2 2 2 me 2 2 '
P 2

(5. 11)
the proportionality factor in (5. 10) relating P„~to
its normal derivative on each of the faces of the
slab is frequency dependent.

The boundary conditions (5. 10) apply individually

to each (u, v, w) mode of the nonlocal polarization.
From them one may readily derive boundary condi-
tions on the total nonlocal polarization P„„(r,w).
This calculation is carried out in. Appendix C and
leads to the following result.

At each point r within the slab the nonlocal po-
larization P„~(r,~) must satisfy the relations

r
SG,(lr -r' I)P„(r',&u)

aZ

f

G(~, , ~)
-(' ") d. d =0

Z e'=0
(5. 12a)

d

l BG (Ir —r'I)
azPN r.(r

/

G,(~r -r'~) "" ' dx'dy'=0
BZ Z'-d

(5. 12b}
The conditions (5. 12a) and (5. 12b) each have the
form of a nonlocal boundary condition, which to
some extent resembles the Ewald-Oseen extinction
theorem of molecular optics (Ref. 28, pp. 100-
104). For this reason, following Sein~6'"''b' we
will refer to Eqs. (5. 12) as extinction theorems
for nonlocal polarization.

We will now establish several generalizations of
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these extinction theorems. First, we will derive an
extinction theorem appropriate to a spatially dis-
persive medium, whose constitutive relation is
again given by (2. 8), but which now occupies a
domain V, bounded by any closed surface Z. For
this purpose we note that the nonlocal polarization
which, according to (5. 1) and (2. 8), is now given by

~"), )=„".* JG.)ll — 'll)E) ', )~"'
(5. 13)

satisfies the differential equation

l

eG�„(
I r —r '

I )
PNL(r

C en

G )l.- . l)
'"'"' "))ss-o

an (5. 1V)

where &/Sn denotes differentiation along the out-
ward normal to Z. It is clear that (5. 16) is con-
sistent with the expression (5. 13) (that follows
from our assumed constitutive relation) only if at
each point r inside V

(V'+ u')Ps, (r, ~) = — —E(r, ~). (5. 14)

Now, the Green's function G, (i r —r'I), defined by

(2. 4}, is the outgoing solution of the equation

('7 + p, )G,(~r —r' ~)= —4e5(r —r'). (5. 15)

where 5 is the Dirac 5 function. From (5. 14) and

(5. 15) it follows in customary manner, with the
help of Green's theorem, that for any point r inside
the medium

P„„(r,v)= z G, (~r —r'~}E(r', &u) dr'
(4&)' v

1 - -, BG (Ir —r'I)
Pn L(r, &d)

7T an
~ I

G„)l, , l)
'"" ')~s

(5. 16)

This formula, which is clearly a generalization of
Eqs. (5. 12), represents the extinction theorem for
nonlocal polarization in a spatially dispersive
medium whose constitutive relation is given by
(2. 8). We have now derived it solely from require-
ments of consistency.

The argument that led to (5. 17) may be readily
applied to obtain an analogous extinction theorem
for any medium for which the constitutive relation
is of the general form

D(r, w) =eoE(r, ~)+ f„e,(r —r; u&)E(r', ~) d r',

(5. 18)

where the "nonlocal part" E~ of the dielectric con-
stant is the outgoing Green's function of some lin-

R„

I.O-

Q9—

0.8—

0.7—

I.O

0.9

0.8

Q.7

0.6

0.5 0.5

0.4 0.4

0.3

0.2 0.2

0. I

I I I I =e,
IQ 20 30 40 504 604 704 804 904

{a)

O. I

I g
0 IO 20 304 404 504 604 704 804 90

{b}
FIG. 7. Reflection coefficient R„asa function of the angle of incidence 80 at selected frequencies below f(a)] and

above [(b)] the exciton transition frequency co,. The curves are labeled by the frequency difference h~ =~ —~~. (Calcu-
lated with the same values of the parameters as given in the caption to Fig. 2. )
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ear differential operator Z, i.e. , the outgoing
solution of the differential equation

Z e,(r —r '; cu) = —4v5 (r —r '), (5. 19)

Z being assumed to operate on the coordinates of r.
In this case the nonlocal part

P„~(r,u) = j e,(r —r '; w) E(r ', u) d'I' ' (5.20)

of the polarization evidently satisfies the differen-
tial equation

ZP„~(r, ~) = —E(r, ~) . (5.21)

From (5. 19) and (5. 21) one readiiy finds that

)=—J&( — '; )E( ', id' '

V

1
+— [e,(r —r', (u)Z'P„~(r', cu)

—P„L(r',(u) Z 'e, (r —r', ~)]d'r',
(5. 22)

where the prime on 2' indicates that the operator
now acts on the coordinates of r ' and the integra-
tion extends over the volume V occupied by the
spatially dispersive medium. Now the second vol-
ume integral appearing on the right-hand side of
(5.22) may be converted into a surface integral

with the help of Green's theorem, generalized to
the case of an arbitrary linear differential opera-
tor, "
l, [@(r') &'4'(r ') —4'(r ') &'4'(r ')] ~'~'

= f n Cf@(r'); +(r')jdS. (5. 23)

Here, nis the unit outward normal to the surface 5
bounding the volume V and C is the bilinear con-
comitant associated with the operator 2 and is de-
fined by the relation

424 —42"4 = v C (4, +j, (5.24)

is the operator adjoint to Z and C'(r) and 4'(r)
are arbitrary functions. On making use of (5.23)
in (5. 22), we see that each Cartesian component of
P„„(r,e) may be expressed in the form

[I„„(r,~}],

e, r —r'; (d}E,.(r', (d d'x'

+— n ~ C {e,(r —r', e); [P„~(r', ~)],jdS,
(5.25)

where the subscript j labels Cartesian components.
Evidently (5. 25) is consistent with (5. 20) only if a"
each point inside V
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FIG. H. Reflection coef-
ficient RII as a function of
the frequency ~ for se-
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lated ~vith the same values
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f n C(e,(r —r', ur); [P»(r', (d)]& jdS=0.
(5.26)

The formula (5.26} may be considered to be the
extinction theorem38 for nonlocal polarization in a
spatially dispersive medium sohose constitutive
relation is of the form (5. 18) (with e, being the out
going solution of (5. 19).

It is clear from our analysis that electrodynam-
ics in a spatially dispersive medium of the general
class that we just considered is, for each frequency
(d, completely specified by

i. Electrodynarnie equations

~ x (V x E) tro D = 0

H=B= —. V&E.
iko

I)

I 0—
0.9—
0 8—
0.7—
06—
0.5 =
04—
03—
0.2—
0 I—

I I I I I I I I I

20' 30' 40' 50' 60' 70' 80' 90'

FIG. 10. Comparison of the reflection coefficients at
the exciton transition frequency (d = ~, as functions of the
angle of incidence 8o, calculated from the present theory
(solid lines) and from Pekar's theory |'suffix P, dashed
lines). (Calculated with the same values of the parame-
ters as given in the caption to Fig. 2. )

2. Constitutive relation

V + ]LI, (5.27)

JI

I 0—
09—
0.8—
0.7—
0.6—
0.5—
04—
0.3—
0.2—
O. I—

I I I I I I

IO' 20' 304 40' 50' 60' 70 804 90'

FIG. 9. Reflection coefficients R„and R~ as functions
of the angle of incidence 80 for an electromagnetic wave
at the longitudinal frequency a = g& -3.879&& 10' sec '.
(Calculated with the same values of the parameters as
given in the caption to Fig. 2. )

D = &OE + 4WPNL,

where PNL is the solution of the equation

~PNL

subject to the extinction theorem (5.26).

3. Boundary conditions

Usual "continuity" conditions on appropriate
components of the electromagnetic field vectors at
a surface of discontinuity.

It may be worth noting that the extinction theorem
(5. 26) involves the 2 operator, which itself depends
on the response properties of the medium.

Throughout the main part of this paper we have
been concerned with a medium for which [as the
comparison of (5.21) with (5. 14) shows] the Z op-
erator is of the form

and the nonlocal part of the dielectric constant is

(5. 28)

as is seen by comparing (5. 18) with (2. 5). Now,
the operator (5.27) is self-adjoint (Z"=2) and the
bilinear concomitant C defined by (5.24} is in this
case readily seen to be

(5.29)

If we substitute from (5.29) and (5. 28) into the ex-
tinction theorem (5.26), it indeed reduces to
(5. 17).

Another case of considerable interest, which
may be treated by our method, is that character-
ized by an Z operator of the form

2 = 4 II—(v + i(,„).
n=g &n

(5.30)

92
z + hj)eo E(z, (()) = —4wPNL(z, (()}, (5. 31)

where

This situation arises when several exciton bands
are present or when in (l. 21), instead of ignoring
the k dependence of the damping function I'(k), one
approximates it by the same kind of resonance
form as the dielectric constant itself. We will not
consider this case here. "

Experiments involving spatial dispersion are fre-
quently carried out at normal incidence. If the
scalar dielectric constant has the form (l. 23}, as-
sumed throughout the main part of this paper, and
if the incidence is normal, then according to Sec.
IV only the mode u= v = 0 is generated inside the
slab and, moreover, itsglane-wave constituents
are all transverse (A', =A& —-0). Equation (3. 5) then
reduces to (if we omit the caret on E)
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ixu', "e' ~~ "'-
P„„(z,( ) = '

J
E(z', (d) dz'.

(5. 32)
In this case the mode-coupling conditions (3. 25)
and (3. 26) become [since according to (3. 4) we now

have &(.i, = p, ]
4

A, g A&e'"&'
{5.33)

y K~ —P, ~ y ZUJ+P,

and imply the boundary conditions

The required solutions of (5.41) are readily found
to be

"(~) 4vi ~ (y) I(z —z, (d) = &,& &,&
exp(ivo (z —z

~
}V2' —V1

when z &z'

41TE , (~)„,exp( —'(&(
I

z
V2' —Vl

when z& z', (5.42}

(p ( )
PNL(z~ +) 0

SP, ~z

(5.34a)

(5. 34b)
(&((:&)2 + o &(+& 22m

@2 {5.43)

where v'," and v2" are the roots of the equation

We may readily apply our method to determine
the appropriate boundary conditions for the non-
local polarization. For this purpose we first re-
write (5.36) in the form

&'PN'L&(z, (d) = —E(z, o&), (5.37)

where

as is evident from Eqs. (5. 10)
Finally, we briefly consider another case, which

has been studied in detail by Mahan and Hopfield. "
They considered the effects due to contributions to
the dielectric constant that are linear in the wave
vector, as is the case for crystals which do not
possess inversion symmetry. In this case there
is a splitting of the exciton band and the total non-
local polarization is given by

P„L(z,(d) =P„'„'(z,(d)+P&~&(z, (d), (5. 35)

where P„'„'(z,(d) and P„'„'(z,(o} satisfy differential
equations of the form

a 2 i 8 [(i. i'-~'(oi. ; r, ()m«(0)p'" sz' ff' sz "
«(0) If'

&(p„"L(z,(d) = —E(z, &d) . (5. 36)

with

Imv', "& 0, Imv2" &0. (5. 44)

The bilinear concomitant associated with the op-
erators Z' may be shown to be

/

, ~i',"(*-~, i)NL(z y ~J
z

P„L(z' (o)«I' (z z (o)1 =0 (5.46}
J .=o

and must be valid for all values of z-0. On sub-
stituting for i,"and e', ' the explicit expressions
(5. 42) and letting z-0 we find that

(
p(,&( )

1 BPN(. (z, (d)
()

'L l8 z z=o
(5. 47)

(5.45)
With this form of the concomitant, the extinction
theorem (5. 26) for the half-space (z &0) occupied
by the spatially dispersive medium reduces to

(»
)

(k&1 I a PNL(z

with

4m 8 . 2m@
(+) 2 +~ @2 +I +Sz 5 Qz

(5. aS)
where

~(a) (&) ~N =P, +
@2 (5. 48)

«&(z, ( }=«, (z, (d)+«I '(z, o&), {5.40)

where &~' and 6y are the outgoing solutions of the
differential equations

2'«&&" (z —z ', (o) = —4&(5(z —z ') . (5.41)

y&" =—
2 m«(0)p"', p, , =

( go [(@(d) —«(0)+i(oi
(5. 39)

It is to be understood that each of the equations
stands for two equations —one with the upper signs,
the other with the lower signs.

According to Eqs. (5.35), (5. 37), and (5. 19), the
"nonlocal" part of the dielectric constant E, for
this medium is given by

Thus, the consistency of electrodynamics in a half—
space occupied by the spatially dispersive medium
under consideration demands that the two parts
P„'Land P„'„'of the nonlocal polarization obey the
boundary conditions (5.47). These conditions differ
from the abc's P„"~&(0,(o) = 0 of Mahan and Hopfield,
but whether or not this difference is of practical
significance in particular cases cannot be decided
without numerical analysis.

VI. COMPARISON WITH OTHER THEORIES

Many other theories have been proposed relating
to the nature of electromagnetic fields in spatially
dispersive media. . In this concluding section we
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will briefly compare some of the main features and
results of our theory with those proposed by other
authors.

Roughly speaking, the various theories may be
divided into two groups.

A. Microscopic theories

These theories go beyond Maxwell's electro-
magnetic theory in that they involve microscopic
models for the response of the medium to electro-
magnetic and mechanical excitations. To this
group belong the pioneering investigations of
Pekar and those of Ginzburg and Agranovich, ""'
Hopfield and Thomas, " Sugakov, ' and Brenig,
Zeyher, and Birman.

B. Macroscopic theories

To this group belong theories in which the col-
lective response of the medium is described phenom-
enological1. y by a response function that is a
natural generalization of that for an ordinary (i. e. ,
spatially nondispersive) medium. This group in-
cludes the theory presented in this paper and those
of Ginzburg and Agranovich, Sein, ' Birman and
Sein, 7 and Maradudin and Mills. "

Basically the different theories differ from each
other in the form of the "additional boundary con-
ditions" that they prescribe. However, even theo-
ries which prescribe the same abc's differ from
each other in some aspects, especially in the na-
ture of various assumptions which they contain.
We will discuss some of these differences shortly.
Most of the theories, whether microscopic or
macroscopic, lead to abc's for the nonlocal po-
larization P„Lof the form

p ( ) A NL( ~ ) 0 (6. 1)an

to be satisfied at each point r on the surface g
(usually assumed to be a plane) bounding the spa-
tially dispersive medium. s/su denotes differen-
tiation along the outward normal to 5 and A is a
parameter which, in general, depends on the par-
ticular theory. %'e have already pointed out at the
end of Sec. IV in connection with the calculation
of the reflectivity that the abc of Pekar's theory is
PNL(r, u) I, 0 ——0 [Eq. (4. 60)] when r is on the bound-
ary surf ace p, so that for Pekar's theory A =—0.
Under certain circumstances this special choice
of A is also supported by considerations of Hopfield
and Thomas and others, based on nonrigorous
microscopic arguments as to the expected behav-
ior of the exciton wave function at the boundary Z.
However, it seems to us doubtful —if, in fact it is
at all possible, even in principle —that one may
draw any conclusions about boundary conditions
for the electromagnetic field from the behavior of
the exciton wave function on the boundary. If A

A 40 the knowledge of the dependence of A on the
frequency is of importance, since this information
is required for determining optical constants of the
spatially dispersive medium from ref lectivity mea-
surements. Agranovich and Ginzburg considered
this question to some extent. Their results imply
that ~ is effectively independent of the frequency
(cf. Sec. 10.4 of Ref. 5). (See, however, a recent
paper by Agranovich and Yudson. ) This question
was also considered by Sugakov, '" but it is diffi-
cult to interpret Sugakov's results (based on a
microscopic model) in terms of the parameters
of the macroscopic theory.

According to our theory, the boundary condition
on the nonlocal polarization is not of the simple
"local" form (6. 1), but is a nonlocal condition, ex-
pressed by the extinction theorem (5. 17), viz. ,

(6. 2)

which must be satisfied at every point r inside the
spatially dispersive medium. For the special case
when the medium occupies the slab 0» z» d, we
have seen that (6. 2) is a consequence of the fact
that each (u, v; &u) mode in the slab obeys (local)
boundary conditions of the form [Eq. (5. 10)]

( )
1 (PsN( Lr&dl; u, , V)

( 8)
$14~ ~

for all points r situated on the faces of the slab,
with w being given by Eq. (5. 11), viz. ,

N& ~ = [P ((d ) —1P —V ] (6. 4a)
1/2

e 2 2

A {de
((d —(d +?(dl ) —u —V

2 2
e f (6. 4b)

1A= ——
SK~

(6. 5)

u being given by (6.4b). We stress that we have
established this result as a rigorous consequence
of Maxwell's electromagnetic theory alone, for a
spatially dispersive medium whose constitutive
relation has the form (2. 8).

The present theory has much in common with the
theories of Sein, ' Birman and Sein, 7 and Maradu-
din and Mills. '5 In these investigations the same
form of the constitutive relation is assumed as in
our analysis. We will now briefly compare and
contrast these theories with ours.

with Reu~ &0, Imu &0 [cf. (3.4b)]. We see then
that in the special case when the spatially disper-
sive medium occupies a slab (or in the limit as
d-~ a half-space) the nonlocal polarization of each
(u, L, &u) mode (not the nonlocal polarization itself)
satisfies a boundary condition of the form (6.1), with
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Sein~ and Birman and Sein~v take as their start-
ing point a well-known integro-differential relation
of molecular optics that couples the electric field
with the induced polarization in an arbitrary medi-
um. When the electric field is eliminated from
this equation by the use of the dielectric constitu-
tive relation, one obtains an integro-differential
equation for the polarization field. To solve this
equation Sein and Birman assumed that, irrespec-
tive of the exact shape of the spatially dispersive
medium and irrespective of the exact nature of the
incident monochromatic field, the polarization field
may be expressed as the sum of plane waves, each
propagating with a different velocity. The con-
sistency of the solution of the integro-differential
equation in this assumed form then leads to a set
of relations involving the vector amplitudes and the
wave vectors of the different plane waves. In this
way Sein and Birman were led to a unique solution
for the field inside the spatially dispersive medi-
urn, without introducing any additional boundary
conditions. This approach clearly provides same
insight into the structure of the field in the spatially
dispersive medium, in the special circumstance
when the plane-wave assur. option is justified. That
this is so in the special case when the medium
occupies a plane parallel slab or a half-space has
been demonstrated in the present paper (Sec. HI).
However, the plane-wave assum. ption appears not
to be justified in general.

The other recently formulated macroscopic theo-
ry, that of Maradudin and Mills, ' is intimately
related to that presented in this paper. Maradudin
and Mills base their analysis on the differential
form of Maxwell equations, just as we do, and con-
sider the interaction of a linearly polarized plane
wave, with a spatially dispersive medium, that oc-
cupies the half-space z &0. They take the electric
field generated inside the medium to be of the form
Itheir equation (3a)]

E(r, f) =E(z)e""*e '"' (6 6)

(with similar expressionsfor the electric displace-
ment vector and the magnetic field), the plane of in-
cidence being taken as the xz plane. By substituting
these expressions into Maxwell equations they are
led to an integro-differential equation for E(z).
Maradudin and Mills found that the solution of the
equation is of the form

E(z) = E,e"~'+Eze"2' (6. 7a)

E(z) =E,e"('+E,e"2'+E',e"3', (6. 7b)

when the incident electric field is linearly polarized
parallel to the plane of incidence. The quantities

when the incident electric field is linearly polarized
at right angles to the plane of incidence and is of
the form

q„q'„etc., in Eqs. (6. 7) were found to be given
by the usual dispersion relations. Moreover,
Maradudin and Mills showed that in Eq. (6. 7a) the
two vector amplitudes E, and E2 are associated
with transverse waves, that in Eq. (6. Vb} two of
the vector amplitudes are associated with trans-
verse waves and one with a longitudinal wave, and
that in each of the two cases the vector amplitudes
are connected by a certain linear relation.

These results are in agreement with the solution
that we presented in Sec. IV for refraction and re-
flection. (A discrepancy, probably due to an error
in algebra, , is noted in footnote 27. ) The dif-
ference between the two treatments is that,
while Maradudin and Mills assumed that the
fields in the medium may be represented in the
form (6. 6), we showed as a consequence of the gen-
eral mode representation obtained in Sec. III of the
present paper that the fields in the medium must
necessarily be of this form. For, as we dexnon-
strated in Sec. IV when a. monochromatic plane
wave is incident on the spatially dispersive medium
occupying a half-space, a single (n, v, v) mode is
excited in the medium. According to Eq. (4. 6) the
electric field of such a mode is of the form (sup-
pressing the periodic term e '"')

~($) .„(2)
$(r, !d; M, v) =A& (u, v ~i')e t +A& (n, v; cu) e

+A, (u, v; ~)e "& '. (6. 8)

On substituting into Eq. (6. 8) the expressions
(4. 9) and (4. 10) for the wave vectors. (6. 8) may be
rewritten in the form

$(r, e; u, v)=$(z)e' (6. 9)

with

$(z) =AI"(n, v; ( )e'"& '+AI"(u, ~; ~) e'"&

+A(u, v; a)e' (6. 10)

The quantities n~,"', n:,"', and u), are given by the
dispersion relations and the vector amplitudes
A', ", A', ', and A, are related by the mode-coupling
condition. Moreover, as we showed in Sec. IV,
A, = 0 when the incident electric field is linearly
polarized at right angles to the plane of incidence.
If the plane of incidence is taken to be the xz plane
as Maradudin and Mills have dane, the second pa-
rameter which labels the mode, i.e. , the param-
eter v, has then the value zero and the electric
field mode (6. 9} then reduces ta the form (6.6} as-
sumed by Maradudin and Mills. Detailed compari-
son shows that the electric field mode (6. 9} is
identical with the solution of Maradudin and Mills.

As regards the electromagnetic field within the
spatially dispersive medium, our analysis goes
well beyond that of Maradudin and Mills in that we
determined, without any assumptions whatsoever,
the general mode structure of the electromagnetic
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%e substitute

K =A~(u, v, &u)e' &' (Al)

in Eq. (3.8) and find that the left-hand side becomes

K,(u, v, uq, (u)Aq(u, v; cu)e' &', (A2)

where Ã, is defined by Eq. (3.17}. To determine
the right-hand side of Eq. (3.8) we first evaluate
the quantities („and L, defined by Eq. (3.6). We
find that when f is given by (Al)

5 = i(k ~ A ~)e' &',

L = —(R q A~)k qe' &',

(A3)

(A4)

where
IKy=Q, V, Ky. (A5)

On substituting from (A2) and (A4) in (3, 8) we find
that

Ã, (u, v, xv~; &u)A~=(wz —u„)(k~~ A~)R~. (A6)

field in the spatially dispersive model medium oc-
cupying a plane parallel slab. On the other hand,
Maradudin and Mills include in their paper a very
thorough and elegant application of their analysis
to the theory of surface waves, a subject not con-
sidered in the present paper.

We conclude by stressing that the macroscopic
theories of Birman and Sein and Maradudin and
Mills and our own lead —with different degrees of
rigor —to the same basic conclusion: Namely, that
within the framework of a macroscopic treatment
the problem of refraction and reflection on a spa-
tially dispersive medium occupying a half-space
(or a plane parallel slab) can be solved completely
within the framework of classical electromagnetic
theory, without requiring the introduction of any
additional boundary conditions.
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APPENDIX A: DERIVATION OF EQUATIONS {3.21)-{3.23)

It is clear from Eq. (3. 19) that in order to de-
termine the constraints on the amplitude vectors
A&, 8&, and A,'., we may consider separately solu-
tions of the form

(A~+ zB~)e' s' and Aye' s',
since each of these two solutions is associated with
a different propagation vector, namely (u, v, ur~)

and (u, v, ru&), respectively. We consider first the
wave characterized by the second wave vector.

A. Longitudinality condition {3.22)

If we substitute for 3R,(u, v, ut&, |d) from (3. 17) and

make use of the dispersion relation (3.20b), (A6}
is readily seen to imply that

-k A =-—(k 'A )k. .
0 0 0

If we multiply (A7) vectorially by k,' and use the
fact that y 40 and yizoek, ', as is clear from the
dispersion relation (3.20b), we deduce that

k~xA~=0

(A7)

(A8)

which is the longitudinality condition (3.22).

B. Transversality condition {3.21) and vanishing of the Bj
coefficients

Next, we consider solutions of the form

E =[A&(u, v; ur)+zB&(u, v; ru)]e' &'. (A9)

On substituting from (A9} in Eq. (3.8) and making
use of the dispersion relation (3.20a) we find that
the left-hand side of (3.8}becomes

2$Blg[(kozo —tP —v + so~) —2'~]Bie

The quantities $ and L, defined by Eq. (3. 6), are
now readily found to be given by

$ = [i(kj ~ A, ) + iz(kq ~ B;)+ B,g]e™&',(A11

L=1 —(k) 'A~)k~+[ —(k~ B))z+iB;,]k;

+ i(k, ~ B;)z )e' &

(A10)

(A12)

Now, one may readily deduce from the dispersion
relation (3. 20a) that k~ e 0. Hence, (A14) implies
that

k; 'B~ —-0.
On making use of (A15), (A13) simplifies to

2igvy[(kozo —u —v + w ) —2&J]Bq = (u' —w )

x[iB, (k,. A,.)]k, .

(A15)

(A16)

On taking the scalar product of (A16) with k; and
making use of (A15), we find that

(w„—wz)[iBJ, —(k,. ~ A,.)]k z
——0 . (A17)

where 8; denotes the z component of the vector
B~ and z denotes the unit vector in the positive z
direction. On substituting from (A10) and (A12)
into Eq. (3.8) we obtain the relation

2czoy[(k()zo —u —v + 1U~) —2']By
= (u', —wq)([iB~, —(k~ ~ B~)z —(k~ ~ A~)] kg

Jh

+ i(ki B~)z) —2ite;(tzj B~)k J (A13)

Equation (A13) must hold for all values of z ~ 0.
This can only be so if the terms dependent on z and
the terms independent of z vanish separately. The
vanishing of the term depending on z gives at once

(k; Bq)kq ——0. (A14)
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On using this result in (A16) it follows that

!!.",[(kzeo —iP —!J + u,'„)—2n';]8& = 0. C A19)

Now, one may readily deduce from the dispersion
relation (3.20a) that u,. cannot equal n"„.More-
over, it is not difficult to see that k,. cannot vanish.
For the vanishing of k,. would imply, according to
(3.24), that n!, = —u —~! . On substituting this ex-
pression for nJ, into the transverse dispersion re-
lation (3.20a) and using Eq. (3. 4a), we find that
this would require that )! =X/eo. However, y. is
complex, whereas ){/e, was assumed to be real.
Hence, Eq. (A17) implies that

kj ~ Aj =ih, z (A 18)

2

+ A,'(u, v; ~)e' !', (81)

where the Aj are any transverse vector fields
[i.e. , fields that obey the condition (3. 21)] and

A,
' are any longitudinal fields [i.e. , fields that

obey the condition (3.22)]. In order that (81) al o
be a solution of the integro-differential equation
(3.5), the A,.'s and A,"s must satisfy additional
constraints that may readily be determined by sub-
stituting from (Bl) into 'q. (3. 5). The calculation
may be shortened by recalling that for each term
of the form (Al) the vector L is given by (A4). We
then find that the left-hand side of (3. 5'I becomes

It can be shown from the dispersion relation
(3.20a) that w, cannot vanish for any real frequency

The vanishing of the square bracket implies
that

g(k,'. —koeo)A, e' !'+p (k,
' —koeo}A, e' J'

j=1 j=1
2

—P (k,'. A,'.)k,'e' &', (82)

B =0j (A21)

u~,'. =2(koe, —n' —z +n~, ) (j=1, 2, 3, 4}. (A20)

Hence, in this case the dispersion equation(3. 20a)
has two double roots and not four distinct roots.
However, we have excluded such a degenerate case
from our analysis [cf. remarks after Eq. (3. 18)]
and so we may conclude that, within the domain of
validity of our theory, Eq. (A19) can only be satis-
fied if P (k,' —k' o)eA,

'"e' !—g'koe, A,'e'"&'. (83)

where kj and k,' are, of course, vectors with com-
ponents u, 7', 7.ej and u, 7), HJ', , respectively, and we
have made use of the transversality condition
(3.21). Now we have the vector identity (k! )A,'.
—k,'.(k,'. ~ A &}= —k,'. &&(k,'. &A &) and since, according
to Eq. (3.22), k,'&&A, = 0, two of the terms in (82')
cancel and (82) simplifies to

Equation (A18) now implies that

kj 'Aj=0. (A22)

On substituting from (Bl) into the right-hand side
of Eq. (3. 5) we see that the right-hand side of Eq.
(3.5) will contain a sum of integrals of the form

Equations (A21) and (A22) are Eqs. (3.21) and

(3.23) of the text.
.d eiw u]z-z' ]

6z

This integral may readily be evaluated. We have
APPENDIX B: DERIVATION OF MODE-COUPLING

CONDITIONS (3.25) AND (3.26)
«Z fig u(Z Z )

p 74'

d f K u(z~~z)
e' j dz'

According to Eqs. (3.19) and (3.23), the general
solution of Eq. (3.8) is

'1 MJjz 1 HJu z ~ 4'& u(z~d) 'tQ!jd

1(n!!.—n'q) I'~(n'! — ~) utB!~(7E!+ u'~)
(84)

E(u, s; z; u) = PA;(n, v; u)e™&' Using this result, the right-hand side of (3.5) is
found to be

&QJ 'Z

-iu u(zd) 4
A A'

+ ~ elwjd+ ~ esmjd
't7,(,'u j 1 Kj + 'l4'u

1 Mlj + 74'u

On equating the left- and right-hand sides, given by Eqs. (83) and (85), respectively, and on rearranging
terms we obtain the relation

2

k; —kp Ep+ 2 2 Aje
' -~kp cp+, 2 2 Aje

"j2 2 X

j=1 7'j —g)
u Rj)Nu

=;,"(E.."„E,,":„-)'; ' "(~„,";„ I

f ffJjde
K'j + K'

(86)
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The left-hand side of (86) may be readily shown to
have zero value. To see this we note, first of all,
that according to Eqs. (3.4) and (3.24) u~& —w',

=k,' —p, ', wz" —w, =k,"—p.', so that the left-hand
side of (86) may be rewritten in the form

~2 2 X iwgkf —k0 &0+ 2 2 Afe
f=1 kf —P

-Qko tO+~, 2 2 Aze (87)
k —p,

If we recall the expression (1.23) for e(k, zv), we
see that (87) may be expressed as

g[k, —koe(kz, zv)]A', e'"z'-p k~e{kz, u)e' z'.

Now, the terms under each of the summation signs
will vanish because of the dispersion relations
(3.29). Hence, the left-hand side and consequently

also the right-hand side of Eq. (86) vanish and we

obtain the relation

~f w~g A ei (wf 44Ii ~ ) d

1 Kf+K~
2 I

+ I e
~

~

A f i (W f+Wlz, )d

A&f + ZV~

Since (88) holds for all values of z in the range
0& z& d each of the two expressions in the large
parentheses must separately vanish. We thus ob-
tain the relations

2

(88)
1 urj' u'g f =1 n]f ge

f $wf d f iwf d i wizd 0I

Equation (89) is the mode-coupling condition (3.25)
and Eq. (810), after dividing both sides by the
factor e' ', becomes the mode-coupling condition
(3.26}.

and

5'„L(r', cu; u, v) ~, =U(u, v; ~)e"""+~' (C2)

where r' =x', y', z' and

1 k4

U(, ; )=—I g —~)A(, ; )
f=1 0

(C3)

A (u v a)
4m' f «1

k'.
V(u, v; zd) =— (zwz) +—fo Az( zzv; 4))

f-"1 0

2

—~~ (iwz)A,'(zz, v; u) .
f=1

(C4)

(C5)

Now, we have, from Eq. (5. 2), upon formally inter-
changing the order of integration with respect to u,

v and the limiting procedure z ' -0', and then sub-
stituting from (C2) a.nd (C3),

P„L(r', (u) ~, , = ff U(u, v; u))e"""'~ 'dudv,
(C6)

G (x„)i,z —z )=—I Z

2m'

&&
ez(ux+uy+w &

Iz-s'I}
dzz dv

&:e""""""dzzdz . (C7)
We note that (C6) implies that the boundary value

P„~(r',&u) I,, o and U(u, v, v) form a. two-dimension-
al Fourier transform pair, and (C7) implies that
the boundary value (aP„~(r', ~)/az') I,. , and

V(u, v; zv} also form such a pair.
Next we make use of the representation (3.3) of

the Green's function G,(x —x', v —y', z —z')
=G,(l r —r'I) with the special choice r=x, y, z,
r' =0, 0, z', with 0& z& d, 0& z'& d, d being, as
before, the thickness of the slab:

APPENDIX C: DERIVATION OF EXTINCTION THEOREMS
(5.12) FOR NONLOCAL POLARIZATION

with

w „=(iz' —u' —v')'", (C8)

We begin with Eq. (5. 10a), which we now write
in the form

0
SA'I ~ ez gt ~

(Cl)
it being understood that z ' = 0 represents the limit-
ing values as z'-0 from inside the plane parallel
slab, i.e. , z' approaches zero through positive
values. Recalling that according to Eq. (3, 24)
kz =—u, v, wz, kz —=u, v, wz, it follows from Eq. (5. 3)
that the two terms on the left-hand side of (Cl) may
be expressed in the form

Rew, &0, Imw, &0. If we differentiate (C8) with

respect to z' and interchange the orders of differ-
entiation and integration we obtain

~ ei ( trx+tpp+ w 1 ( e-II' j ) d
7 (C10)

where the upper or lower sign is taken on the right-
hand side according as z &z' or z& z'. Next, we

proceed in (C8) and {C10)to the limit z'-+0. If
we again interchange the orders of the two limiting
processes (z '- 0' and integration) we obtain the
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formulas

G,(x, y, z -z')i, ,= Jf g„(u,v; z)

&e" '""'dude

()G, (x, y, z —z')
2' gz 0»c,

x e"~'""dudv

where

(C 11}

(C12)

g„(u,v;z)= ——e
s ] «~g

277 uf~
(C13)

h (u v z)= —e» (C14)

1
U(u, v; &u}+ . V(u, v; u&) = 0.

SfS~
(C15)

Equation (C 11) shows that G „(x,y, z —z ') I,, 0 and

g„(u,v, z) form a two-dimensional Fourier trans-
form pair and (C12) implies that SG„(x,y, z —z '}/
()z ') I,, », and h„(u, v, z) form also such a pair.

Next, let us multiply (Cl) by e"» ~"' and use

Eqs. (C2} and (C3). We then obtain the relation

lf we multiply (C15) by (1/2»») e' &' and use (C13)
and (C14) we find that

U(u , v; &u)h (u, v; z) —V(u, v; &v)g (u, v; z) =0 .
(C16}

Let us now take the two-dimensional Fourier trans-
form of (C16), with respect to the variables u and

v. If we recall the Fourier transform relations
(C6), (C7) and (Cll), (C12) and use the convolution

theorem on Fourier transforms we obtain the iden-

tity

()G,( I r - r '
I )P„L(r',u)

oo
&z

W )

-G,t~. —.-
~)

'""' 'j a a =

(C17)
where we have again used the shortened notation

G,(lr —r'I) for G„(x—x', y -y', z —z'). The
identity (C17), which is, of course, valid for every
point r within the slab, is the required formula
(5. 12a} of the text.

lf instead of starting from Eq. (5. 10a) we start
from Eq. (5. 10b), we would obtain, in a strictly
similar manner, the formula (5. 12b).
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