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In this paper we present a large number of computer solutions of various types of resistor networks.
Some of these are analogous to physical problems such as impurity conduction in lightly compensated
semiconductors and variable-range hopping in amorphous semiconductors. A significant extension of the
standard relaxation techniques was required to implement these solutions. The results of these
calculations are compared to percolation-model predictions based on concepts developed in the first
paper of this series. A simple criterion is found for the applicability of the critical-percolation-path
analysis to problems of this type and this is used to formulate an accurate prediction for the
impurity-conduction case. Arguments based on percolation models are also given to show that the
T '" and T '" dependence of logloo often predicted for three-dimensional and
two-dimensional variable-range hopping are indeed expected to be observed, and results on resistivity
networks analogous to these problems are shown to be consistent with these arguments. Accurate
empirical formulas are deduced from these computer calculations and we use them to analyze some
recent data on films of a-Ge. Employing the results of the preceding paper, several experimental
studies, and our computer models we have also examined the utility of the critical-volume-fraction rule
of Sher and Zallen in solving various types of mixture conduction problems. We find that application
of this rule is appropriate only in rather limited circumstances, and that in general a knowledge of the
topological properties of these problems must be employed in finding the percolation threshold.

I. INTRODUCTION

In the preceding paper' (I) we discussed many
percolation models, several of which we shall show
are appropriate to the solution of problems dealing
with hopping conduction. The basic conclusion was
that the percolation problems posed on a random
lattice were sufficiently varied and complex that no

known simple procedure or rule of thumb could be
universally applied to yield accurate answers. The
alternative method of empirical solution via com-
puter or other methods was offered as a practical
alternative to theoretical techniques. In this paper
(II) we will compare some of the percolation solu-
tions obtained in paper I via Monte Carlo methods
to the computed conductivity of actual resistor
networks. The computational methods required to
solve these networks will be discussed and the solu-
tions will be compared to the relevant percolation
models in order to deduce criteria for applicability
of percolation theory to problems of this type.

The detailed plan of the paper is as follows: In
Sec. II we will describe the results of solving for
the conductance of a simple cubic lattice with con-
ductances joining nearest-neighbor nodes. The re-
sults for this case will be seen to suggest a simple
test for the applicability of percolation theory. In
Sec. III we solve for the conductivity of a random
lattice with conductances depending exponentially on
the distance between nodes. These results are
compared to the percolation results of paper I.
We generalize this problem in Sec. IV by assigning
random energies to the lattice nodes of the preced-
ing case and solve for the conductance of the net-

work in the case where the conductance between
sites is given by the Miller-Abrahams (MA) form-
ula. The empirical results for two- and three-di-
mensional networks yield accurate empirical
formulas characterizing variable range hopping in
both cases. These formulas are compared to the
theoretical results of Mott, Pollak, and Am-
begaokar et al. Section V is a brief discussion of
the available experimental results on conduction in
mixtures of insulating and metallic phases with
reference to the percolation concepts which have
been applied to these problems. Section VI sum-
marizes the results of paper II.

II. SIMPLE CUBIC LATTICE CONDUCTANCE NETWORK

The case of a simple cubic {sc) lattice of nodes
with conductances joining nearest neighbors has
been considered previously by Kirkpatrick. ' We
will review and extend his treatment because it
provides a clearcut demonstration of when certain
results from percolation theory can be expected to
accurately predict some of the conductance proper-
ties of these networks. In the present case we have
investigated the conductivity of such networks when
the individual conductances between the ith and jth
nodes, G,.~, are chosen to have their logarithms
uniformly distributed between logA and —logA
(preserving Kirkpatrick's notation). While Kirk-
patrick limited his study to values of A below 10',
we have allowed A to range up to 10'. We note as
have Ambegaokar et al. ' that percolation theory
must give exact results in the asymptotic (A- ~)
limit; our purpose here is to determine how large
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A must be before the percolation predictions be-
come sufficiently accurate to apply them to physi-
cally useful situations.

The application of percolation concepts to this
problem is straightforward. One construction,
due to Ambegaokar, Halperin, and Langer (AHL),
which provides a lower bound to the conductivity is
to place the conductances on the lattice in order of
their values starting with the largest and stopping
when the first path opens across an infinite sample.
The smallest conductance in this subnetwork will
hereafter be called the critical conductance, G, .
We can set a lower bound weaker than that provided
by the AHI construction if we replace all the con-
ductances on the AHL subnetwork by G„. this con-
struction has the advantage of making the depen-
dence of the network conductivity on A transparent.
For this reason we shall make consistent use of
this lower bound network. This simple application
of percolation theory provides us only with infor-
mation about the A. dependence of the conductivity;
however, as we shall show later, this type of in-
formation is sufficient to give us ihe temperature
dependence of the conductivity in the case of prob-
lems involving hopping conduction.

To deduce the A dependence of the lower bound
network we have only to find G, . Monte Carlo
studies of probabilistic bond percolation on this
lattice' have shown the critical bond fraction p,„
= 0. 25. If we put the individual conductances 6&,.

into the lower bound network, largest first, the
critical conductance occurs when —,

' of the G„.'s
have been inserted: therefore, logG, = 2 logA. Thus
this simple percolation model predicts that Blogo/
BlogA = ~.

The actual conductivity of these simple cubic net-
works was calculated with the aid of a CDC-6600
computer using samples of 1000 nodes each. All
node-to-node conductances between 1/A and A were
randomly assigned. The voltage of one surface
plane on the 10&& 10& 10 array was fixed at 1 V and
the voltage on the opposite face was set at zero;
the voltage of the nodes on the other four surface
planes parallel to the applied field was allowed to
float, determined only by the current flowing into
them via their five nearest-neighbor conductances.
The initial algorithm used reset the voltage of each
node in turn so that the total current into that node
was made to vanish. The deviation from zero of

the current into each node was monitored as well
as the current into and out of both fixed-voltage
surface planes. The network was considered
solved when the currents in and out of each end
coincided, and the average nodal current deviation
became vanishingly small. When the conductance-
spread parameter A exceeded -10', this algorithm
required an excessive number of iterations to
achieve the solution. We then examined the de-

Simple Cubic Network
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FIG. 1. Conductivity of a simple cubic network as a
function of conductance spread. The circles denote com-
puted conductivities (normalized by the value at A = 1) of
simple cubic networks whose intersite conductances C,
are uniformly spread (on a logarithmic scale) between
1/A and A. The solid straight line is the predicted varia-
tion from a critical path analysis.

tailed node voltages for large A and found that a
sizable fraction of them were almost identical.
This, as we shall see later, is a natural conse-
quence of the percolative tendencies of these net-
works. Since the simple iterative scheme can be
shown algebraically to become very inefficient
under these conditions, a cluster iteration approach
was devised (see Appendix A). This approa. ch al-
lowed us to solve the networks in the large A re-
gime using practical amounts of computation time.

The results of these computations are shown in
Fig. 1. Here we have plotted the computed 1000-
node-network conductivity for various values of A,
normalized by the conductivity when A = 1 (all G, &'s
=1 mho). Each point above A =10 is the geometric
average of ™10-12 different individual networks.
Numerous samples were required because of the
scatter inherent in computations on finite size
samples. The solid line in Fig. 1 is the variation
predicted using the simple lower bound network.
It is clear that for A & 10 the predictions of the
percolation model are not particularly useful in
characterizing these networks, but as Kirkpatrick'
stated, an effective medium theory can be useful
in this regime. Above A= 10 -10' the experimental
points do follow closely the slope (-, ) of the solid
line. ' This agreement with the percolation theo-
retical prediction implies that the first paths open-
ing up across the network are the crucial ones,
provided that the conductance spread is at least
this large. We shall see later that this conduc-
tance-spread condition is satisfied in the real phys-
ical problems discussed in Secs. III and IV; thus,
we should expect the percolation analysis of these
situations to be usefully accura, e..

We have also solved some of these sc networks
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a~ exp[- (1.4) (2/a) (3/4', )'~'
I (2)

distance 2r, apart. Using Eq. (1} the dependence
of the lower bound network conductivity on node

density N, is given by

6

0-

l I I I g I

R-Percolotion

To test this prediction, we have solved for the
conductivity of a large number of 1000-node random
networks of different density using internode con-
ductances determined by Eq. (1). These networks
were computer-solved using techniques elaborated
upon in Sec. II. The situation is somewhat more
complicated in this case because each point of the
computer-generated network must be assigned a
random spatial position. Once this was accom-
plished it remained only to estab1. ish how many eon-
ductances out of each node were truly important
(i.e. , carried the majority of the current), By
solving the networks while including only the n

largest conductances originating from each node,
it was empirically determined that cr was rather
independent of n beyond g = 5 or 6. In actual prac-
tice n was allowed to range from 10 to 15. The
boundary conditions imposed on these random net-
works were as follows: the voltage of all points
within a certain fraction (usually -0.05) of one end
of the network was set at zero, whereas the voltage
of all the nodes lying within that same fraction of
the other end was fixed at 1 V. The voltage of all
other nodes was externally unconstrained. The
cluster iteration algorithm used for the sc lattice
networks was employed with the average nodal cur-
rent deviation being monitored as well as the cur-
rents into and out of each fixed voltage region.

The solved network conductivities obtained from
these calculations are shown in Fig. 4. The wave-
function radius a was arbitrarily chosen to be 15 A

and the spatial site densities range from 3& 10' to
10' cm '; the points are actually plotted versus
twice the "average" site separation, r = (3/4v&, )' ~,

divided by a for easy comparison with the percola-
tion prediction. Each data point is the average of
about 10 separate network calculations. The line
drawn as a best fit through the data has a slope of
1.39, remarkably close to the lower bound network
prediction of 1.4." A computer printout of the 10
largest conductances from each node revealed that
these were, except for the highest density em-
ployed, spread over a range of at least 10; the
excellent fit of all but the N=10' cm 3 point to the
solid line in Fig. 4 is therefore consistent with the
conclusions drawn from the sc lattice case concern-
ing the region of applicability of the lower bound
construct.

Now that we have a theoretical prediction for the
behavior of these "R-percolation" networks, as
Pollak' calls them, we can examine the impurity
conduction data of Fritzsehe and Cuevas. ' Pollak
has shown that their data have the N, dependence

-4
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FIG. 4. Impurity conduction in the R-percolation
limit. The circles denote the computed conductivity of
a random lattice of sites interconnected by conductances
whose value depends exponentially on the intersite sepa-
ration and the wave-function radius a. The straight line
is the percolation theoretical prediction for a low com-
pensation ratio.

predicted by Eq. (2}; using the slope deduced from
Fig. 5(P) in his paper, ' we deduce that a = 72 A for
low compensation in Ga doped Ge. This should be
compared with the value of 62 A deduced by Pollak'
using his lower bound estimate of the critical sphere
percolation radius. Miller and Abrahams deduce
a value of 90 A for a, but their formulation is not
based on a true percolation model and gives a pre-
diction for the density dependence of o which is not
particularly consistent with that displayed by the
data. %'e note here that there is agreement be-
tween the value of the wave-function radius deduced
by us and Golin's estimate' of 75 A obtained from
ac conductivity experiments.

IV. VARIABLE-RANGE HOPPING

=- G0e'

where d, &
and a are the same as for Eq. (1) and

E, and E& are the energies of carriers on sites i

Ne have demonstrated in Sec. III that computer
analyses of spatially random resistor networks are
feasible. To simulate the variable-range hopping
problem we now have only to assign energies to our
sites and include a suitable energy dependence of
the intersite conductance. For our actual con-
ductivity computations we used the full MA formula

[Eq. (III-9) of Ref. 3]. However, for ease of dis-
cussion we use an approximate form due to AHI,

2d;, IE, I+ ls, 1+ IE, -Z, l

ij 0 2kT
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E= kT)

FIG. ~. The shells of constant $ [Eq. {3)]for two

arbitrary sites i and j in an IF construction simulating
variable-range hopping conductivity in two spacial di-
mensions. Here the x and y coordinates of the sites cor-
respond to the real spatial positions of ith and jth local-
ized states and the height of any point above the xy plane
is the energy of that state. If any ot;her point k (not
pictured here) lies within the shell about i, then logG~&

In the associated percolation model all sites lying
within the shell about i are considered bonded to i. The
percolation threshold needed for a critical path analysis
is found by expanding the shells (increasing $) until an
infinite cluster of bonded sites occurs. Dimensions of
these shells are given in text.

and j. Rather than dwell at length on the appro-
priateness of Eq. (3) to certain applications such
as electron hopping in a-Ge, it suffices to mention
that the general form of this result, a tunneling
overlap plus an intersite energy difference term,
is to be expected for a wide variety of quantum
tunneling processes. Before turning to the details
of the computer-solved networks for this problem,
we will first discuss the geometrical percolation
problem relevant to this case. A discussion of the
approximate models used by several authors to
deduce the conductivity mill be deferred until later
in this section.

For analytical purposes it mould be useful to have
a geometric percolation model for the two-dimen-
sional (2D) and three-dimensional (3D) variable-
range hopping problem. Then the results of paper
I pertaining to percolation "invariants" could be
used. Unfortunately, one cannot construct a set of
overlapping figures having a one-to-one corre-
spondence between overlap or nonoverlap of figures
and the occurrence or nonoccurrence of bonds. We

can, however, construct inclusive figures (IF's) and

apply the critical-number-of-bonds-per- site tech-
nique. The IF construction that me will employ re-
sults from considering the site energy to be an ad-

dition31 dimension. In Fig. 5 we demonstrate this
concept (for the 2D problem) by drawing the sur-
faces of constant conductance [from Eq. (3)] as-
sociated with two arbitrary, unconnected nodes.
In this form this is a site percolation problem since
any node which lies within the surface of node i is
connected to node i, and likewise for node j. A

similar construction can be made in four space to
simulate the 3D variable- range hopping problem,
but this obviously is harder to visualize, and me
shall confine ourselves here to calculations involv-
ing the model in Fig. 5 appropriate to the 2D prob-
lem. Using the definition of $ in Eq. (3), we note
that the shells of constant impedance about site i
consist of three sections: a. cylinder of height F.;
(measured from the Fermi energy) and radius ft;
= a/2($ —E~/kT); at both ends this cylinder is
capped by a right cone of the same radius whose
height is kT) —E; .

A solution to this conductivity problem can be
found (assuming the validity of the critical path
analysis) by deducing the critical value $, of the
conductance exponent in Eq. (3) at which we have

just completed a path of bonds across an infinite
sample. This is equivalent to finding the size of
the constant conductance shells in Fig. 5 at their
percolation threshold. From the dimensions given
above we can calculate the volume enclosed by the
shell about site j. We find

7Ta kT
2$ 3

kT ' (kr)' ' (4)

It is nom trivial to compute the average volume
of all the sites having energies lying between + gkT;
this quantity, V, when multiplied by A, the density
of states (assumed constant in energy here), yields
B, the average number of bonds per site. Thus

B=NV=
qq

ma kTN$

Inverting this, we have for the critical exponent

where

C, = (408, /v)'" .

where

C2= (168,/v)'i' .
From Eq. (6) we can see that if 8, is not a function
of N or T, the critical path analysis predicts the
familiar T"' formula for 2D variable-range hop-
ping. ' Analogous arguments can be made in the
3D case to show that the T ' ' formula will result
if the average number of bonds per site at percola-
tion remains constant with variations of N and T.
These yield
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As shown in paper I, the average number of

bonds per site at percolation is not a, dimensional

invariant. Hence, for this model, we have no

means of obtaining an accurate value of 8, . How-

ever, we do prove in Appendix B that, whatever its
true value, 8, is independent of N and T. There-
fore the T ' and T ' laws are closely obeyed if

Eq. (2) exactly describes the internode conductance

and if we have sufficient conductance spread to
guarantee that the percolation analysis of the net-
work is accurate.

One way to obtain rough estimates for C~ and C,
would be to use the values obtained for 8, in rep-
resentative percolation problems involving IF's
percolating in 3 and 4 space, respectively. Taking
the 3-space value of 2. 8 bonds per site obtained
for random-lattice percolation of spheres (Table
III of paper I), Eqs. (6) and (7) yield Ca= (16B,/v)'
= 2. 42, a number that we will f ind to be within 20% of

the obse rved value late r in this section. Likewise,
using the 4-space value of E, = 2. 11 for hyper-
spheres, ' we calculate C, = (40B,/v)'~'=2. 28 as a
rough estimate.

The percolation models based on the AHL con-
ductance formula, Eq. (2), are already complex.
Models based on the full MA form with its Fermi
functions and exponential prefactors are nearly
intractable. For this reason we feel that a com-
puter simulation may be the only approach to the
problem likely to yield a reasonably accurate pre-
diction for variable range hopping conductivity.
Towards this end we have solved a large number
of 500- to 1000-node conductance networks using
a variety of temperatures in the MA formula. The
data obtained span a range of 30 decades in con-
ductivity and thus allow predicted power law de-
pendences such as T '~4 to be determined. The
density of states in energy used for both the two-
dimensional and three-dimensional studies is shown
in Fig. 6(b). It is constant in energy and sym-
metric about the Fermi level with a, width of 10
meV. Three total (spatial) densities of states were
chosen for the 3D case: 10", 10", and 10" cm
For the 2D case we chose N, =(10'8 cm ) ~ to cor-
respond to the thin film (thickness ~ r„, ) behavior
of the 10' cm 3D case. For all studies the wave-
function radius was arbitra, rily chosen to be a= 15
A. The temperatures used for boih cases ranged
from 0. 2 to 80 K. Methods used for setting up and
solving the networks were identical to those elabo-
rated upon in Secs. II a.nd III.

The conductivity results for the three-dimen-
sional networks are shown in Fig. 6(a). Each point
is the appropriate average" of some 10 to 15 dif-
ferent network solutions. It should first be noted
that the high temperature (kT), & 2', where r) is the
width in energy of the density of states) behavior
of o is not consistent with a power law dependence
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FIG. 6. Variable-range hopping conductivity in 3D.
The data points shown here denote the computed conduc-
tivity of a 30 random lattice of sites interconnected by
conductances of the MA form. For nearly all the plotted
data, the data point symbol is much larger than the un-

certainty of the value (Ref. 15). The sites have randomly
assigned energies between +5 rneV of the Fermi level
Ez. The curves are best-fit straight lines to a T de-
pendence for low T. The upper abscissa scale shows a
few important values of T in terms of the density-of-
states width g over the Boltzmann constant k.

of logo upon T; as we shall discuss later, this
deviation is not unexpected and has been predicted
by Pollak ef, a/. ' The low-temperature data at
each density were trial fitted to a number of dif-
ferent power law dependences (i.e. , logo CC T' ~~,

T'~", T'~', etc. ), Due to the scatter in the data
it was not possible to say precisely (to within better
than -+ 10/o) which value of the exponent was the
best for each site density although there were defi-
nite indications f rom least-squares analyses that
the best-fit exponent was somewhat larger than —,.
For comparison with theory, we plotted all the data
versus 7 ' '. The experimentally determined
slopes of logo vs T ' are presented in the upper
pa, rt of Table I. Here we have given them in terms
of the combination, [a N(E)k] '~', for ease of com-
parison with our theoretical predictions and those
of Mott, ' AHL, Pollak, '

a,nd Jones and Schaich. "
It can be seen that our "experimental" values of
C3 are typically 20% larger than all but the first of
these theoretical predictions and are nof, strictly
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TABLE I. Coefficients in the conductivity exponent. C3 and C are given by
(T3 exp(- C3[a X(E)kT) ), &2o ——o'. exp(- C&[a N(E}kT]

102k

Computer
results

2.60+ 0.09

This
paper Mott' Pollak.

Jones and
Schaich

2. 48 ~ 0.06 2. 28 2. 00 1.78

C2

2D

2. 31 ~0.04

2. 21+0.08 2.42 2. 05 1.74 2. 00

Maschke, Overhof, and Thomas (Ref. 17) have recently niade bvo-dimensional
computer calculations similar to ours. They find an exact T behavior with C2

between 2.49 and 2.66. However, they use the purely exponential (AHL) form for
the individual conductances.

The values given in this column are the estimates derived in Sec. IV assuming
constant values for J3, obtained from the percolation of spheres (for C2) and hyper-
spheres (for C„}.

Reference 4.
Reference 5.
Reference 6.
Reference 17.

constant with changing N. This variation of C3 is
larger than the uncertainty of the slopes determined
from the data in Fig. 6(a). This fact, taken to-
gether with the above-mentioned deviation of the
best-fit power law dependence from T ' ', in-
dicates that this law is closely but not exactly
obeyed.

The fa.ilure of the data to precisely fit a T ' '
law could be the result of several factors. The
first is that a critical path analysis may not be suf-
ficiently accurate due to an inadequately wide

spread of the three to six largest impedances from
each site. This appears unlikely, however, since
the R-percolation data Iwhich are the high-T limits
of each curve in Fig. 6(a)] for all but the highest
density appear to accurately follow the critical
path predictions. For all practical purposes, then,
we are in the region where the percolation predic-
tions are very good indeed. These deviations are
most likely the result of the fact that the MA form
of the impedances used here is not strictly in ex-
ponential (AHL) form but conte. ins preexponential
factors dependent on r; &

and T. Inclusion of these
factors into a theoretical treatment of the problem
makes the situation rather intractable, but a rea-
sonable estimate is that the first-order corrections
obtained from taking these factors into account
should be small. Indeed we have found that a rather
mild preexponential to the derived exp(- T '~

)
equation (of the form T'~ )is s2ufficient to explain
our observed "experimental" deviations. '

It is now useful to briefly interrupt our examina-
tion of the data in order to review prior derivations

of the theory of variable-range hopping conductiv-
ity. We will confine ourselves to discussing the
treatments which have occurred after the initial
suggestions of Mott. ' Mott was the first to recog-
nize the variable-range aspect of the problem but
at the time made only qualitative estimates of the
behavior expected in this situation. Pollak' has
attempted to solve the percolation aspect of this
problem by evaluating the onset of percolation using
a formula for the expectation value of the number
of paths of length X steps, all of which consist of
impedances less than some value Z. This formula
provides only a lower bound to the percolation
threshold, however, since its stochastic nature
necessarily implies that it overestimates the ex-
pectation value due to its inclusion of multiply re-
traced paths. The fact that this is an approxima-
tion has been recognized by Pollak' and others.
Some estimate of how far off this estimate might
be can be made by considering the R-percolation
problem (Sec. III) (see Ref. 23 of paper I):
Pollak' s formulation can be evaluated exactly in

this case and yields R, = r, while the actual value
(Table III of paper I) is R, = 1.4r, . We are there-
fore not surprised that our values of C3 are about
257(: higher than his.

Ambegaokar, Halperin, and Langer have also
applied percolation theory to this problem. How-

ever, both of their percolation models involve the
percolation of variable-sized spheres in 3-space.
Thus their models do not possess a one-to-one cor-
relation of bonds made and figures overlapping (or
points included in the case of their first model).
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FIG. 7. Variable-range hopping conductivity in 2D.
The bars denote the computed conductivity of a 2D ran-
dom lattice of sites interconnected by conductances of the
MA form. Site energies are assigned as in 3D. The
curve is a best-fit line to a T ' dependence at low T.

We must thus conclude that their value of C3 should
be regarded as a rough estimate. On this basis
their value of C~=2. 00 appears to be in good agree-
ment with our data. The work of Jones and
Schaich" also involves estimates of percolation
models which are not exact simulations to the con-
duction problems; their estimate of C3 is 1.78.
Before leaving our discussion of the low-tempera-
ture section of the data in Fig. 6(a), we should re-
mind the reader that a desire for a. precise value
of C3 is not merely an academic point: any errors
in C, are magnified to the fourth power in a deter-
mination of the wave-function radius or the density
of states from empirical data.

Turning to the high-temperature regime, the
breakover seen in the data in Fig. 6 is a result of
the fact that the temperature-dependent part of the
exponent in Eq. (3} becomes negligible. Thus the
variable range aspect of the problem disappears at
large T, and the hopping processes enter the "R-
percolation" regime discussed in Sec. III, Our in-
dications of when this occurs in temperature agree
roughly with the theoretical estimates of Pollak
et al. ': We therefore concur with their contention
that the observance of T ' ' behavior up to rela-
tively high temperature (in their case -200 K) is
consistent with reasonably narrow widths of state

densities about the Fermi level (their estimate is
0. 1-0.3 eV for a-Ge).
The conductivity results for the two-dimensional

networks are shown in Fig. 7 for a spatial site
density of 10' cm . The energy dependence of
N(E) is identical to that used in the 3D case [Fig.
6(b}]. Due to the limited amount of data, we have
not performed any analyses to determine the best-
fit power law dependence for the low-T data. . In-
stead we have chosen a T ' scale for the abscissa
in line with theoretical considerations: it can be
seen that this provides a reasonable fit to the data.
Knotek et al. ' have applied the formulations of
Mott, Pollak, ' and AHL for the case of two di-
mensions with the formula shown at the bottom of
Table I resulting in each case. The constant C~
obtained for each treatment is shown in the lower
half of Table I along with the present, empirically
determined, result deduced from the slope of the
data in Fig. 7. We note again that as in the 3D
case the flattening of loge vs T '~ at high T is the
result of the transition to the temperature indepen-
dent "R-percolation" regime.

We feel that the present calculations should
serve as a reasonably reliable basis for evaluating
conductivity data where variable-range hopping is
suspected. As an example we will apply the 2D and
3D formulas listed in Table I to the data of Knotek
et al. "on "thin" and "thick" films of a-Ge. These
conductivity data display a transition from T ' ' to
T ' behavior as the film thickness drops below
-400 A. If we make the rather crude assumptions
that the wave-function radius and density of states
are independent of sample thickness we can deduce
both a and N(E) from their experimental data Us-.
ing the formulas in Table I we obtain a = 17 A

and N(E) =3&&10' cm eV '. These numbers should
be compared to the values of ™10A and 2&10"
cm eV ' that they obtained using Pollak's' theory.
Our result suggests fewer states in the gap, thus
pushing the transport estimate of N far below the
upper limit of the number of gap states estimated
from optical absorption data. Hence, it appears
that the present study enhances the possibility that
low-temperature transport in a-Ge may be an
example of true variable-range hopping conduction.

V. CONDUCTION IN MIXTURES

There are a variety of problems concerned with
electrical conduction in two component mixtures.
In the case where the conductivity of one of the
components is very much larger than that of the
other, knowledge of the composition when the more
conductive phase begins to form infinite clusters
is clearly essential to an understanding of the sys-
tem. It is these cases (insulating and conducting
media} where percolation theory has the possibility
of being most useful, and for this reason we shall
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confine ourselves to examples of this type in the
present section. We shall consider three types of
problems, the first being introduced mainly for
tutorial purposes. It suggests at first glance that
there may exist a universal property which might
be useful in solving a variety of other problems.
We shall examine the validity of this idea. The
second and third examples bear on some very real
and potentially useful physical situations,

A. Close-packed mixtures of conducting and insulating spheres

In a recent paper Sher and Zallen" remarked
that if conducting and insulating spheres (circles in

2D) of radii equal to half the nearest-neighbor
separation were centered on the nodes of various
3D and 2D lattices, percolation of the conducting
spheres always occurred when the volume (or area
in 2D) fraction of these spheres =0.15 (=0.44 in

2D). They therefore made the reasonable sugges-
tion that a random close-packed arrangement of
the same conductive and insulating spheres (or
circles), or perhaps a powder mixture20 would per-
colate at this same volume (or area) fraction; this
suggests the concept that these particular fractions
represent invariant quantities which depend only on
the dimensionality of the problem. It is evident
that while the physical applications of this particu-
lar problem are not legion, the concept of a critical
volume fraction (CVF), as Sher and Zallen define

it, could be most useful. The CVF concept was
critically examined in paper I from a mathematical
viewpoint. Below we use the results of paper I to
determine the usefulness of the CVF in solving real
physical problems.

8. Conducting particles embedded in a continuous insulating
medium

Examples of this case include commercially
available products such as polymers loaded with
silver particles used for flexible conductors and
various conductive epoxies and adhesives. It
should be noted at the outset that this case is, in

principle, quite different from that of Sec. VA;
here there is no hard-core property of the insulat-
ing phase which tends to promote contact among
the conductive particles. In fact with no attractive
interaction between the conductive regions (such
as electrostatic forces) or with no packing forces
(such as gravity) there is little reason to expect
particle-to-particle contact. A prior, then, we
would not expect percolation of the metallic phase
to occur at Sher and Zallen's' critical volume
fraction, although they have suggested' that this
is indeed the case-citing unpublished data on one
experimental mixture as verification.

%e have examined several studies~' of conduc-
tion in these types of systems and we find that there

is in general no particular volume fraction (except
1.0) which guarantees metallic conductivities.
Values quoted in the published literature range from
a CVF of 6/0 ' up to 37/p. In fact, in several
cases high conductivity in mixtures having V, (for
the conducting phase) considerably greater than
0. 15 could be destroyed by applications of stress~'
indicating that the nature of the particle to particle
contact was rather tenuous. Another study3 showed
that the conductivity of silver-loaded polymers de-
pended drastically on the stirring time after the
mixture had achieved apparent homogeniety. We
have also performed two-dimensional computer
studies of hard-core circles percolating in a con-
tinuous medium; the results of these studies rein-
force the notion that the volume (area) fraction at
percolation is not even approximately invariant;
(see Secs. V and VI of paper I). We are therefore
forced to conclude that percolation of rigid or hard-
core particles in a continuous medium is too com-
plex a problem (particularly if a variety of shapes
and sizes of particles and of preparation techniques
is allowed) to lend itself to the simple approach sug-
gested by Sher and Zallen.

C. Conduction in noixtures of continuous insulating and
conducting media

This example is logically the final progression
from Secs. VA and VB; here there is no longer
any hard-core property of either phase, or equi-
valently no minimum size for regions of either
constituent. One physical example of this might
be an emulsive mixture of two immiscible liquids,
one of which is conducting. A second and at pres-
ent more relevant example originates from various
attempts to characterize the so-called mobility edge
in amorphous semiconductors. A simple charac-
terization suggested by Ziman and others ' ' is
to consider the movement of carriers in the clas-
sically a.llowed regions (E„„„„&E„,) of the ran-
dom one-electron potential characteristic of amor-
phous systems. The working hypothesis behind this
picture is that the electronic states change from
localized to extended in character at the energy E,
where the classically allowed regions form infinite
clusters; a reasonably large jump in the carrier
mobility would thus be expected at the energy char-
acterizing this percolation threshold. Later ex-
periments by Last and Thouless ~ using conductive
paper and by Kirkpatrick using resistor networks
have suggested that this edge may be in effect softer
than had been previously postulated: nevertheless
the determination of E„ the energy of this percola-
tion edge, remains an important problem. We
shall dwell only upon this aspect of the situation
and ignore for the moment the questions that can
be raised about the applicability of this somewhat
simplistic model to real amorphous materials.
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Zallen and Sher have suggested that the critical
volume fraction concept is relevant in this case and
they have in fact calculated E, on this basis for a,

number of reasonable random potential distribu-
tions. In view of the results discussed for Sec.
V B and the variety of volume fractions at percola-
tion listed in Table III of paper I (see also Appendix
A of paper I) we tend to disagree. We suggest that
the solution to these problems lies in the detailed
topological characterization of each particular case
rather than in a simple statistical quantity such as
the volume fraction. Computer-based analyses of
these situations appear tractable, and it would ap-
pear imperative that these (or other techniques)
be carried out before any definitive statements can
be made about the possible location of mobility
edges.

Vl. CONCLUSIONS

Using improved computer iteration techniques,
we have evaluated the conductivities of a large
number of simple cubic and random-lattice con-
ductance networks. The results show that a critical
path analysis can be made to yield accurate pre-
dictions of the conductivity variation of these net-
works if the values of the approximately five to
six largest conductances from each node are spread
over at least seven to eight decades. We point out
that these conditions are met in the Miller-Abra-
harns resistor network simulation of impurity con-
duction in lightly compensated semiconductors, and
we deduce an accurate conductivity formula for this
case.

Based on the conclusion in the previous para-
graph, we have examined exact critical-path-per-
colation models for the two- and three-dimensional
variable range hopping problems. Although no
numerically exact solutions for these models are
presented, we argue that on the basis of the per-
colation concepts and solutions discussed in paper
I, a critical path analysis of these problems using
a simplified form for the intersite impedances
yields a precise T ' or T '~' of lour in two and
three dimensions, respectively, with values of C~
and C3 higher than those previously predicted. We
then presented the computer calculated conductivi-
ties of a, large number of resistor networks simu-
lating this problem in three dimensions. From
these data, we have deduced accurate empirical
formulas for the dependence of loga on tempera-
ture, wave-function radius, and density of states.
We note that these formulas are close to but not
exactly in the T " form. We also give a formula
for the two-dimensional variable-range hopping
empirically deduced from several resistor networks
simulating this problem.

On the basis of the results of paper I. several
experimental studies of conduction in mixtures,

The authors gratefully acknowledge several use-
ful discussions with Dr. W. J. Camp and Professor
M. A. Pollak. We thank Dr. J. P. Van Dyke for
his assistance with the computational aspects of
the problem.

APPENDIX A

To illustrate the need for our cluster relaxation
technique, we first describe the simplest standard
relaxation procedure for solving conductance net-
works. Consider two adjacent nodes, A and 8, in
the network which are joined by a critical conduc-
tance G» = G~. I et all nodes directly connected
to A (including 8) be denoted by the index i, a,nd

likewise nodes to B by j. In the process of itera-
tion towards the solution the network nodes will
have, in general, voltages unequal to their final
value. One iteration consists of adjusting the volt-
age of a node to make the excess current into that
node equal to zero (to obey Kirchhoff's law). For
example, the voltage of node A is ineremented by

where each G„, is a conductance directly connected
to A, and the excess current into A is given by

5I„= Vw& t (A2)

From both of the above equations one can see that
for large spreads in the conductance values (A
& 10'), the excess currents and the consequent
iterative voltage adjustments are controlled by the
largest conductances into a given node. However,
we know from Sec. II and particularly from Fig.
2 that the final currents are determined by the
critical conductances. Hence also the voltage on
either node of the critical conductance is deter-
mined by that conductance. Thus in the large
spread regime the standard relaxation procedure
in effect uses the "wrong" conductances to move
toward the final solution. Because of this fact the

and our computer models simulating these prob-
lems, we have concluded that application of the
critical volume fraction rule originally proposed
by Scher and Zallen is appropriate only in rather
limited circumstances. These cases include rnix-
tures of two media each having hard-core proper-
ties (like powder mixtures) or mixtures in which
one hard-core constituent in a deformable matrix
is subjected to some type of packing force. In
other situations, such as those appropriate to find-
ing the so-called mobility edge energy of a collec-
tion of random potentials, specific account of the
topological properties of the problem must be taken
into account in finding the percolation threshold.
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approach toward the final correct voltages is slowed
drastically in the large-A regime.

Our cluster relaxation procedure corrected for
this by grouping together (every 20th iteration) all
nodes which were connected to one another and
which had the same voltage (within some small
tolerance). Each cluster was then treated as a
single node in the standard relaxation procedure.
That is, the excess current flowing into the cluster
was computed and then the voltage of each node in
the cluster was incremented by the same amount
to cause the excess current into the cluster to be
zero. In practice it was found beneficial to make
the cluster-definition voltage tolerance smaller as
convergence was approached.

APPENDIX 8

Imagine a uniform linear spatial expansion of all
x —y distances in Fig. 5 by a factor f. Thus all
points i and j in the expanded space have 4x;J and
b.y;~ enhanced by the factor f but 4E,~ unchanged.

At the same time expand the radius of each IF
figure by the same factor f, but leave its height un-

changed. If these figures were just percolating be-
fore the transformation they will also be just per-
colating after, for all the points that were bonded

before the transformation will be bonded after-
wards. These new figures, however, correspond
to those drawn about the points which are now ar-
ranged with a density N = N/f2 at temperature T
= T/f, where T was the temperature corresponding
to the original figures. Since E ~, the height of

the figures, is unchanged, the new critical value
of $ for these figures is $, =(E /AT ) =(fE /AT)
=f/, . We have thus shown that

$,(N, T ) =fg, (N, T), (Bl)

where N =N/f' and T = T/f, We now can make a
second, different expansion of all the coordinates
(X, F, and E, this time) of the points and shells in

Fig. 5 by a factor y. Again we have the result that
if the figures were just percolating before the ex-
pansion, they will be just percolating after it.
These new figures however correspond to those
drawn about the points at the same temperature T
but at the new density N =y SN. Ne have then

y(, (T,N) = &,(T, y 'N) .
If we now agree to write

(,(N, T) = C, (N, T)/(a'NAT)'",

Eq. (B2) becomes

C,( NT)=C, ( yN', T)

and Eq. (Bl) becomes

C,(N/f ', T/f) = C,(N, T)

for all y and f.
It is clear that these equations can only hold if

C~ is not a function of either X or T, thus proving
that percolation of these figures occurs at a con-
stant number of bonds per site. A similar conclu-
sion is readily reached for the 3D variable range
hopping problem by considering the appropriate
figures in 4-space.
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