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In this paper and its sequel we consider the relation between various conductivity problems and their
associated percolation models. The emphasis of this paper is on the methods of solving percolation
problems. Toward that end we define the percolation problem and propose a classification for several

types of models. This classification scheme is useful for regular and random lattices and shows the
connection between bond and site percolation models. With the aid of a large computer we have used

Monte Carlo techniques to solve many random-lattice percolation models in two and three dimensions.
These models illustrate the effects of hard-core interactions between sites, of deterministic and

probabilistic bonding parameters, and of changing the functional form of the bonding criterion. The
random-lattice solutions are used to examine the critical volume fraction concept and the critical
number of bonds per site (B,) concept. These concepts have been previously proposed as methods of
obtaining solutions to percolation problems. We find that, subject to several conditions, these concepts
may be used for approximate solutions.

I. INTRODUCTION

The use of percolation theory ' to solve physi-
cal problems involves two basic steps. First, the
physical situation must be simulated by an appro-
priate percolation model, if one exists ~ These
percolation models are composed of sites and of
bonds between sites (vertices and edges in the no-
menclature of graph theory). In general their re-
lation to physical problems is made by identifying
the site with sources of interaction and the bonds
with interactions of some minimum strength or
greater. As a second step then, the properties
of this percolation model must be determined. In
this paper we characterize several different kinds
of percolation models. The emphasis here is on
the mathematical concepts and considerations
needed to solve the percolation problems. Several
simple examples are given. In the following pa-
per thereafter referred to as paper II) we address
the questions of how and when percolation models
may be advantageous ly used to solve phys ical
problems. As detailed examples we compute the
electrical conductivity of several model materials,
including some which simulate impurity conduction
in crystalline semiconductors and variable-range
hopping in amorphous semiconductors. These cal-
culations are performed by a Monte Carlo tech-
nique with the aid of a computer and the results
are compared to the predictions of percolation
theory.

Before discussing the details of specific perco-
lation problems, we use Sec. II of this paper to
formally develop several concepts concerning per-
colation. These features are then used to define
a classification scheme for percolation models of
various types. Section III contains a discussion
of primary methods for solving percolation prob-

lems. In particular, a description of our Monte
Carlo technique is included. In Sec. IV we present
results of Monte Carlo solutions to many percola-
tion problems. On the basis of these results we
examine in Sec. V the validity of empirical 'Mules

of thumb" which others have used to solve perco-
lation problems; these are the critical volume
fraction rule and the average number of bonds
per site rule. "We show that as general rules
they certainly fail, but for certain classes of prob-
lems they may be quite useful as accurate approx-
imations. Our results are summarized in Sec. VI.

II. DEFINITION OF THE PERCOLATION PROBLEM

Before discussing the solutions of specific per-
colation problems, we wish to set forth our views
concerning the types of problems to be solved.
We do this to establish a framework in which rela-
tions between problem types may be seen, and
also because conventional, regular lattice model
classifications are not sufficiently general to de-
scribe problems on the random lattice. For read-
ers who are familiar with previous discussions of
percolation on regular lattices, we note that al-
though our formulation may seem at first quite dif-
ferent, it is equivalent to the others in all essen-
tial aspects. It is only necessary to remember
that in our formulation the term "site" is the same
as an "occupied site" in previous work. '

The essence of percolation theory is to deter-
mine how a given set of sites, regularly or ran-
domly positioned in some space, is interconnected.
Although percolation theory may be applied to fi-
nite sets, we consider only the case for which we
have a given infinite set of sites. This set extends
infinitely far in one or more dimensions. To de-
termine how these sites are interconnected we
need the bonding criterion which specifies whether
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any two sites are connected. (The bonding crite-
rion could involve more than two sites, but we
shall consider only pairwise criteria. ) The bond-
ing criterion is in general a function of one or
more bonding Parameters. These parameters may
or may not be directly associated with the sites.
In the former case they are deterministic param-
eters, in the latter they are Probabilistic param-
eters. Two sites belong to the same cluster if
there is an unbroken sequence of bonds from the
first site, through other sites, to the second site.
For a given set of sites, percolation theory at-
ternpts to determine the distribution of cluster
sizes as a function of the bonding criterion. In
particular, and of primary interest in this paper,
one would like to find the bonding criterion for
which clusters of infinite size first form.

The bonding criteria of interest to us may always
be expressed by a bonding function, 8,&, which is
a Heaviside (step) function,

0 if x&0
I if x&0,

or a product of such functions. The argument of
each H(x) is an expression of the form

where (b„b&) represents the set of deterministic
parameters assigned to sites i and j, {P,&j is the
set of probabilistic parameters for the ij pair,
E,&

is some function of these parameters, and the
quantity C we shall call the cluster Parameter,
since its value determines the distribution of clus-
ter sizes in a given model. Formally, we say that
a bond between sites i and j exists if and only if

where A is the number of Heaviside functions in
the bonding criterion.

%e shall find it convenient to classify all types
of percolation models according to their bonding
criteria in the following manner: (i) If the bonding
criterion contains any probabilistic parameter. ',
it is a Probabitistic bond model. (ii) If all bonding

parameters a.re deterministic, and if the number
of independent parameters, n, is less than or
equal to the dimensionality of the space in which
we choose to treat the model, then it is a site mod-
el in n-dimensional space; otherwise it is a de-
terrninistic bond model.

%ithin our classification scheme, we note that
site percolation becomes merely a special case
of bond percolation.

III. PRIMARY METHODS OF PERCOLATION SOLUTIONS

Before examining the solutions ot various bond

and site percolation problems, we first want to

consider the methods of solving these problems.
A complete solution would entail establishing the
entire distribution of cluster sizes as a function
of the bonding parameters and bonding criterion.
Such a complete solution is beyond the scope of
this paper and we confine ourselves here to the
determination of the critica, l value of the cluster
parameter, C„ i. e. , the value at which infinite
clusters first form. As we show in paper II, this
is the quantity used in the critical path analysis of

physical problems and thus is important by itself.

A. Exact methods

Only for a few special cases have exact solu-
tions to percolation problems been obtained. Fish-
er and Essam ' have obtained several exact re-
sults for percolation on Cayley trees and related
cacti. A Cayley tree is a lattice for which a
closed loop of sequential bonds is forbidden and
a cactus is obtained by decorating the vertices of
trees with finite graphs. Also by taking advantage
of special properties of certain two-dimensional
regular lattices with nearest-neighbor bonding,
Sykes and Essam have deduced exact solutions
for a few cases. These solutions have been
marked by a superscript e in Table I.

Aside from- those just mentioned, we know of no

other exact solutions to percolation problems.
That is, no exact results at all are available for
three or more dimensions. Even in two dimen-
sions none is available for random lattices, for
nth (n & I) nearest-neighbor bonding, for zero
hard-core size, or for correlation effects. Al-
though Zallen and Scher have recently proposed
an exact solution for a special case of "percola-
tion on a continuum, " we shall demonstrate by
counterexample in Appendix A that their claim is
unwarranted.

8. Approximate methods

In lieu of exact results, two primary methods
of estimating percolation solutions to specific
problems have been used extensively. By forming
a series expansion of the mean cluster size, one

may study the convergence properties of this se-
ries as a function of the bonding parameters and

the bonding criterion. %e shall not discuss this
technique further. The other technique is to util-
ize Monte Carlo methods in conjunction with a

large computer. ' ' This is how we have obtained
all our results presented here.

Because most of the physical problems in which
we were interested involve random site positions,
and because we felt that regular lattice cases had

already been adequately (for our present purposes)
solved by others, we have solved only percolation
models with random site placement. For purposes
of later discussion, however, we summarize many
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TABLE I. Percolation results for regular lattices. ~ A superscript e indicates
an exact result from Befs. 7 and 11. In the column. headings n denotes bonding out
to the nth nearest neighbor, s is the total coordination number corresponding to n,
f is the packing fraction of spheres, p~ c is the critical site percolation probability,
p& c is the critical bond percolation probability, CVF is the critical volume frac-
tion (Bef. 4), and Sc is the average number of bonds per site at percolation.

Lattice

Honeycomb 1 3 0. 61

PS,C

0. 700
0.300

CVF

fPS,C

0. 427
~ ~ ~

2. 10
3.60

PS,C

0.6527'

C

gp t)

1 96e

Kagome

Square

4 0. 68

1 4 079
2 8

~ ~ o

0. 6527'

0, 590
0.410
0.292

0. 466
0. 548

2. 36
3.28
3.50

0 444 2 61

0. 5000' 2. 00'

Triangular 1 6 0. 91
12
18 ~ d 0

0 500
0.295
0.225

O. 455'
~ ~ t

3. 00~ 0. 3473~ 2. 08~

3. 54
4. 05

Diamond

sc

bcc

fcc

4 0.34 0.425

1 6 052
2 18
3 26

0.307
0. 137
0. 097

1 8 0. 68 0. 243
2 14 ''' 0 175
3 26 ''' 0 095

1 12 0, 74 0. 195
2 18 ' ' 0 136
3 42 ''' 0. 061

0. 145

0. 160
0. 192

0, 165
~ ~ ~

0. 144
~ ~

1.70

1.84
2. 47
2. 52

1.94
2. 45
2. 47

2. 34
2. 45
2. 56

0. 388

0.247
0 0 ~

0. 178

0. 119

l. 48

l. 42

l. 43

hcp l 12 0.74 0.204

~After Shante and Kirkpatrick Ief. 1).

0. 151 2. 45 l.49

regular lattice results' in Table I.
Since our Monte Carlo method of solving perco-

lation models differs somewhat from previously
published ones, we give a brief description of our
technique. Using the RANF pseudorandom number
generator available on PDP-10 and the CDC-6600
computer systems, we generate the site coordi-
nates and any of the other bonding parameters.
On both computers the output of RANF is a number
between zero and one. The PDP-10 returns this
number with 27 binary bits (8 significant decimal
places), while on the CDC-6600 the number has
48 binary bits (roughly 14 significant decimal
places). The starting points or "seeds" for RANF

were selected for each computation by generating
then discarding a selected, but arbitrary, number
of unused numbers ~ To generate the coordinates
for X sites we picked a seed, generated all X of
the x„picked another seed, generated all of the

y, , and likewise for z; (if used). This procedure
produces a random array of X, sites in a square
(cube) of side unity and thus the site density is also
given by X,. If additional bonding parameters
were assigned, RANF was used in the same way.

For a given bonding criterion every site is

checked against every other site. If two sites
satisfy the bandit criterion, they are assigned a
cammon cluster identification number. All sites
within the same cluster have the same cluster
identif ication number

To test for percolation we establish boundary
regions at the edges of the squares (cubes) as
illustrated in Fig. 1. Their thickness is roughly
the critical banding distance. If any two sites in
opposite boundary regions have the same cluster
identification number, then we say the sample is
percolating in the direction perpendicular to that
boundary.

For a given sample we start with a subcritical
value C for the cluster parameter and check for
percolation. The value of C is increased in small
increments until percolation is detected in all
spacial dimensions. %e take the critical value

C, of the cluster parameter to be the average of
the C,- values for each direction of percolation.
For each percolation model considered we have
run many different samples. The average of all
determined C, for a given model and the standard
deviation of their distribution were computed. For
models in which C, is a critical bonding radius R„



1424 G. E. PIKE AND C. H. SEAGER

I ~
0

I

0
I

~ I

I

I

~ ~
I

~ I

the results are given in column 6 of Tables II and
III. All of our results are presented in detail in
the next section.

IV. RANDOM-LATTICE RESULTS

Boundary Regions

FIG. 1. Illustration of boundary regions used in our
method of solution. YVhen sites in opposite boundary re-
gions first belong to the same cluster, we say that the
sample is percolating in that direction.

bonded; otherwise they are not. The percolation
problem is to find the critical radius R, at which
an infinite cluster of connected sites is formed.
The second geometric construction, which histori-
cally has been used much more often than the IF,
is illustrated for this model in the right-hand half
of Fig. 2. Again, circles of some radius r (= —,'R)
are circumscribed about each site. However in
this construction, two sites are bonded if their
associated circles overlap. We shall call this the
ovexfaPping

figure

(OI.F) construction. Although

the IF and OLF constructions are trivially related
for this percolation problem, we have presented
them for a definite purpose. Using OLF construc-
tions (mainly on regular lattices) workers have
used critical volume fraction methods to solve
percolation problems. ' ' ' In Sec, V of this
paper we examine this method, as originally pro-
posed, and find it to be a bad approximation in

many cases. On the other hand, the IF construc-
tion is more general and is better suited to dem-
onstrating the relation between site and bond perco-
lation problems on both regular and random lat-
tices.

With these two types of construction in mind, we
now consider the site and two types of bond models
on the two-dimensional random lattice for sites
with no hard-core interaction. That is, sites may

Using our Monte Carlo parameter selection
technique we have solved various percolation mod-
els. The results, in terms of the critical cluster
parameter value, are given here and summarized
in Tables II and III. The motivation for our choice
of models and the implication of the results are
discussed in Sec. V.

SITE PERCOLaTION

INCI USIVE FIGURE OVERLAPPING FIGURE

A. Circles

Within this section we describe our solutions to
several two-dimensional models in which bonding
is wholly or partly determined by the distance be-
tween sites. That is, the bonding function will
contain H[R —F;&(d;&)], where F;&(d,&) is some func-
tion of the intersite separation

d, , = [(x, -x,.)'+ (y, -y,.)']'~' .

For purposes of latter discussion, both here and
in paper II, it is helpful to visualize these models
(and others) in terms of two, geometric construc-
tions. As a specific illustration of these, we con-
sider site percolation on the random two-dimen-
sional lattice for which the bonding criterion is,

8;; =H(R —d;;) = I .

The left-hand side of Fig. 2 shows what we shall
call the inclusive fig ere {IF)construction. About
each site a circle of radius R is drawn. By Eq.
(2) two sites lying within each other's circle are

FIG. 2. Illustration of inclusive figure and overlapping
figure constructions for two-dimensional random-lattice
site problem. The same set of randomly located sites is
shown. in each half of the figure. All bonds between sites
whose separation. is less than or equal to R (=-2r) are
drawn. For clarity only the IF circle about the central
site is shown although all sites have one in the IF con-

structionn.
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TABLE II. Percolation results for the random two-dimensional lattice. rHC is the hard-core
radius, 7~=1/v'~N~, p& is the probabilistic bond probability, X~ is the site density, the number of
computer samples solved for each model is shown to the right of N„R~ is the critical bonding radiu:
at percolation, oz is the standard deviation of the data used to find R~/2F„B, is the average number
of bonds per site at percolation, and CAF is the critical area fraction.

Model

Shape

Uniform ci rcle s 0
0
0

0. 3
0. 5
0. 707
0. 707

0
0

0. 50
0. 25

400
1000
4000
1000
1000
1000

400
4000
4000

No. of

samples

23

cP 2

22
8

20
20

R,/2~,

l. 064
l. 067
1.058
0. 996
0. 923
0. 887
0. 898
1, 28
l. 585

0. 058
0. 037
0. 026
0. 042
0. 020
0. 009
0. 009

4. 53
4. 55
4.48
3 ~ 07
2. 68
2. 16
2. 30
3.28
2. 51

CAF

0. 678
0. 680
0.674

Variable circles
y')=E]R /2, 1 =E) 0

1000 1.853 0. 088 4. 01 0. 682

Uniform squares

4000

4000

l. 848 0. 053 3.98

l. 050" 0. 023 4. 41

0. 680

0. 668

Sticks
random angle

1000 10 2. 118 0. 045 3.635

'See Appendix B. ~Equivalent-area circle radius. See Sec. IV 8 of text.

lie arbitrarily close together. Then the effect of
having a hard core is examined. In all cases the
critical radius will be normalized by 2F, -=2,''VgN, .
This is an arbitrary, but convenient, normaliza-
tion factor which- is roughly the average lattice
constant for these random lattices.

1. Site percoiation

For this site percolation problem all sites with-
in some radius R of another site are bonded to this
site as discussed above. In paper II the solution
of this model is used directly to calculate impurity
conductivity in lightly doped low compensation
semiconductors. For samples of N, = 400, 1000,
and 4000, we find the average critical radius
R,/2r, to be 1.064, 1.067, and 1.056, respective-
ly. The effect of increasing the sample size by

a factor of 10 is mainly to decrease the standard
deviation of the distribution of individual sample

values. Although the average value changes by
less than 1~&, there is a tendency C, more noticeable
in the three-dimensional results) for the small
samples to yield larger values for R, . Ambegao-
kar, Cochran, and Kurkijarvi ' have observed a
similar behavior in terms of resistor networks
which they explain as due to the finite sizes of the
sa.mples.

Other investigators have attempted to calculate
the value of R, for this model. Using a Monte
Carlo technique Gilbert' estimates R„'2F, = 0. 895,
and by a different Monte Carlo method, Roberts'
deduces R,, '2i, = 0. 977. We believe both of these
values to be in error because the procedures for
obtaining them did not properly account for large
clusters. ' Pollak has calculated a lower
bound of R,,'27, ~0. 5 for this problem.

Dalton, Domb, and Sykes have used a series-
expansion technique to examine site percolation on

TABLE III. Percolation results for the random three-dimensional lattice. All symbols have the
same meaning as in Table II, except that F~ = (3/4~X )~~3 and CV1" is the critical volume fraction. .

Model

Shape

Uniform spheres

Variable spheres
x& =E&R /2, 1- E& ~ 0

~See Appendix B.

0 1 1000

0 1 8000

0 1 8000

No. of
samples

65

13

R,/2r,

0. 7150

0. 7048

l. 131

0. 0229

0. 0057

0. 004

2. 92

2. 80

2, 17

CVF

0. 306

0. 295

0. 303
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many regular lattices as a function of increasing
bonding range. Extrapolating the results from
first, second, and third nearest-neighbor bomiing
to much larger bonding distances they find 4. 5
bonds per site at percolation. This extrapolated
result should yield our results since the effect of
the hard core and the regularity of the regular
lattice becomes negligible for bonding distances
much larger than the hard-core radius. ' Their
value of 4. 5 bonds per site corresponds to a criti-
cal radius of R, '2T, = 1.06, in excellent agreement
with our value of 1.058. In light of the above dis-
cussion we feel confident in a value of R, '2r,
=1.06+. 03.

2. Probabilistic bond percolation

In this percolation model each possible bond be-
tween sites, whose separation is less than the
maximum bonding radius, has a probability P~ of
existing. Thus the bonding function is

Be = H(R —d, ~)H(P ~
—P,,),

where P;, is a random number with value between
zero and one. For P~=1 we have the site model
just considered. To solve the problem for P~&1
we started with a site model and then eliminated
a fraction, q =1-P~, of the bonds at random (cf.
Fig. 3). Every time we incremented the maximum
bonding radius R, we reestablished all possible
bonds. The fraction of bonds, q, was then re-
moved four different random ways.

SITE PERCOLATION BOND PERCOLATION

R/2 ra (Ph =0.25)
I.58 I.62 1.66

I O
I.54

O
— + p =0.25

b

a b
o.s- ~ p =0.50

IJ

Q)~ 0.6-
E
D

~ 0.4-
C

0
D~ O. 2-
Q)

CL

oo
I,22 I.26 I.30

R/Zr, (p =0.50)
b

I.34

FIG. 4. Fraction of computer samples which percolate
versus the reduced bonding radius for the probabilistic
bond model. These results pertain to the bond model
discussed in Sec. IVA2. Here an IF circle of radius R
is drawn about each site and bonds are made to all other
sites within that circle. Then a fraction q= 1 -p& of
these bonds are discarded at random. The fraction of
samples which percolate with the remaining bonds is
plotted as a function of R. The diamonds and upper ab-
scissa refer to p&=0. 25. The circles and lower abscissa
denote results for p& =0.50.

After each time, we checked for clusters span-
ning the square. In Fig. 4 we give our results for
P~= 0. 50 and P~=0. 25. There we plot the fraction
of percolating samples versus R If we determine
the critical radius from the value at which this
fraction is 0. 5, then we find R,/27, = 1.28 for P»
= 0. 50 and R,/'2F = 1 . 59 for P, = 0. 25.

3. Deterministic bond percolation

Instead of removing bonds at random, one may
make bond elimination dependent on site param-

\0

0

FIG. 3. Illustration of the difference between site and
bond percolation models discussed in Sec. IV A. (a) In.

the site model, bonding is determined solely by the in-
tersite separation, i.e. , B&&=H(R —d&&). All sites with
separations less than or equal to R are bonded. (b) For
the bond problems, bonding depends on more than just
separation (see text). However, one still has no bonds
if d, ~&R.

FIG. 5. OLF construction for variable circle (deter-
rninistic bond) percolation model. Each site is randomly
assigned a parameter E& between zero and one. The
OLF circle about each site has radius r& =E&R//2. Two
sites are bonded if their circles overlap; i.e. , if the
intersite distance, d&&

~ (E&+E&)R/2.
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eters. One way of doingthis is to assign each
site a parameter E; between zero and one. If the
bonding function is 8;& = HIR —

2de /(E, +E&)], then
again we have a bond problem in two dimensions
with respect to R. This problem is best viewed
in an OLF construction as shown in Fig. 5. In
the problem we solved, the E; values were uni-
formly distributed between zero and one and were
assigned randomly using the RANF function. The
OLF construction is then a mixture of variable-
siz ed circles with radii ranging from 0 to ~R.
For samples of X,=1000 and 4000 we find R, '2r,
=1.853 and 1.848, respectively. Here, again, in-
creasing the sample size has negligible effect on
the average, but does significantly decrease the
spread of sample values.

This same problem may also be viewed as site
percolation model in a limited three-dimensional
space by treating the parameter F-; as the addition-
al dimension. The IF construction in Fig. 6
schematically demonstrates the model. The bond-
ing criterion is the same as before. Even though
the model is three dimensional, we are only in-
terested in clusters spanning the two spacial di-
me nsions.

We note here that this model is somewhat corre-
lated in the sense that sites of large ~; are gen-
erally bonded to more sites than average. An ex-
ample of an uncorrelated deterministic bond prob-
lem is provided by the stick model considered be-
low (Sec. IVC).

4. Site percolation, nonzero hard core

Thus far we have discussed models in which the
sites may be arbitrarily close together. What is
the effect of establishing a hard-core circle of
radius r«about each site, so that no site is per-
mitted within 2rH& of any other site? We solved

ps

EnR EbF| EcR
2 2 2

FIG. 6. IF construction for variable circle problem
considered as a limited-dimension site percolation model.
This construction is for the same problem illustrated by
Fig. 5. Only one spatial dimension is shown for clarity.
The actual figures are frustrums of right cones whose
altitude is unity and whose base radii are E&R/2 and (1
+E&)R/2. In this particular illustration sites a and b

are bonded, whereas site c is bonded to neither a nor b.

I.O

I i i I

e Random
~ Square
0 Honeycomb
a Triangular

09-
R

2 I's
O.S-

07-

0.6
0.0 0.2 0.4

&HC/rs

/

/

/
/

/
/

/
/

/

/

/
/

'
Rc-2rHc

0.6 O.a

FIG. 7. Effect of a hard core on the critical bonding
radius for site percolation in two dimensions. In this
graph we plot as circles our Monte Carlo determination
of the critical radius R~ as a function of the hard-core
radius ~HC for site percolation on the random lattice.
The upper circle at rHc/F~= 0. 707 is for the eight sam-
ples of 400 sites. The lower circle is the result for the
22 samples of 1000 sites. The solid line is simply a
smooth fit to this data. The other points on the graph
denote results for site percolation on various regular
two-dimensional lattices. The values were determined
from Table I. The dashed line is an obvious lower
bound to R which is exact for regular lattices.

this problem for a range of r„c. To do so our site
coordinate selection procedure was modified such
that first a. trial pair of (x, , y;) were generated.
The computer then checked the distance from this
site to all sites already established. If the trial
site was not within 2r„c of another site, it was
accepted as a new site. Otherwise itwasdiscarded
and a new pair of (x;, y;) was tried. This proce-
dure was followed until the prechosen ~&, number of
sites were placed. For r«= r, /'atypically 25~,
trial pairs of site coordinates were required to
obtain iV, satisfactory sites. Note that our proce-
dure involves no internal or external influence on
the sites other than the hard-core exclusion. In
particular, no established sites were nudged aside
to make room for a trial site. Thus, physically
speaking, our samples were not subject to an ex-
ternal compacting force.

As before, the value of the maximum bonding
radius was raised until a cluster spanned the
square. A graph of our results is shown in Fig. 7.
Also shown are results for several regular lat-
tices obtained from the data in Table I.
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B,( = H(L —2A)H(L —2B),

where

(3)

(y 8~)/sin(8; —~&)

8 =d;& ~sin(y —6;)/sin(6; —9,)
~

y = tan ' [(y, —y, )/(~,. —~,.}],
d;& = [(~; —&;)'+ (y; —y;)']"'

Using the illustration in Fig. 9 plus the law of
sines will demonstrate the correctness of this
criterion. Clearly there is a maximum bonding
radius R =L for this model. %'e find the critical
value to be R,/27, =L,/2i, =2. 118. This is ap-
proximately twice as large as the value found for
site percolation among uniform circles.

D. Spheres

FIG. 8. IF and OLF construction. for site percolation
model of oriented squares. Part a shows the IF and part
b the OLF constructions for the bonding criterion, I x&

—x) I + I y] —y) I
~ M.

B. Squares

Early in our investigation we wondered about

the effect of changing the bonding criterion in a
site percolation model. Instead of

B,, = H{R —[(x,. -x,)2+ (y, - y,.)']"')

For three spacial dimensions, we solved con-
siderably fewer problems. To obtain statistics
comparable to those in two dimensions, .V, 3D

must be roughly (iV, 2n) because the measure
of finiteness and fluctuations is determined by the
average number of sites per box edge length. The
computation time goes nearly as X, for any dimen-
sion, and thus the cost climbs rapidly. Fortunate-
ly, most of our comments on percolation theory
could be illustrated with two-dimensional examples,
and only a few three-dimensional solutions were
necessary,

used for the circles, we chose

In either an IF or an QI,F construction, this cri-
terion yields oriented squares about each site. In

the former case the square side is of length iM~2;
in the latter it is M ~2as shown in Fig. 8. Eight
samples of X,= 4000 were tested with this crite-
rion. %e find the critical value of M to be»~, /27,
= 1, 316. If one expresses this in terms of the ra-
dius of a circle (IF) whose area is equal to the
square's area, one finds R,/27, = l. 050. This is
quite close to the value of 1.058 obtained for site
per colati on with circles.

C. Sticks

Consider a collection of sticks 4, line segments)
of length I, each centered on a site. Each stick
is given a random azimuthal orientation, g ~ 6;» 0
as shown in Fig. 9. If two sites are bonded when

their sticks overlap, what is the stick length re-
quired to have percolation P To answer this ques-
tion we generated ten samples of i&, =1000 in the

normal manner. The 6& were assigned using RANF.

For the bonding criterion we required that

FIG. 9. Diagram for determining bonding criterion for
a stick (deterministic bond) percolation model. Each
stick of length I. is centered on a site and has some ran-
domly assigned orientation angle 8&. If bonding occurs
when two sticks overlap, then the bonding criterion is
~ =I.l»nd~= I/2.
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1. Site percolation

As in two dimensions, we generated a random
array of sites and checked all pairs using the bond-

ing function,

B;,. = H/R —[(x; —x, ) + (y, —y;) + (z; —z,.) ]'

Sixty-five of ~V, = 1000 yielded R,/'27, =0. 7150,
where 7, = (3/4vH, )'~ For. 13 samples of X,
= 8000 the value lowered to R,/27, = 0. 7048.

Dalton et al. and Domb and Dalton ' have solved
this same problem by their series technique, sum-
marized briefly in Section IVA1. They find an
equivalent critical radius of R /27, = 0. 696 which
is about 1 j~ lower than ours. Because of the ob-
served tendency for the critical value to decrease
as the sample size increases, we believe that our
value at N, = 8000 may still be somewhat high. In
fact an extrapolation of our results versus (I/N, )'
yields a limiting value of 0. 695.26

Roberts and Storeya' used a Monte Carlo method
to solve this problem. From 20 samples with a
maximum cluster size of about 25 they attempted
an extrapolation to infinite cluster size. Their
value was R,/27, = 0. 719+ 0.006. However, we do

not think their procedure takes proper account of
the large cluster sizes. ' As in two dimensions,
Potlak fi.nds a lower bound of R,/27, ~ 0. 5 for
this case.

Using site percolation on a simple cubic lattice
with the maximum bonding radius equal to three
lattice spacings, Holcomb and Rehr obtain a val-
ue of R,/27, =0. 66+0. 02. With their bonding cri-
terion the effects of regularity and the hard core
should be negligibly small. Ke do not understand
the difference between their result and ours (but

see the comments in Ref. 29).
More recently, Kurkijarvi has estimated R,/2r,

to be 0. 703 from computer calculations of a con-
ductivity problem on the random lattice. Also
Skal and Shklovskii using a Monte Carlo program
similar to ours have found R,/2r, = 0. f21 s 0, 008
at ~, = 1500, in good agreement with our value of
0. 715 at X,= 1000.

2. Deterministic bond percolation

As was shown for two dimensions, me may con-
vert the random site percolation model into a
deterministic bond percolation problem by assign-
ing each site a value of E&, 1~E;:0, at random.
For site separation d;&, the bonding function is
B;, =H[R —2d;&/(E;+E&. )j In an OLF constru. ction
we have a collection of variable-sized spheres
whose individual radii are x; = ~E,B. With values
of E; uniformly distributed between zero and one,
five samples were solved for N, -8000. The aver-
age critical bonding radius was R,/27, = 1.131.

Our solutions to all the random-lattice problems
discussed above are listed on Tables II and III. We
also give in those tables some calculated quanti-
ties which will be useful in the next section.

E. Hyperspheres

We have solved one percolation problem involv-
ing four spacial dimensions; this is the model of
uniform zero-core hyperspheres. The bonding
function is

B;,= HIR —[(w; —ge&)2+ (x, —x,. )2

+ (y; - y, ) + (2; -2;)'l" ')

We solved three computer samples of Ã, = 10 sites
randomly distributed throughout a hypercube. We
find that R,/27, =0. 613+0.068 where 7, =

(2/v H, ) We do. not believe that these three
samples are as statistically significant as the
small standard deviation might imply. However,
we know of no other similar work to which we may
compare our result. Although incidental to the
main themes of this paper, an interesting relation
between the percolation problems of zero-core
'spheres" in two, three, and four dimensions is
discussed in Appendix C.

V. SECONDARY METHODS OF PERCOLATION SOLUTIONS

For some percolation models, the direct solu-
tion by series or Monte Carlo methods can be very
difficult. By examining known solutions, theorists
have attempted to find common properties of these
solutions which might be regarded as invariants.
By induction, these "invariants" 'evould be used to
determine the critical cluster parameters of un-
solved models. In this section we examine two
such invariants in some detail.

A. Critical volunie fraction

The suggestion has been made, and subsequently
widely used, ' ' ' that the volume fraction occu-
pied by percolating OLF's is an approximate in-
variant depending only on the dimension of the
space. Regular lattice site models with nearest-
neighbor bonding (the basis for the original pro-
posal) show quite closely a critical volume frac-
tion (CVF) of 0, 15 in three dimensions and a criti-
cal area fraction (CAF) of 0. 44 in two dimen-
sions. ' However, for more general problems
we find that, in addition to the requirement of
meaningful OLF constructions, several other con-
siderations must be taken into account when using
CVF arguments.

The first point to be recognized is that the CVF
depends on the size of the hard core of the OLF's.
For the random-lattice hard-core samples that
we solved, a calculation of the CVF is very diffi-
cult, and so they cannot easily be used to support
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FIG. 10. Illustration of a site model with two different
OLF constructions. The solid-line, regular hexagon of
side L is the IF for a certain site problem. Either of
two alternative sets of OLF's could also be used to rep-
resent the bonding criterion: one set consists of regular
hexagons of side L/2 (dotted line); the other set is equa-
lateral triangles of side L (dashed line). Consider two

identical arrangements of sites. Let one set of sites
have the hexa.gons as OLF's and the other have the tri-
angles. Bonding within each set is identical. Thus at
percolation the number of bonds per site, B„ is the
same, but the occupied area fraction, the CAF, is quite
different.

this statement. However, Shante and Kirkpatrick'
have pointed out that the effect can be demonstrated
for regular lattices (hard-core radius equal to —,

'

lattice constant). For example (see Table I), when
the maximum bonding radius is changed from first
to second nearest neighbor, the CVF for the sim-
ple cubic lattice goes from 0. 26 to 0. 192 and the
CAF for the square lattice increases from 0. 466
to 0. 548. In the limit of bonding to the nth nearest
neighbor as n- ~ regularity of the lattice is negli-
gible, the relative hard-core radius goes to zero,
and the problem is equivalent to the zero-core
uniform sphere (circle) problem we have solved.
The CVF (CAF) is now given by (I —e "), where
y is the average number of sites within a volume
(area) the size of an OI.F (the 'results for our vari-
ous cases are in column 9 of Tables II and III). As
the relative hard-core size decreases to zero, the
CVF doubles from 0. 15 to 0. 295, while the CAF
increases from -0.44 to 0. 6'?4. Clearly the CVF
and the CAF have a rather strong dependence on
hard-core size.

Even among various zero-core site models, the
CAF technique yields different values. For exam-
ple, in Fig. 10 we show a regular hexagon IF. For
the bonding criterion this represents, there exist
two possible sets of OI F's —equilateral triangles
and regular hexagons. The sets are interchang-
able, since bonds among the two sets are identical.
Clearly, though, different areas are involved and
the CAF for the hexagons will be near 0. 67 found

Q ~ ~ 0

b.

FIG. 11. OLF construction for oriented and unoriented
rectangles. Part a illustrates a set of sites on a random
lattice; each site is the center of an oriented rectangle
of length L. If the width is sufficiently small, no infinite
clusters of bonded sites will occur. Part b shows the
same sites and rectangles, but now the OLF rectangles
have been given an random azimuthal orientation. Re-
gardless of their width if L ~ 2&&2. 118 F~, the rectangles
wil1, form infinite clusters. This figure is to help visual-
ize why the disordered rectangles percolate when an or-
dered system will not.

for spheres while the CAF for the triangles will
be close to 0. 53.

To illustrate another condition to be taken into
account, consider a randomly placed set of sites
which, in an OI F construction, have zero-core
oriented rectangles of length L = 2~ 2. 1187, about

them. As shown in Fig. 11(a), let the rectangle
width be so small that the occupied area fraction
is much less than the zero-core CAF, Thus per-
colation will not exist. Now let each rectangle as-
sume a random orientation about its site as shown

in Fig. 11(b). From our solution to the "stick"
model of Sec. IVC, we know that this set of figures
will now percolate. In fact, even if the rectangle
width went to zero, and hence also the occupied
area fraction, the set would still percolate.

Why does the CAF of the oriented rectangle
model differ from the CAF of its angularly dis-
ordered counterpart? It is not the fact that the
latter has an additional random parameter e~, nor
is it due to the former being a site percolation
model while the latter is a bond percolation model;
the variable circle and variable sphere models
both percolate at the zero-core CVF and thus are
counterexamples to each of these hypotheses. The
crucial difference, we believe, is in the nature of
the bonding criterion. Specifically, it seems that

a necessary condition for the validity of the CVF
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FIG. 12. Effect of a hard core on the critical number
of bonds per site. The circles denote our determination
of the critical number of bonds per site, B~, as a func-
tion of hard-core radius ~Hc for site percolation on a
random two-dimensional lattice. The solid line is sim-
ply a smooth fit to these points. Also shown for com-
parison are values for several regular lattices obtained
from Table I.

concept is that the bonding function be expressible
in the form

fJ 4 0 ™C~4 f IIg't IIy)
a='. .

where C, is the cluster parameter for the ath
Heaviside function, M, is a regular function of the
spatial coordinates x„and f, , is a regular func-
tion of all other deterministic parameters associ-
ated with site i.

Looking at the bonding criterion for the stick
problem in Sec. IVC [Eq. (3)] will reveal that it
cannot be put into the form of Eq. (4). We want
to emphasize that Eq. (4) is a completely empiri-
cal condition established on the basis of only a few
examples and the authors' intuition. It is prob-
ably not sufficient, but it is at lease consistent
with the results of all random and regular lattice
problems solved to date.

We conclude that the concept of a CVF can pro-
vide reasonable, approximate solutions to some
percolation problems. However, the CVF values
proposed originally must be modified according
to the relative hard-core size and other considera-
tions.

sions and nearly 1.5 in three dimensions.
Although this "invariant" may seem topologically

more satisfying than the CVF concept, we shall
demonstrate that the use of B, also has limited va-
lidity. Unlike the CVF rule, the existence of
meaningful OLF's is not required to calculate B,.

As for the CVF concept, the value of B, depends
on the core size relative to the average intersite
spacing. This dependence can be seen for regular
lattices by examining the B, columns of Table I
and the points in Fig. 12. For a given lattice the
lowest value of B, occurs for the classical, near-
est-neighbor bond model in which the sites are
most densely arrayed. Maintaining nearest-neigh-
bor bonding, if the sites are thinned to the classi-
cal site percolation density (concurrently increas-
ing the bond probability to unity), then B, increases
considerably. As the site density is decreased
further (and bonding radius necessarily increased),
the value of B, continues to increase. In the limit
of bonding radius large compared with the under-
lying vertex spacing, the value of B, tends to 4. 5

for all regular two-dimensional lattices 4' ' and
to 2. 7 for all three-dimensional lattices. ~4 As we
mentioned earlier, this limit must correspond to
the zero-core randomly placed uniform circle and
sphere problems we have solved. A glance at
Tables II and III reveals that our answers are in
good agreement with the regular lattice extrapo-
lations.

We have determined the dependence of B, on
core size for site percolation on a. random lattice.
B, is difficult to calculate from a knowledge of
B,/27, for these models, so we counted the num-
ber of bonds directly within our program. The
results for two dimensions are given in Table II
and in Fig. 12. Models with large core sizes

Probabilistic Bond Percolation
Random, 20 Lattice e

Bc

B. Average number of bonds per site

Another proposed dimensional invariant is the
average number of bonds per site at percolation,
B,.' This rule evolved from a study of bond per-
colation models on regular lattices with nearest-
neighbor bonding. Table I, column 9, demonstrates
that for these models B, is nearly 2 in two dimen-

2
0.0 0.25 0.50 0.75 I.OO

FIG. 13. Critical number of bonds per site for prob-
abilistic bond percolation. For the random two-dimen-
sional lattice, we show the dependence of B~ on the frac-
tion p& of possible bonds for a probabilistic bond model.
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were difficult to study with our site placement
algorithm, so no results for r«& r, /W2 were ob-
tained. However, the general dependence is
clearly demonstrated.

For the several zero-core models we have
solved, only the site problems (uniform circles,
squares, and spheres) seem to have an invariant
value of 8,. All the deterministic bond problems
considered here have 8, lower than found for the
site problem. For instance, the variable circles
were found to percolate at 8, = 3. 98.

We originally thought that the probabilistic bond
problem might possess an invariant B„since it
was this ease on regular lattices which spawned
the concept. However, Fig. 13 shows that as the
probability for having a possible bond, P~, drops
from unity, the value of 8, also decreases marked-
ly.

From a consideration of these results, we con-
clude that 8, is not a, true dimensional invariant,
but the concept may be useful as a secondary solu-
tion technique in some cases if proper considera-
tion is given to its limitations.

VI. SUMMARY

We began this paper by formally defining the per-
colation problems. We emphasized particularly
the role of the bonding function and the distinction
between deterministic and probabilistic bonding
parameters. Percolation models were divided in-
to several categories which were useful in discuss-
ing problems on the random lattice but yet were
compatible with previous definitions for the regu-
lar lattice.

Following a discussion of primary methods for
obtaining percolative solutions, including our own,

we presented the results of our Monte Carlo cal-
culations for many random-lattice models. The
models were chosen to illustrate the effect of hard-
core interactions, probabilistic and deterministic
bonding parameters, and various forms for the
bonding function.

Using our random-lattice results and the regular
lattice results of others, we have examined two
secondary methods for solving percolation prob-
lems. Both the CVF concept and the 8, concept
were found to be useful for this application in some
cases. However, neither quantity was found to be
a dimensional invariant as core-size effects and
other factors affect their value significantly.

APPENDIX A: ZD CAF

In a. recent paper, Z allen and Seher'o posed a
two-dimensional percolation problem for which
they claimed an exact solution. Following their
notation we let @(E)be the area fraction available
to carriers moving in a potential field as a func-
tion of their energy E. A particular value E»2

is defined by the relation, A(E, &,) =&. They claim
that if

4(Eig2+&E)+4(Egy2 —&E) = I~ (A I)
then P,(E) = critical area fraction = &. By the fol-
lowing simple eounterexample we wish to show
that Eq. (Al) does not yield @,= —,.

Consider a model for which P(E) = ~ for all E
Equation (Al) is clearly satisfied. An example of
such a model is that of hard, nonoverlapping disks
or circles of radius r„c = I//2', where N is the
two-dimensional density of sites. In the context of
Zallen and Scher's paper this corresponds to car-
riers able to move within the disks but not through
the intervening medium. Carriers are permitted
to move from one disk to another only if the disks
touch. If these disks a,re randomly distributed in
space, we may then use the results of our hard-
core calculations as presented in Fig. 7. From
these results we can see that when P =-, (r«/r,
= 0. 70'f) the bonding radius required for percola-
tion, R„ is larger than 2r«. Thus the area frac-
tion P =(r„c/r, ) must be larger than; for these
disks to percolate when R, = 2r«.

The above model is not the only example of when
Eq. (Al) fails to guarantee @,= ~. 3~ Furthermore
the counterexamples are not limited to models with
hard cores as zero-core instances are also found"
with $, = 0. 68.

Using the terminology of Zallen and Scher, the
symmetry expressed by Eq. (Al) is not sufficiently
stringent to ensure that the critical area fraction
for oceans and continents must be equal.

APPENDIX B: CVF FOR VARIABLE SPHERES

For the variable sphere and circle (determinis-
tic bond) models considered in Sec. IV, OLF's
may easily be constructed as shown in Fig. 5.
Each site is assigned a random parameter E; be-
tween zero and one. With the bonding condition
that d, „.

~ (E;+E,)r, the radi. us associated with
each site becomes E,.r, where r is the maximum
radius. Let N(E, )dE, be the density of sites with
parameter value E; to E; +dE;. Further let

A(E, ) = vE;r~„

and

V(E;)=( 4v/) 3E'r3.

These are the area and volume occupied by indi-
vidual OLF's in the appropriate dimension. Since
there is no hard-core exclusion in this problem,
the probability that an arbitrary point (in the two-
dimensional case) is not covered by a circle of ra-
dius E,r is' exp[ A(E, )N(E, ) dE-;]. The probabil-
ity that a,n arbitrary point is not covered by any of
the OLF's is then exp[- f'A(E, }N(E,}dE&].

Using the notation established in Sec. IV (r = 2R)
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and the uniform X(E;), one finds the critical area
fraction to be

form "spheres" in d spatial dimensions. From our
results B, seems to obey the equation

1 —exp[ —3(vR, .V, /4)] =1 —exp[ ——,'(R,/2r~) ] (8,)" = const = 20 . (C1)

Likewise, the critical volume fraction in three
dimensions is

1 —exp[ ——,(4'', N, /24)] = 1 —exp[ —~(R,/2r, )'].
From Sec. IV we find numerically that the variable
circles and spheres, respectively, percolate when
the CAF is 0, 680 and the CVF is 0. 303.

APPENDIX C: 8 VERSUS DIMENSION

We wish to note here an interesting numerical
relation observed between values of B, for site
percolation among zero-core randomly placed uni-

For two dimensions Eq. (Cl) yields B, =4. 47 com-
pared to 4.48 found by us and 4. 5 found by Dalton
et al. and by Domb and Dalton. ' In three dimen-
sions the equation gives Bc =2.71; we find 2. 80
which, as we discuss in Sec. IV, should be slightly
larger than the value of 2. 7 from Domb and Dalton. '
Equation (Cl) is solved by B,=-2. 11 in four dimen-
sions, whereas we find 2. 3 ~ 0.2.

At this point Eq. (Cl) is completely empirical.
We present it in the hope that a study of this rela-
tion will lead to a quantitative understanding of the
role of dimensionality within percolation theory.
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