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An LCLO (linear combination of localized orbitals) cluster method using a small basis set is
developed to calculate the electronic structure of SiO, . The localized orbitals are obtained by Kunz's
approach to the Adams-Gilbert equation. The matrix elements of the Fock operator F & are evaluated
in Gilbert's version of extended Huckel theory, which involves expanding F & in powers of overlap
integrals and keeping only terms of first order. Molecular orbitals and energy levels for a chosen
cluster representing the solid system are then calculated by solving a secular equation. This paper
discusses our approach, which involves no disposable parameters, compares it with other recent
modifications to extended Huckel theory, and presents results of sample calculations on H, and H, O
molecules for the purpose of testing our method and computer programming.

I. INTRODUCTION

This is the first of two papers on the electronic
structure of SiO, . In this paper we discuss the
theory involved in the calculation and give the re-
sults of sample calculations on H, and H, O mole-
cules. In the following paper we shall present and
discuss the results on SiO„comparisons with oth-
er calculations and with various experiments will
also be given.

We have developed a new' technique in the form of
an LCLO-MO [(linear combination of localized or-
bitals)-(molecular orbital)] model for calculating
the electronic structure of complex solid systems
such as SiO, . This method is based on Gilbert's
version of extended Hiickel (EH) theory, ' called
the "KO (kinetic-energy overlap) approximation, "
which is derived from an overlap expansion of the
Fock matrix for localized orbitals obtained by
solving the Adams-Qilbert equation. "Qilbert's
version involves several significant improvements
over the conventional EH theory" (i) Localized
orbitals (LCys) are used instead of the usual
Slater-type atomic orbitals. The LO's, calculated
in a crystalline environment, form a better basis
set than do atomic orbita, ls. (ii) Matrix elements
of the Fock operator are calculated directly, not
by guessing. (iii) A certain amount of self-consis-
tency is included in the calculation.

In Sec. II we briefly discuss the concept of local-
ized orbitals and the Adams-Gilbert equation for
the LO's and describe the method of solution of the
equation. The Qilbert KO approximation is derived
in Sec. III, where the matrix elements of the Fock
operator are given explicitly. In Sec. IV we formu-
late the LCLO-MO method to calculate the MO en-
ergies and MO coefficients for polyatomic sys-
tems. In Sec. V we discuss the open-shell approx-
imation made for the systems consisting of open-
shell atoms such as H, and H,O molecules. The

results of calculations on these simple molecules
are presented in Sec. VI. Finally, conclusions are
given in Sec. VII.

II. ADAMS-GILBERT EQUATION

Adams' and Gilbert' have shown that it is possi-
ble to derive a rigorous extension to the Hartree-
Fock (HF) equation in order to obtain localized or-
bitals, which may be regarded as atomiclike orbi-
tals associated with each of the constituent atoms
in any polyatomic system of closed-shell atoms.
In doing this, one can introduce a "localizing po-
tential, "

pU,'p, in the HF equation to obtain the
following pseudoeigenvalue equation, usually called
the Adams-Gilbert equation

(E —pU. p) lai) =t i lai),

where I' is the Fock operator, p is the density op-
erator, lai) are the localized orbitals associated
with the ath nucleus, e„are the eigenvalues, and

U,' is an arbitrary one-electron operator, chosen
to obtain localized orbitals. In Eq. (I), p is de-
fined as

p= P lai)S;,' „&ejl, (2)
ai, bf

where the summation is over all occupied orbitals,
and S ' = [S,,' „]is the inverse of the overlap ma-
trix S=[S„»]—= [(ai]bj )]. We can obtain S, „by
using the Lowdin expansion'

-1
Sai, bj 2~el, bf Sai, bj

+ P (I ~ice)( ~~ci)Sci, ca Sea, ii + ' ' '

ck

In order to solve Eq. (1), we proceed a,s follows:
We use Kunz's technique' to simplify Eq. (I) by
expanding the localizing potentials pU,' p in powers
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(4)

of the interatomic overlaps and retaining only the
lowest order terms:

pU,'p[ai) = Q (af)
[ U,' [ai) [ak).

The Fock operator is written as the sum

and

I Zb

F =F, +U, , (6)

(6)

in which

E, = =,'V' —2', /[r —II, [

— 'I 'I j( '))I j( 'll j '

j
aj r aj r' r-r'

where F, is the Fock operator for the ath atom
and U, is the atomic environment potential.

With the choice of U,'= U, and the use of Eqs. (4)
and (5), the Adams-Gilbert equation becomes

(I, + U, —6„)[ai) = g (ak [U, [ai) la@),

-'I-'l(j( '))(bj(')ld . (8)
bj

where Z, is the atomic number of the ath nucleus,
r -R, is the radial vector of the electron from the
ath nucleus, and the prime on the sum indicates
that the term a =b is omitted. Here we use atomic
units in which e = m =h =1, the unit of length is the
Bohr radius and the unit of ener gy is the Hartr ee.
Eq. (8) contains only the essential terms of U,
which must be retained in Eq. (6}for consistency
to first order in overlap.

With the explicit expressions for F, and U„we
may rewrite Eq. (6) as

j j
Z. I

--,'V'- - +2+ q'„.(r')[r-r'[ 'dr'-p - +2+ V'„(r')[r r'[—
j b bj

"w. I')- pm. ;(')Jw.';( ')q. ;( ')I
j

=Z(-(') f w.'. ( )(., (.) -p' - ~ 2g J jl, i~')ll -'I 'e') j . (())

This is the localized-orbital equation which we will
solve iteratively for each atom at inequivalent sites
in the polyatomic system.

Equation (9) is to be solved by the Hoothaan ana. -
lytic expansion method. ' By taking only the spher-
ically symmetric part of U, „we may assume the
one-electron solution to Eq. {9)to be of the form

III. GILBERT'S KO APPROXIMATION

The first step in deriving the Gilbert KQ approx-
imation is to analyze the Fock operator F for a
system which is composed of closed-shell atoms.
If the total state of the system is nondegenerate,
F is uniquely determined by the density operator
p [Eq. (2)l:

[ ai ) =- (p„), (r ) =R „)(r) Y) (8, y)X(s }, (10)

where R„, 's are radial functions, W's are spheri-
cal harmonics, X's are spin functions, and (nlm)'s
are quantum numbers. '

Then we assume the normalized radial functions,
rR„((r) to be in analytic form

rR„((r) = Q C,„( f(i„r' ' ""»e» ",

where N„ is a normalization constant and can be
expressed in terms of the parameters At j and Z»,

+2 r —r' 'p r', r' dr'- p(r, r') r —r'

(18)

In Eq. (13), F consists of four terms: the kinetic
energy, the Coulomb field of the nuclei, the elec-
tronic Coulomb potential, and the exchange poten-
tial, which will be denoted by T, V, V [p], and

[ p], respectively.
We then rewrite p as the sum

.v( =[(2Z )"""(j"/{2l+2A„+2)!])" (12)
pa ~pa + pab p (14)

Given the values of A. »'s and Z„'s, w can
solve Eq. 49) self-consistently for Cj„,'s and e„,'s
(e„( —= e„) by a matrix diagonalization technique. In-
stead of using a full variational method, we obtain
A„and Z» from prior calculations.

ab, a&b

where p, , 5p, , and p„are the atomic density op-
erator, the intra-atomic overlap density operator,
and a component of the interatomic overlap density
operator, respectively, and are defined by the fol-
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lowing equations:

Pg = Ql QS (15)

&aiIF Ibj& =S., »(e.i+a»)+&ail U.o lbj&

(28)

bp. =g lai&(S.—,'., —6,, )(ajl, (16)

(18)

ij
By using Eq. (3) for S, » and by omitting terms

of second order in the overlap, we can obtain the
following expansions:

I
bp, = —g lai)S„„(ajl=0,

ij

The KO approximation consists of expanding
(ai

I U, laj) and (ail U„lbj) in powers of overlap in-
tegrals and discarding terms of second and higher
order in the overlap.

To evaluate (ai
I U, laj), we rewrite Ecl. (8) as

g Nq —Zg,

2lbj(r')&&»(') I-iv, b('-ll, ) „,
p.~= —Q Iai&S.~. » &bj I. (18) VP1 ~ Q'Vo

b

These expansions will be used to analyze the ma-
trix elements of the Fock operator in terms of the
powers of the overlap integral.

In order to evaluate the one-center matrix ele-
ments of the Pock operator, we make the same
separation for F as before [Eg. (5)]

F —F +U'

For calculating two-center matrix elements, we
may use the following separation:

where N~ is the effect:ive nuclear charge of the bth
nucleus, V, ' is the Madelung potential of the sys-
tem having the ath ion removed (the point-ion po-
tential), and V', is the screened Coulomb potential
produced by the bth ion (or atom). In the case of
ionic systems, where N, w Z» the Madelung poten-
tial will be the dominant term. The matrix ele-
ments (ai I VPai& and (ai

I
V', laj) can be shown to

be of second order or higher in the overlap.
Therefore, we obtain

F =F +FR+V a T (20)
& ai

I U. I aj &
=

& ai
I
V ."I aj & .

(F, + U, —pU, p) Iai) =e„
I
ai &,

and the projection properties of p and pU, p

plai) = lai)

&ai Is U. plbj) =&ai IU. ibj &,

we obtain the following relations:

&ailF, I aj &
= e., b„.

&ai IF. Ibj& = e„s„,»
&aiIF~lbj& =e» S„„.

(21)

(22)

(23)

(24)

(25)

(26)

Using Eqs. (5) and (24), the one-center matrix
elements of the Fock operator between LO's may
be written as

(aiIF laj& =e„.b;, +(ail U laj&. (27)

Similarly, using Eels. (20), (25), and (26), the
two-center matrix elements of E become

where U„ is the environment potential of the ath
and the bth atoms (it includes the electronic Cou-
lomb and exchange interactions between the two
atoms).

Next we use the localized orbitals defined by the
Adams-Gilbert equation to evaluate the matrix ele-
ments of the Fock operator From .Eq. (1) (with
F = F, + U, and U,

' = U, )

V.; V'I p.b]==-p.~(» r')/Ir r' I—
and the expansion (19) for p„, we obtain

&ail V.', lbj& = S., »./III. -II, I,

(32)

(33)

where R, and R, are the position vectors of the
ath and the bth nuclei, respectively.

Therefore, we have

&ail U. Ibj&= &ail V." Ibi &+S.;, ;/III. -It
I

(34)

for the two-center matrix elements of U„, and

for the one-center matrix elements of the atomic
environment potential, and

&«IFIaj& =5;,~. +&aiIV."Iaj&

for the one-center matrix elements of the Fock op-
erator.

Similar analysis shows that there are only two
terms in U„which can give first-order (in the
overlap) contributions to the matrix elements of
(ail U„lbj), namely, the Madelung potential V~,'

of the system having the ath and bth ions removed,
and the exchange interaction V„between the ath
and bth atoms (or iona). By using the following re-
lation for V„,
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(ail V". laj)= 6„V".(R.),
&ai

I v.",lbj& = s„„v."„(R„),

(36)

(37)

where V,'(R, ) is the Madelung potential at the
point R„and V,",(R„) is the Madelung potential at
the midpoint R„between the two missing ions.

With Eqs. (36) and (37), the matrix elements of
the Fock operator become

&ai I
F

I aj) = b„l e„+Vr,'(R,)], (38)

&ailF Ibj& =S., „(e„+e„+1/IR.-R, ]+V,",(R„))

-&ai
I
Tlbj&. (39)

These equations are usually called the Gilbert KO
approximation because the only molecular inte-
grals appearing are the kinetic energy and overlap
integrals.

It should be noted that the matrix elements ob-
tained in the KO approximation contain no adjust-
able parameters. This is in contrast with conven-
tional EH theory. ' For example, Wolfsberg and
Helmholtz' have proposed the following form for
the elements (ai I

F lbj ):
& al iFl b&j=-' fbi ~, &&ailF lai&+&bjlF lbj&)S., „

(40)

with the quantity K«» set equal to 1.75. By
equating the right-hand sides of Eqs. (39) and (40),
we may compute effective values of the parameters
K„» and compare them with the value 1.75.

Several authors have recently proposed alterna-
tives to conventional EH theory. " In substance,
these all involve calculation of the two-center ki-
netic-energy matrix elements and parametrization
of the remainder. For example, Newton et al. '
have proposed the form

&ai IF lbj ) =&ailTlbj&

+le'S. ; ~, ( &laVilai&+&bjl Vlbi &&

where the V's are the potential-energy parts of
the diagonal elements of E. It is found that the ki-
netic-energy elements do not scale well with over-
lap, while the potential-energy elements do; this
permits a reasonable choice for K' to be made in
one of several ways. Results obtained with these
modifications have been encouraging. ' "

&ailF lbj) = S„„(e„+e„+1/IR,—R I)

+&ailv.'~ Ibj) —&ail Tlbi& (»)
for the two-center matrix elements of the Fock
operator.

For systems with ions at points of high symme-
try, the matrix elements (ai

I V, ' Iaj) and

& ai
I
V„'

I bj ) can be approximated by

The Gilbert approach may be compared with these
approaches, in that the total I element is not as-
sumed to be proportional to overlap and that a ki-
netic-energy element is explicitly included. The
chief difference is that the Gilbert approach is de-
rived directly from Hartree-Fock theory with no
disposable parameters, while the other alterna-
tives' " still involve parameters K', whose values
must be guessed, or estimated from more exact
calculations on smaller systems. Some of the ap-
proximations made in the derivation of the Gilbert
approach may be theoretically tested (such as ex-
pansion in powers of overlap); however, its appli-
cation to open-shell systems requires empirical
validation.

IV. LINEAR COMBINATION OF LOCALIZED

ORBITALS (LCLO)

It is noted that in the Adams-Gilbert equation
IEq. (21)]

the localized orbitals I ai ) are eigenfunctions of
the effective Hamiltonian E, +U, —pU, p, but not
eigenfunctions of the Fock operator I' which is
equal to F, + U„and the eigenvalues e„have no
direct physical meaning. In order to obtain the
molecular orbitals and energy levels for a poly-
atomic system, we may construct the MO's

I g, )
from linear combinations of the localized orbitals
associated with each atom in the system

IO &=pc sip&

where
I P) = lai) = LO's.

For each
I g, &, the average energy E, is calcu-

lated,

(42)

and the coefficients C; 8 are varied to minimize F;,
so that sE;/sC, s =0. This leads to a system of
linear equations

Q (F s
—E; S~s)C; s

——0, (43)
8

where F s = &a
I
F

I P) and S s =( a
I P), from which

the C;8 are calculated. The condition that these
equations are soluble provides the secular equation

IFas Es Seel=0~

from which the energy levels F; are obtained,
It is noted that: the present LCLO-MO method is

very similar to the conventional LCAO-MO method
except that localized orbitals will be used as basis
functions rather than the Slater-type atomic orbi-
tals in forming the molecular orbitals.
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V. OPEN-SHELL APPROXIMATION

So far, the Adams-Gilbert equation and the Gil-
bert KO approximation are derived only for sys-
tems of closed-shell atoms or ions. Recently,
Schlosser" has generalized the Adams-Gilbert ap-
proach for constructing localized orbitals to open-
shell atomic systems. He then made use of the
open-shell generalization of the Adams-Gilbert
equation to derive the EH approximation for open-
shell polyatomic systems. " These generalizations
of the Adams-Gilbert equation and Gilbert's KO
approximation to open-shell systems involve a
more complex mathematical formulation and com-
putational difficulties. From a mathematical point
of view, they are not in a convenient form for
practical calculation.

Alternatively, Kunz" has extended the Adams-
Gilbert local-orbital theory to open-shell atomic
systems using the symmetry and equivalence ideas
introduced into atomic HF theory by Nesbet. " Ba-
sically, the method involves solving the same lo-
calized-orbital equation [Eq. (9), written in inte-
grated form for the open f shell], for the open l
shell for the atom as well as for the filled l shells.
It is obvious that Kunz's technique is more compu-
tationally viable than Schlosser's generalization
for solid-state calculations. Therefore, for sys-
tems of open-shell atoms such as SiO„we shall
use Kunz's open-shell approach to obtain the local-
ized orbitals. Gilbert's KO approximation will
then be used to calculate the matrix elements of
the Fock operator. Finally, the LCLO-MO method
will be employed to obtain the molecular orbitals
and energy levels. Because in an ab initio treat-
ment of the open-shell case there will be interac-
tion terms which do not decrease as powers of
overlap, the accuracy of the present approach is
not easily assessed except by experience. In or-
der to empirically test this open-shell approxima-
tion, then, we perform test calculations on H, and

H, O molecules which consist of open-shell atoms.
The results of these sample calculations, which
are presented in the following section, will be used
to help justify our open-shell approximation.

e„=K„+E'(1s,ls) —G'(1s, 1s) + V„, (45)

where V„=(ls
~

U, (1s), and U, is the atomic en-
vironment potential. For the free hydrogen atom
U, =0, and for hydrogen in H„

Ug—- 2 q7', g
r' r —r' 'dr'. (46)

It is noted that only the spherically symmetric
part of U, will be used throughout the calculations.

Calculations were performed for the free hydro-
gen atom as well as for hydrogen in H, . The inter-
nuclear distance of H, was set equal to 1.5 bohr. "
The values for A» and Z» defined in Sec. II were
obtained from previous calculations. " In Table I,
we specify the values of the parameters A» and

Zf j and also give the self-consistent values of the
C&„, for the free hydrogen atom and for hydrogen
in H, . In Table II, the one-e)ectron eigenvalues
e„„ the expectation values of the atomic environ-
ment potential U, and the Fock operator I' are
given for the systems

V„, =(nl ) U, ~
nl),

e„, „, =5„.&nt~s~n'f').

(47)

(48)

Next, we use the calculated localized orbitals
and eigenvalues for H, to evaluate the correspond-
ing matrix elements of the Fock operator by apply-
ing Gilbert's version of EH theory. The matrix
elements (ai

~ U, ~aj) given in Eq. (27) were calcu-
lated by using only the spherically symmetric part
of U, given in Eq. (46), and the matrix elements
(ai~ U„~bj ) given in Eq. (28) were obtained from
Eq. (84) by neglecting the Madelung pot ntial term

VI. LCLO CALCULATIONS FOR H2 AND H20

A. H, molecule

First, we use Roothann's analytic expansion
technique to solve the localized-orbital equation
[Eq. (9)] for self-consistent localized orbitals.
Using the Hartree notation, "we can transform the
localized orbital equation into integral form. For
the 1s orbital of hydrogen (H), we have

TABLE I. Values ofA», Z&&, and C&„& for free H and
for H in H2. (l = 0 for the 1s level of the hydrogen
atom. )

TABLE II. Values of &», V„&, and ~« „&~ for free H

and for H in H&.
'

Energy parameters
(&y) Free hydrogen atom Hydrogen in H&

j Ao~ Zo

1.0
1.2

0.998 361
0.001 676

0.790 337
0.211 750

Free hydrogen atom Hydrogen in H2

Ciy Ciy 1s

vgs

18, 1

—1.000 000
0.000 000

-1.000 000

—0.998 257
-0.190152
-1.188 409

A, &, Z», and C&„, are defined in Sec. II.
'&„g, &„g, and. ~„~, ~

~ are defined in Eqs. (45), (47),
and (48), respectively.
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Q
0

0
Q

Q N
g4 R

The LCLO-MO method is then employed to ob-
tain the MO coefficients and MO energies. The
results for the ground state of H, are presented
in Table III. In Table III, the ground state mole-
cular orbital

I g) and energy level E for the H,
molecule are given by

Q
~&

~IV0
Q
Ca
R

I' aa +I' gs

1+$ ~

(49)

(50)

+f4

Cd

Q Cfl

Q

Q
I4

Cd 0

CD

LQ

CD

CD

lQ

CO

I

where
~
ls, ) and ~ls, ) are the localized ls orbitals

centered on the atoms a and b in the molecule, re-
spectively. C, and C, are MO coefficients, I",.
=(ls. )F (ls. ), F„=(ls.IE~ ls, ) and S., =(ls, ( ls, ).
In calculating the corresponding dissociation ener-
gy D, of the molecule, we have assumed that at
R = ~, where R is the internuclear distance, the
total energy E„of H, is -2 Ry such that

D, =&--~tot &

in which E„, is the total energy of the system giv-
en by

E, +I i, i +N,

~44,
Cl)

0

Q
Cd

CL)

C40
Cb

CO

I

where F. , is the molecular energy of the ith mole-
cular orbital, f(i, i) is the corresponding one-elec-
tron integral, and N is the nuclear repulsion ener-
gy at the observed value of R.

It can be seen from Table III that the dissociation
energy for the H, molecule calculated by the pres-
ent method (3.0S eV) is not in good agreement with
the experimental data'; however, it is in fair
agreement with the value 3.64 eV obtained by Har-
tree-Fock theory, "which is a more important
comparison to make.

00
CD

U'
. X ce

tx)

C()

Cl g

p
C(3

tu 8 w
FIG. 1. Coordinate system for the water molecule.

The y axis is perpendicular to the molecular plane (in-
ward).
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TABLE IV. Basis orbitals' used for the LCLO Calculation on H20.

For oxygen orbitals
Zfj C ~20 C~2i

For hydrogen orbital
A@ Z0

0 7.66
1 2.25

2.21
2.275

0.997 391
0.011092

0.248 513
—1.027 811

0.967 507 1
0.32509 2 1.00

0.116337
—1.113609

e gs
= -41.279 533

e2s = —2.320102
& 2P

= —1.019838

Vgs =-0.170016
V2s = 0.264129
V2P = -0.261 864

s, fs= 41 449 549
~ 2s, 2s

= -2.584 231
@2' 2~

—-1.281702

~fs = 0 999 066
V )s = —0.412 903

s, &s
= -1.411 96

A&;, Z&&, and C&„& are defined in Sec. II.
E~), V«and &„& «are in rydbergs. e«are defined by Eqs. (56)-(58); V«and e» „, are defined by Eqs. {47) and

(48), respectively.

lq,, ) =C, I02p, ) (55)

where C's are MO coefficients subject to conditions
of normalization and orthogonality, and S'
=(H, 1slH„1s). The basis orbitals l0 1s), etc.
in Eqs. (53}-(55)are localized orbitals which are
obtained by solving the corresponding localized

B. H&O molecule

In the ground state, the water molecule has a
triangular configuration in which the H-O-H angle
is about 104.5' and the H-O bond length is 1.81
bohr. As in Fig. 1, we shall take the plane of the
molecule to be the zx plane, the z axis being the
bisector of the angle between the two 0-H bonds,
and the oxygen being at the origin. If we regard
the z axis as an axis of rotation, the symmetry
operations form the point group C,„.

By taking linear combinations of those symmetry
orbitals which transform according to the same ir-
reducible representation, we obtain the following
set of molecular orbitals":

lg, ) =C, lO 1s) +C, lO 2s) +C, lO 2p, )

+C,[2(1+8'}] '"(lH, »)+ lHn»)), (53)

lie, ) =C, l0 2p, ) +C,[2(1-S'}]"*(lH, 1s)
—lH„1s)),

(54)

orbital equations. For hydrogen, the localized
orbital equation (in its integral form) for the ls
orbital is

e„=K„+F'(1s,1s) —G'(1s, 1s)+V„, (56)

n=1 2 (57)

e2q
-—K~q + 2F (2p, 1s) + 2F '(2p, 2 s) + 4E (2p, 2p)

—TG'(2p, 1s) —TG'(2p, 2s) —G (2p, 2p)

-0.3OG'(2P, 2P}+V„.

The basis parameters A» and Z» used in solv-
ing these equations and the self-consistent solu-
tions (C~„, and e„,) to these equations, together
with their corresponding energy parameters (V„,
and e„, „,) are given in Table IV. The values of
A» and Z» for oxygen and hydrogen are obtained
from Huzinaga" and from Ref. 18, respectively.

The molecular-orbital energies and molecular-
orbital coefficients of the system are then obtained
by solving the secular equation

IFas & Sasl=oi

and for oxygen, the corresponding equations for
the 1s, 2s and 2P shells are

e„,=K„,+ 2E (ns, 1s) + 2F (ns, 2s) + 4E (ns, 2p)

—G'(ns, 1s)-G'(ns, 2s) —~G'(ns, 2p) + V„»

TABLE V. Results of MO calculation for H20 by the LCLO method.

MO

symmetry

MO

energy
(Ry)

MO coefficients
C2 C3 C4 Electronic configuration

1b2
3a|
1bg
2cEi

1ag

-1.2817
-1.3530
-1.6431
-2.5903

-41.4495

1.0
0.0222
0.5358
0.0051
1.0000

-0.1910
0.5579
0.9598

-0.0002

0,9079

-0.0041
-0.0001

0.1641

0.0378
0.0001

H+ 0.3063 (1~0.6937)
I

H+ 0 3083 (1~0.6837)

Q 0 6127 (1~2 02& 5 ~ 92o5y*0 90922~2 ~ 02~4 ~ 7780)~x Wy

Dipo J.e moment: 1.72 debye units
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TABLE VI. Summary of MO calculations for H&O.

Occupied
MO' s

E l, lison and
Shul. l

(SCF)

Fink and
Allen
(SCF)

MO Energies {Ry)

Pitzer and Snyder and
Merrifield Basch

(SCF) (SCF)

Allen and
Russell

(EH) LCLO
Experimental

values f

1b,
3a&
lb(
2ag
1ay
Val. ence band width (Ry)
Dipole moment
(debye unit)

-0.87
-0.97
-1.37
-2.81

-40.98
0.50

1.51

-0.95
-1.05
-1.31
-2.59

0.37

2.57

-0.80
-0.94
-1.24
-2.56

-41.12
0.44

1.92

-1.01
-1.13
-1.43
-2.72

-41.11
0.42

2.68

-1.31
-1.32
-1.38
-2.53

0.07

—1.28
—1.35
-1.64
-2.59

-41.45
0.36

—0.93+ 0.01
-1.07 + 0.02
—1.19+ 0.02

0.26

1.85

Reference 22.
Reference 23.

'Reference 24.

Reference 25.
~Reference 26.
Reference 27.

in which the matrix elements of the Fock operator
are evaluated by the Gilbert approximation. The
results of the MO calculation for H, O and the LCLO
method are given in Table V. In Table VI we sum-
marize some other self-consistent-field (SCF}and
semiempirical MO calculations for H, O.

From the results given in Tables V and VI, it
can be seen that our energies are all lower than

experimental values and the best theoretical val-
ues. Considering relative energies, however, even
for the more ionic system H, O the LCLO method
works successfully and gives reasonable results
consistent with the SCF-MO calculations and ex-
perimental data.

VII. CONCLUSIONS

In this paper we have presented the LCLO-MO
method used for calculating the electronic struc-
ture of polyatomic systems. This method is based
on the use of localized orbitals" which are obta. ined

by solvingWe Adams-Gilbert equation, as basis
functions to construct the molecular orbitals for
the system, and on the use of the Gilbert version
of EH theory to evaluate the matrix elements of

the Fock operator directly without the ad hoc para-
metrization procedure. An open-shell approxima-
tion has been made in applying this method to sys-
tems which are composed of open-shell atoms (or
ionsj. It has been noted that the Gilbert approach
shares certain features with other improvements
to EH theory which have been suggested. The sam-
ple calculations on the simple molecules H, and

H, O which have given reasonable agreement with
other calculations and experimental results help
to justify the use of the LCLO-MO method to cal-
culate the electronic structure of complex solid
systems. In the next paper, we shall present the
results of LCLO calculation in SiO, .
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