PHYSICAL REVIEW B

VOLUME 10, NUMBER 1

1 JULY 1974

Renormalization-group methods for critical dynamics: I. Recursion relations
and effects of energy conservation

B. 1. Halperin and P. C. Hohenberg
Bell Laboratories, Murray Hill, New Jersey 07974

Shang-keng Ma*
Department of Physics, University of California, San Diego, La Jolla, California 92037F
and Department of Physics, University of California, Berkeley, California 94720
(Received 25 February 1974)

The renormalization-group method for studying critical phenomena is generalized to a class of
dynamical systems—the time-dependent Ginzburg-Landau models. The effects of conservation laws on
the critical dynamics are investigated through the study of models with different conservation properties
for the energy and the space integral of the order parameter. Dynamic critical exponents near four
dimensions (d =~4) are obtained from recursion relations, analogous to those of Wilson and Fisher. The
physical significance of the time-dependent Ginzburg-Landau models is explored and the applicability of
the results to experiments on the NMR linewidth of FeF, is discussed.

I. INTRODUCTION

The renormalization-group approach to static
critical phenomena developed by Wilson and co-
workers'~ has provided a new mathematical
formalism for calculating critical exponents ap-
proximately, and for answering certain detailed
questions about critical behavior. For example,
in certain limits it was possible to verify the
hypothesis of universality, which states that the
critical exponents do not depend on the interaction
strength, but do depend on such parameters as
the spatial dimensionality d and the order-param-
eter dimensionality n. Furthermore, the scaling
hypothesis has been verified explicitly to several
nontrivial orders in the expansion parameters. In
a recent work,® the present authors generalized
the renormalization-group approach to dynamic
properties, and calculated the dynamic scaling
exponent z to order € for two particular cases
of a time-dependent Ginzburg-Landau model. The
results of that analysis provided a partial con-
firmation of the extension of the scaling hypothesis
to dynamic critical phenomena,®:” and of a form
of universality for dynamic properties. In one
of the two cases, the calculated dynamic critical
exponents turned out to disagree with the values
expected on the basis of mode-mode coupling theo-
ries,®'® and the “conventional” (Van Hove) theory.'®
Additional confirmation of scaling behavior was
provided subsequently by Suzuki and Igarashi,'
who also generalized the model of Ref. 5 to a sys-
tem with long-range forces.'?

In the present paper, the previously considered®
time-dependent Ginzburg-Landau model is extended
to study the effect of energy conservation on criti-
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cal behavior."®*'* The methods we have used to
investigate dynamic critical phenomena correspond
closely to those which have been developed for

the static case, namely, approximate recursion
relations,?'!? diagrammatic € and 1/x expan-
sions,'*3+'% and a formal analysis of the renormal-
ization group to arbitrary order in €.* The princi-
pal results of these investigations, together with

a detailed description of the models, and of the
recursion relations, will be given below. We shall
also discuss the relationship of the models to

some real physical systems, and the relevance

of our predictions to possible experimental mea-
surements. We shall defer to a second paper,'®
however, a detailed description of the diagrammat-
ic € and 1/ expansions, and the formal renormal-
ization-group analysis. In both the present paper
and Ref. 16, our analysis is confined to T'> T,, with
zero external field.

The time-dependent Ginzburg-Landau models
are continuum generalizations of the kinetic Ising
models, first introduced by Glauber.'” In the
kinetic Ising models, the spin system is supposed
to interact with a “bath,” which causes spins to
flip in a stochastic manner. The spin-flip prob-
abilities in turn are chosen consistent with the
principle of detailed balance, so that the system
tends to the equilibrium ensemble of the Ising
model, at some specified temperature 7. Con-
sistent with this requirement, there are still
many possibilities. One may choose the transition
probabilities so that the order parameter y of the
system is conserved, or in a manner that it is not
conserved. Similarly, one may define the model
so that energy E is conserved, and therefore
there is a slow long-wavelength mode associated
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with thermal diffusion, or one may define the
model so that energy is not conserved. The latter
case corresponds physically to an infinite heat
bath at each lattice site, or to a bath with an
infinite thermal conductivity. We designate the
four cases by the following: case A—y not con-
served, E not conserved; case B—y conserved,
E not conserved; case C—y not consevved, E
conserved; case D—y conserved, E conserved.
As mentioned above, analyses based on the mode-
mode coupling approach®'® have suggested that
the conventional (Van Hove) theory'® should be
correct in these models.

The influence of energy conservation in the
time-dependent Ginzburg-Landau models arises
from the fact that the relaxation rate of the energy
diffusion mode

wg(k) =Agk?/C | (1.1)

is very slow at long wavelengths (A is the thermal
conductivity and C is the specific heat). If this
mode couples to the order parameter y, it might
influence the critical slowing down of ¥ and modify
its dynamic critical exponent. The important
role of conservation laws in determining dynamic
critical behavior in various systems has been
emphasized particularly by Kawasaki® and by
Kadanoff and Swift.'®

In the earlier work® it was found that when the
order parameter § was itself conserved (case B),
then its transport coefficient A, remained finite
at T., in accordance with the conventional (Van
Hove) theory.!° When the order parameter was
not conserved (case A), the kinetic coefficient
was found to go to zero at T, thus making the
relaxation frequency slower than the conventional
theory would predict. It turns out that in case D,
the imposition of energy conservation does not
cause any change, relative to case B, in the
critical behavior of the order parameter (at or
above T,). As will be shown in detail below,
however, the imposition of energy conservation
in case C causes significant modification relative
to case A. First, there is a portion of the d-n
plane, for d<4, where the exponents z, and zg
for the relaxation rates of the order parameter
and the energy density are equal to each other,
and greater than the value of z; in case A. Thus,
in this region, the order-parameter relaxation
rate is slower than in case A, and even further
from the conventional prediction. Second, there
is another region for d< 4 where energy con-
servation does not have any effect on the critical
behavior of . Third, there may be an anomalous
region where energy conservation modifies the
exponent for spin relaxation, but it appears that
2y < zg and the simple dynamic scaling picture

breaks down. (An alternate interpretation of the
behavior in this region is that dynamic scaling
holds, but it is the € expansion which breaks down).
Finally, in case C, as in the other three cases,
there is Gaussian behavior for d>4, where the
energy and the order parameter behave as non-
interacting fields, and trivially satisfy the con-
ventional theory. The results of our analysis

are described in detail in Sec. V and illustrated

in Figs. 3-5.

In Sec. II the time-dependent Ginzburg-Landau
models are defined, and the four cases distin-
guished, with different conservation properties
for the order parameter ¥ and the energy E. In
Sec. III the existing theories of dynamic critical
behavior for these models are reviewed (scaling
and conventional theories), and the diagrammatic
perturbation expansion for response functions is
briefly introduced. Sec. IV discusses the lowest-
order recursion relations, and Sec. V contains a
summary of results on the time-dependent Ginz-
burg-Landau models. In Sec. VI the relationship
between these models and more general physical
systems is explored, and the question of univer-
sality of dynamic critical behavior is briefly dis-
cussed. Section VII contains some comments on the
experimental observability of the results of the
present work.

II. DYNAMICAL MODELS

Let us consider the Ginzburg-Landual-Wilson''*
model in which the equilibrium distribution of
the order paramter ¢ is given by

P'[y] =2z "exp(- T7'%'[y]), (2.1)
with
T-%! = j A% [L7 0 (x) +ugd(x)
+3| VY(x) |2] + TIF(T) (2.2)
#=3 v
¢4=:w;); , (2.3)
|v¢12=‘";1 |90al?

Z= f d{y} exp(~ T '3c'[4]), (2.4)

where F,, 7,, and u, are regular functions of the
temperature T (which we measure in units of en-
ergy). For simplicity we shall choose «, to be
independent of T, and 7, to be linear in T~

7o=r{® =71, (2.5)

The field y(x) is understood to have variations with



wave vectors less than a cutoff A, and Eq. (2.4)
contains a functional integral over all such con-
figurations of ¥. From the partition function (2.4)
we may calculate the energy E and the specific
heat C in the usual way, and we find

g2 el (&) 8
E=T*5mInZ==-T"—= (5% ) +7§ o7 InZ,
(2.6)
d F) Q

2 2 (2o 2410,

E=-T"3r (T 5 70 W)

= Qe (T) - a5, (2.7)
9FE 32

QC=57 =-TF] +(rg”)2T‘2m InZ , (2.8)

where the primes on F, denote differentiation with
respect to T, § is the volume of the system, and
the angular bracket is a functional average with
weight P![y]. It is clear from Eq. (2.7) that we
may associate an energy density €,(x) with the spin
system, defined by

€fx) =c, = 37 VYP(x) . (2.9)

One may readily check that the singular part of
the specific heat is proportional to the #=0 com-
ponent of the energy-energy correlation function

C+TF!/Q=T"" f dx[(ey(x)ey(0)) =€) ?].
(2.10)

In order to introduce dynamics into this model
we write down an equation of motion for the field
Y, in the form

8 (x, t) T, 63!
_‘pqz;?L_= - _i'n o +Toho(x, t) +nolx, t),

(2.11)

where I'y is a constant which sets the time scale,
and h(x, t) is a space- and time-varying external
field. The function n,(x, t) is a statistically
defined Langevin noise source with mean zero and
correlation function

(6%, O gr(x7, £7)) =2T8(x = x")0(t = ') B gt
(2.12)

where the bracket denotes an average over the
fluctuations of the Langevin force n,(x, t). As is
well known,'® the dynamical model defined by
Eqgs. (2.11) and (2.12) relaxes to an equilibrium
state described by the static probability distribu-
tion (2.1).

The low-frequency properties of the above model
(which we denote as model I) depend crucially on
the form of the quantity I';,. Two cases may be
distinguished
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Case A: Ovder parameter not conservved. If
T', is a constant, then the time derivative of
Jd*xy(x,t) is in general finite, and at any T>T,,
a fluctuation in y will relax to zero at a finite
rate.

Case B: Ovder parameter conserved . If we let
T,=-x,V%, then [d% y(x, t) is independent of time,
and we say that ¢ is a conserved quantity. It also
follows that any disturbance of § from its equilib-
rium value will relax very slowly if the wavelength
of the disturbance is large.

Let us now discuss the time dependence of the
“energy density” €, [Eq. (2.9)]. If we apply the
equation of motion (2.11), it is easy to see that
for both cases A and B, the variable ¢, is not
conserved, and a long-wavelength disturbance
in the energy may relax at a finite rate. In fact,
these models represent situations in which the
order parameter (e.g., the spin) can exchange
energy with a reservoir that has either an infinite
specific heat or an infinite thermal conductivity.

A model which satisfies energy conservation
is most easily constructed by introducing the
energy density e(x) as a separate field, coupled
to the order parameter y(x). The equilibrium
distribution for this model, which we denote as
model II, is given by a joint probability density

Py, €]=Z ~‘exp(8[y, €| - E/T), (2.13)
where
Z= fd{e} d{yjexp(8 - E/T), (2.14)

E is the total energy, and the integral in Eq. (2.14)
is over all functions ¥(x) and €(x) whose variations
have wave vectors less than cutoffs A and Ag,
respectively. From a microscopic point of view,
exp(8[y, €]) is the phase-space volume associated
with given values of the functions ¥(x) and e(x),
and 8 is the corresponding entropy functional. We
shall choose the explicit simple form

Sl €)== [ A 370 () + ot ()

+3 | V() |2 +v, Ty 9P (x)E(x)

+3Cé(X)] +S,+T'E
(2.15)

éx)=e(x) -¢,, (2.16)

where 7, @y, Yo, To, Cos So» and €, are parameters
of the model. The physical significance of these
parameters is as follows: #, and #, are analogous
to 7, and ¥, in model I [Eq. (2.2)]; ¥, is a coupling
constant between long-wavelength fluctuations of
¥(x) and €(x), and T,, Sy, E,=Q€,, and C,T,” are
approximate values of the transition temperature,



142 HALPERIN, HOHENBERG, AND MA 10

entropy, energy, and specific heat of the system,
respectively, associated with the short-wavelength
components (g>A, Ag).

Since the entropy functional is quadratic in the
energy density, we may integrate Eq. (2.14) over
€ to obtain a probability distribution for ¢ alone.
Defining

P'[y)=Z “lexp(- T5" 8{4]) , (2.17)

z= [ diy} exp(= 15 5 y)) (2.18)
we find that 75'F[¢] has the same form as
T-'5¢'[p], Eq. (2.2), with parameters?®

7o =’}’0 - 270c0530 ) (2 19)

Uy =ity =57 5C, (2.20)

T ~'F,=(const) + E,08, - 3QC,To(68,)* , (2.21)
where

8By =T 1 =T, (2.22)

From Eq. (2.14) we may calculate the total heat
capacity of the system,

a® an

QC=< ;0 ) (QC +4(y,G ) > , (2.23)
which has the same singular part as in model I,
Eq. (2.8). Infact, Eq. (2.23) may be considered
as a justification of the calculation of the specific
heat in model I by taking a second derivative with
respect to », [Eq. (2.8)]. Note also that the con-
ditional expectation value of €(x) for a specific
configuration of the field ¢, may be found from
Eq. (2.13) to be

< e(x)) I{w 0}~ Gw(x) N (2.24)

where €,(x) is defined by Eq. (2.9).

The simplest equations of motion which obey
energy conservation and are consistent with the
equilibrium distribution P!'[y, €|, are

RGO thals, ) #1405, 1), (2.26)

9e . . (68
W(x,t)——)\fv (5€ —6B(x,t)> +Z(x, t), (2.26)

(¢)=0;
(2.27)
Celx, )E(x, t1) = = 22EV28(x = x')6(t - t'),

where the correlations of n, are still given by

Eq. (2.12), 84(X, t) is a space and time varying
external (temperature) field analogous to h(x, ¢),
and AJ/T¢ is the thermal conductivity arising from
the short-wavelength components. From Eq. (2.26)
it is clear that the energy is a conserved quantity,

independent of the conservation properties of
¥(x, t). We again distinguish two cases: Case C—
orvder pavameter nol consevved, enevgy consevved,
where Iy is a constant; and case D:—ovdevr pa-
rameler consevved, enervgy consevved, where
T,== X,V

The various cases considered above also have
analogs in the discrete kinetic Ising models. In
particular, Kawasaki?! has considered models in
which spin is conserved (case B), while Kadanoff
and Swift*?> have discussed a model in which both
spin and energy are conserved (case D). The
relevance of our models to a wider class of phys-
ical systems, and in particular the question of
universality of dynamic critical phenomena, will
be discussed in Sec. VI.

III. RESPONSE FUNCTIONS AND DIAGRAMS
A. Response functions and characteristic frequency
Given a physical quantity @ and a field 2 which
couples linearly to it, we define the linear-
response function yxq(k, w) by the relation
(AR, .u)),,Q =xolk, Why(k, w) , (3.1)

where Fourier transforms in space and time are
defined by

olx £) = f 21:)" fm op T hale, w),
(3.2)

etc., and the system is assumed to start from
thermal equilibrium at time #=-e. The angular
brackets in Eq. (3.1) denote the expectation value
in the presence of the field 7. In Eq. (3.1), the
field 24 is assumed to be infinitesimal. We may
also define the correlation function

CQ(xy t) :< Q(xy t)Q(O, 0)) '( Q(x, t)) ( Q(O, 0))
(3.3)

in an ensemble with 4=0. The Fourier transform
Cqlk, w), and the partial Fourier transform
Cq(k, t) satisfy the well-known classical relations

CQ(ky u)) = (T/*’)ImXQ(k’ w) ) (34)
Colk, t=0) = Txo(k, w=0) = Tyxo(k) . (3.5)

The last equation follows from Eq. (3.4) and the
Kramers-Kronig relation for xq(k, w).

It is convenient for the subsequent discussion
to define the characteristic frequency wqy(k) as

wQ(k)er(k)/XQ(k) s (3.6)
where the “kinetic coefficient” I'g(k) is defined by

1 _oxg'(k,w)
k)~ 8(-iw)

(3.7
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If the variable @ is conserved by the dynamics,
then the kinetic coefficient has the form

To(k) =1k , (3.8)

for k—0, at any fixed T# T,, and Aq is known
as a “transport coefficient.” From Egs. (3.4)-
(3.7) it is easy to show that
1 1 dxolk, w)
wolk)  xqolk) 8(iw) |,

’

4]
1 __(Tdw . fmd“’ .
> ‘f_,, T W™ Colk, u))/ | 5ECalk, @),

(3.9b)

In addition, one may define the initial decay rate
vo(k), in terms of the short-time (high-frequency)
behavior, as

(3.9a)

-1 8 éQ(kr t) ]
= \
UQ(k) [CQ(k, t) ot J t=0 ’ (3'10)
which may be shown to be equal to
vo(R) = x5! (R) lim | -7 wy o(k, w)] . (3.11)
w * oo

When the dynamics of the system is purely
relaxational, i.e., the Liouville operator is Her-
mitian, as is the case in the models we consider
here, then a rigorous inequality may be proved,®'’
namely,

wolk) < vg(k). (3.12)

The characteristic frequency wg(k) will be used
in formulating the dynamic scaling hypothesis for
quantities @ whose static response xq(k=0) is
divergent at 7,. In cases where yg is finite but
its derivatives diverge, it can be useful to define
a characteristic frequency for the “singular part”
of @, in analogy with Eq. (3.9a) as

1 1 ax(k, w)

OTER) XeE(R) 0G@) | weo’

(3.13)

where & (k) is the “singular part” of the static
response.

B. Dynamic scaling and conventional theory

According to the dynamic scaling hypothesis,®*”
the response function x4(k, w) at T, has the form

Xalk, w) = xq(R)f o[ w/wq(R)] , (3.14)
wq(k) ~ (const)k?e , (3.15)

for k-0, w -0, where f is a smooth function of

its argument satisfying the condition f(0)=1. For
temperatures near T,, the response function has
a form similar to (3.14), but with a characteristic
dependence on the ratio #/k, where « is the in-
verse correlation length. Specifically, the static

response function and the characteristic frequen-
cy?® are hypothesized to behave as

Xq(R) = k*Q go(k/k)
and

wqlk) =k%@ Qo(k/K) .

(3.16)

(3.17)

Moreover, the shape of the function f4 in Eq.
(3.14) may also depend on k/k. When the dynamic
scaling hypothesis is applied to the order pa-
rameter for the transition, it is referred to as
“restricted scaling,” as opposed to “extended
scaling,” which assumes that the scaling form
applies to other variables as well.”

The conventional or Van Hove theory'® makes
the assumption that the kinetic and transport co-
efficients remain finite near the critical point.
In our present models, this implies that the
characteristic frequency is proprotional to
the initial decay rate vg, since the quantity
~dCq(k, t)/dt |, -, on the right-hand side of Eq.
(3.10) can be shown to have no divergent tem-
perature dependence (when @ is € or ¥):

vo(k) cc[wglk)] ™ . (3.18)
Thus the inequality (3.12) implies that
wolk) <[wq(B)] ™™ , (3.19)

from which a rigorous exponent inequality follows:

zg=[zq]®™. (3.20)

C. Perturbation theory for model 11

Let us specialize the discussion to the model of
Eqgs. (2.25) and (2.26), where the variable @ is
either the order parameter y or the energy density
€. The conjugate fields are # and - 68, and
averages are taken with respect to the probability
distribution P[y, €; ¢t ] which is assumed to be equal
to the equilibrium distribution P'![y, €] of Eq.
(2.13) at t=—o. The response functions are

Gk, w) = xy (k, w)

=(Wolky @My, sallolle, W], (3.21)
D(k’ ‘;‘)) = XE(k) w)
=—(e(k, W), 55l 68k, W)| 7, (3.22)

where the averages are taken with respect to the
probability P[y, €; ¢ | in the presence of the in-
finitesimal fields k and 68. |Note: In Eq. (3.22)
we have used the notation x; rather than x. to
avoid possible confusion with the parameter €
=4 -d. We shall similarly use the notation wg,
Zg, Ag, etc.|

We wish to develop a diagrammatic formalism
for calculating the response functions for model
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II as power series in the “interaction vertices”
¥, and %, of Egs. (2.15) and (2.20).>* The formalism
appropriate for model I is then easily obtained
by setting ¥, equal to zero, or, as we shall see,
by setting AE =,

In the noninteracting case (y,=u,=0) we may
solve the linear equations of motion [(2.25) and
(2.26)] to find

Golk, w) =(=iw/Ty+k* +7,) ™",
Dy(k, w)=(—iw/AER2 +C3")™" .

(3.23)
(3.24)

The response functions for the interacting case
are then obtained by drawing diagrams using G,
and D, as propagators, u, as a vertex** joining
four G, lines, and v, as a vertex joining two G; s
and one D,. In addition, the effect of the Langevin
noise sources 71, and ¢ is included by means of
noise vertices, which are inserted in the propa-

p
k,(l.) YO k-p YO k,w
(a)
p
Y0 o)
kvw k,w
k-p
(b)
70
uo
Y0

(c)

FIG. 1. Typical low-order diagrams in the perturba-
tion expansion for the dynamical equations (2.25)—(2.27).
Solid lines denote order-parameter propagators, and
wavy lines energy propagators. (a) Contribution to the
self-energy Z (k,w), of order €. (b) Contribution to
II (k,w). (c) Contribution to the dynamic four-point
vertex. This diagram does not contribute to the static
(w=0) vertex, since it is already included in going from
4y [Eq. (2.15)] to %y [Eq. (2.20)].

gators, as explained in a similar case by Tucker
and Halperin.?® A detailed derivation of this
perturbation theory and precise rules for calcu-
lating the contribution of each diagram will be
given in Ref. 16. We shall simply give an illus-
trative example here.

Let us write

G7'(k, w) =G5 (R, w) +Z(k, w) ,
DYk, w)=D;'(k, w) +11(k, w) .

(3.25)
(3.26)

For the lowest-order recursion relations obtained
in the present paper, only the diagrams depicted
in Figs. 1(a) and 1(b) contribute frequency-de-
pendent terms. These terms are

2t 9 ==7% [ o (Gt )

x ( T2 +79) +(AF/C)(p = k) )
—iw + L (0% +7,) +(AE/Co)(p — k)
(3.27)

1 d*
I,(%, w)=—§n'y(2,fT2”%

1
X7 —RY +74)

><< PP +ry+(p=k) +7, )
(=iw/Ty) +p* +ry+(p = kP +7,/
(3.28)

In the noninteracting case described by Eqs.
(3.23) and (3.24), the characteristic frequencies
and kinetic coefficients for ¢ and € are easily
identified, in all four cases (A-D) considered
in Sec. II, namely,

case A: TI'y(k)=T; (3.29a)
case B: T, (k) =2k (3.29b)
case C: I,(k)=T,, Ig(k)=2r5k (3.29¢)
case D: T (k) =2k, Tg(k) =25k (3.29d)

where T, A, and AZ are independent of k.

In the presence of interactions we expect that
the static response functions (x, and xz) and the
kinetic coefficients (I', and I'y) will depend on
the vertices u, and v, in a complicated way. If
the kinetic coefficients were to remain finite at
the critical point, then the conventional theory'°
would apply. For fixed 7> T,, and for k-0,
conventional theory then predicts

wy(k) < k2~ "k* | y conserved (cases B and D);
(3.30)
wy (k)< k®~ " ¢ not conserved (cases A and C);

(3.31)
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wg(k) x K&/sz, E conserved (cases C and D);

(3.32)

wg(k) < k%Y. E not conserved (cases A and B).

(3.33)

Here v is the exponent of the inverse correlation
length «k, and @ is the exponent of the temperature
dependence of the larges! term in the specific
heat. The exponent @ is related to the usual ex-
ponent a by

a=a if a>0, (3.34a)

@=0 if a<0. (3.34D)
Thus in the limit T~ T, we have

C=a,[T-T¢]‘“+a2~(const)x‘5‘/". (3.35)

Equation (3.32) follows from the assumption that
Ap remains finite at 7., together with the energy
diffusion equation

wg(k) =1 k?/C | (3.36)

which corresponds to Egs. (3.6) and (3.8) with
Xg(k=0)xC.

The conventional result for wy(k) is consistent
with (restricted) dynamic scaling if

z2,=2-mn, cases A and C; (3.37)
zy =4 -1, cases B and D. (3.38)

For the energy, the conventional theory is con-
sistent with extended dynamic scaling for T =T,
if
zg=@&/v, cases A and B; (3.39)
z2g=2+a/v, cases C and D. (3.40)

1V. RECURSION RELATIONS
A. Static properties

We wish to find the fixed point of the “Ham-
iltonian” (2.2) or “entropy” (2.15) under the re-
normalization-group transformation R, defined
by

R,=R; R}, (4.1)

where R} is an integration over intermediate
wave vectors in the domain®°

bTIA< p< A, (4.2)
and R; is a change of scale

x—=x"=x/b, (4.32)

$=y'=b"y, (4.3b)

E-€'=b'eC . (4.3c)

Here b is a constant greater than unity, and a
and az are constants to be specified below. The
action of R; is to “dress” the propagators and
vertices in a manner suggested by Fig. 2, where
all intermediate wave vectors are in the shell
b'A< p< A. In fact, the diagrams specifically
enumerated in Fig. 2 contain all terms necessary
to determine the exponents to order €. Further-
more, it is correct to this order to neglect the
dependence of the diagrams on the incoming
momenta, and we may set all of these momenta
equal to zero. It then follows that under the total
action of R,, the entropy functional (2.15) takes
the form

(8—E/T)'=—f de A7 [0 |2 + iy (x7)) 2
+3| V() 2 () [PE ()
+3CTHE ()2
+068,& (x')} +const , (4.4)

where the quantities #,, @,, y,, C;,, and 63, may
be expressed in terms of the original parameters
¥os #yy Yoy Co, and 68,. We assume, moreover,
that the constant a of Eq. (4.3b) has been chosen
so that the coefficient of | Vi|? in (4.4) remains
unchanged. The procedure is analogous to the
one employed by Wilson and Fisher? and justi-
fied in Ref. 4 for the Hamiltonian (2.2), except
that expansions are made in both %, and y,, and
the bare static energy propagator is equal to C(,.24
The recursion relations for the quantities #,, &,,

(d)""\< = vV\< + V\o< + W\<§ +

FIG. 2. Schematic representation of the diagrams
necessary to obtain the recursion relations for case C
to lowest order in €. Intermediate lines are integrated
over the range b 1A =p=A and —=<w'< for the wave
vector and the frequency, respectively. (a) yields the
recursion relation for »; and Iy; () yields %;; (c)
yields C; and AF; and (d) yields a recursion relation
for ;.
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71, C;, and 68; may be reduced to equations for
the four quantities r,, «;, ¥;, and C;. To lowest
order these are

714, =00 "2{7, +2(n +2)Bu,

X [A2(1 =572) - 27,1nb] } , (4.5)
Uy =6 [u; - 4(n+8)u3 Blnbd] , (4.6)
C7l, =b*"5[C 7! - 2ny? Blnb), (4.7
Yier =022 B[y, - 4(n +2)u;y, Blnb - 2ny3C, ],
(4.8)
where
_ (M /adp\ 1 _1Inb

mb= [ () 5 e ®9)
Let us find the fixed point of the transformation

(4.5)-(4.9). First we recall that at 7, we have
CP(RYY(= k")) <k™2*5(k = k') , (4.10)
(&(k)e(- k") <k~ ¥V o(k-k'), (4.11)

where & is defined in Eq. (3.34). Equation (4.10)
follows from the definition of the exponent n and
Eq. (4.11) results from the usual identification
of the specific heat with static energy correla-
tions, combined with static scaling. The assump-
tion that 8, approaches a fixed point at T, is
consistent with Eqs. (4.10) and (4.11) if and only
if
a=3(d-2+n), (4.12)
ag=3(d-a/v). (4.13)

The fixed point of the recursion relations (4.5-9)
may be found for d close to 4, i.e.,

0< e=4-d<<1, (4.14)

One finds 1 =0 to first order €, and the fixed
point of Eq. (4.6) is

u*=€/4B(n +8) +O(€?) . (4.15)
The equation for C, [Eq. (4.7)] yields

¥*2C*=a&/2nvB , (4.16)
and Eq. (4.8) gives either

y*=ad=0 (4.17)
or

a/v=(4-n)e/(n+8)+0(e?), y*#0. (4.18)

Equation (4.18) for « agrees with the value ob-
tained using the relation

dv=2-a, (4.19)

and the € expansion of v, calculated by Wilson,'
directly for model I. It is easy to verify that the

solution with y* # 0 is stable if and only if a> 0,
i.e., if n< 4. In the opposite case, the specific
heat does not diverge at 7.(a< 0), and the order
parameter and energy density are uncoupled at
the fixed point.

B. Dynamics

We shall next generalize'? the approximate
recursion formulas to the dynamical equations
(2.11), (2.25), and (2.26). Let us extend the trans-
formation R; so that frequencies are rescaled by

w=-w=bw. (4.20)

We have not found it necessary to introduce a
special cutoff for the frequency integrals in our
perturbation theory, and we merely generalize

R! so that one integrates intermediate frequencies
from - to + « for all lines with 5"'A< p<A. We
identify the renormalized value of the coefficient
I';! with the value of 8G3!(k, w)/3(-iw) in the
limit w—=0 and 2~ 0. The recursion relation for
I'7' implied by Fig. 2(a) is then given in case C

by

7L, =0 2% (I7' +4y5C, Fy) , (4.21)
A ddp
Fi= [ —)
RV <(27’)d
1

XD, @ +7) + OB /CHP]

For case A, on the other hand, there is no fre-
quency-dependent contribution of order € to the
self-energy, and we have simply

Iyl =pi-2e-=p3t, (4.23)

[Note that this result may be obtained from (4.21)
either by setting ¥, =0, or by setting Af=c, as
expected.] The dynamic scaling exponent z,

may be identified with the parameter 2z, when the
latter has been chosen so that I'; approaches a
finite nonzero value as [ - «. It follows from Eq.
(4.23) that for case A, a fixed point with finite T
occurs if and only if

z=d-2a=2. (4.24)

(4.22)

Thus the conventional theory is valid, to order
€, for case A.

Returning to case C, we find that the recursion
relation for A% has no contribution from R!, since
the self-energy contributions in Fig. 2(c) have no
term which behaves as w/k? as w and k go to zero
[cf. Eq. (3.28)] . Thus we have

1/0E,, = bt *2-208-1 /3F | (4.25)

Inserting the fixed point values of y2C, and 7, in
(4.21), and using (4.7), (4.25), (4.22), and (4.9)
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we find, to lowest order,

F;=BInb[T,(1+u,)] ™", (4.26)
L=l - &/v-(2a/nv)(1 +u,) ") 1nb}
(4.27)
where
4, =AE/T,C, (4.28)
and
Tl =T {1 +[2-2+@2a/nv)(1 +u;)"*|1Ind} .
(4.29)

Equation (4.27) has three possible fixed points,
for n<4:

p¥=o (4.30)

pu*=0, (4.31)
and

u*=(2/n)-1. (4.32)

In fact, we see that (4.32) is the stable solution
for n< 2, while (4.31) is stable for 2< n< 4. If
we choose z such that I'; goes to a finite nonzero
value as [ -, then z =2z,, and according to
(4.29),

2,=2+a/v, for n<2 (4.33)
2<2z,=2+2%/nv<2+d/v, for 2<n<4.  (4.34)

For n>4, @=0, and Eq. (4.29) implies that z =2
to order €, regardless of the value of u*. Ac-
cording to Eq. (4.27), in fact, u, may take on any
value one pleases as [ ~«. When terms of order
€? are considered, however, one finds'® that p*
=« is the stable fixed point, and we have

2,=2+0(€?), for n>4. (4.35)

V. RESULTS OF THE FULL
RENORMALIZATION-GROUP ANALYSIS-A SUMMARY

In the present section we wish to summarize the
results of our renormalization-group analysis®® of
the time-dependent Ginzburg-Landau models, and
compare them with the predictions of dynamic
scaling®'” and the conventional theory.'® Our dis-
cussion will be confined to d <4, since the conven-
tional theory holds in a trivial fashion for d> 4,
i.e., n=0and z=2 for cases A and C, z=4 for
cases B and D. (Henceforth we shall drop the sub-
script ¢ when referring to the dynamic critical ex-
ponent for the order parameter z,.)

A. Case A

Case A was studied previously® using expansion
techniques to order €* and 1/z. The results are

indicated in Fig. 3, where the exponent z for the
order-parameter relaxation frequency is shown
as a function of € and n. Let us write

z=2+cn, (5.1)

so that ¢= -1 corresponds to the conventional
theory [Eq. (3.37)]. We have found, in contrast,
that ¢ =0.7261 as d-4~, for any n<«~. Further-
more, for n-« and 2<d<4, c approaches a known
function of d, whose value is 3 at d=3, 0.7261 at
d=4, and 0 as d- 2. Results of high-temperature-
series expansions and Monte Carlo calculations

for the two-dimensional kinetic Ising model indi-
cate that c~ 0 for d=2, n=1 as well.?®*?” The above
results suggest that ¢ = 0 throughout the region
2<d<4, n<x, for case A, in violation of the con-
ventional theory. Note, however, that ) is of order
€?, so that the conventional theory is correct to
order € in this case, in agreement with the recur-
sion relation analysis of Sec. IV.

The scaling function f in Eq. (3.14) has been cal-
culated to lowest nontrivial order in 1/z or €, and
the dynamic scaling behavior has been confirmed
in detail to those orders, both at T,,° and for
T>T,."

General renormalization-group arguments®® in-
dicate that in the region where the specific heat
diverges, the nonconserved energy € relaxes with
the same characteristic exponent as the order pa-
rameter (2;=2+cn) to all orders in €. For exam-

2+ + C=O<12

z=2+cm

I—c=0.726—1
4 4

Z=2 (GAUSSIAN)

1 1 i 1
| 2 3 4 ...
n

G-

FIG. 3. Dynamic critical exponent z for the time-
dependent Ginzburg-Landau model with neither energy
nor order parameter conserved (case A). Ordinate and
abscissa are lattice dimensionality d and order param-
eter dimensionality »n. Values of z at boundaries come
from expansions in (4-d) or n~! value at d=2, n=1
comes from high-temperature-series expansion for the
two-dimensional kinetic Ising model (Ref. 26).
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ple, at T, we have
wg(k)a B*en (5.2)

when « > 0.

In the region of the d-n plane where the specific
heat does not diverge (a<0), we find that the sin-
gular part of the energy correlation function re-
laxes with the exponent of the order parameter,
ie.,

Wi e e (5.3)

The energy relaxation rate has been calculated
explicitly only to first order in €,'® or zeroth or-
der in 1/x (spherical model limit),?® but is in
agreement with the renormalization-group argu-
ments to these orders. High-temperature-series
expansions by Yahata®® for the two-dimensional
kinetic Ising model are also consistent with the
result z=2z,.

Note that these results are already very far
from what one would predict on the basis of the
conventional theory applied to the nonconserved
energy field: 22™ =& /v [Eq. (3.39)].

B. Case C

According to the recursion relation analysis of
Sec. IV, the dynamic critical exponent for case C,
to first order in €, obeys different formulas in
three regions of n [cf. Eqs. (4.33)-(4.35)]:

RegionI (n>4): z2=2; (5.4a)
Region II (n<2): z=2+a/v; (5.4b)
Region Il (2<n<4): 2<z<2+a/v. (5.4c)

A more detailed renormalization-group analysis, ®
to all orders in €, suggests that these definitions
be generalized to read

Region I: z=2+c¢m; (5.5a)
Region II: z=2+a/v; (5.5b)
Region III: 2+cn<z<2+a/v. (5.5¢)

(We use the notation 2 +¢n to represent the value
of the exponent for the relaxation rate of ¢ in case
A, where energy is not conserved.) From Eq.
(5.5a) it is seen that in region I, energy conserva-
tion has no effect on the value of z. In region II,
on the other hand, the characteristic rates of
order parameter and energy relaxation are equal
to the conventional relaxation rate for the enevgy.
This rate is slower than the relaxation rate of the
order parameter in case A, and still farther from
the prediction of the conventional theory for the
order parameter. In region IN, the order param-
eter relaxes more slowly than in case A, but more
rapidly than the energy, which continues to obey

Y (b)

FIG 4. Possible “phase diagram” for the dynamic
critical behavior in case C, where energy is conserved
but the order parameter is not. In region I energy con-
servation does not affect the dynamic critical exponent
for the order parameter, which has the value z=2+ cn,
found in case A (Fig. 3). In region II the energy and or-
der parameter have the same critical exponent z=zp=2

a/v, which is larger than the value z= 2+ cn for case
A. In region IlI, z obeys the inequality 2+ cn<z<2+a/v,
and dynamic scaling does not hold. The dotted line a =0
separates the region where the specific heat diverges
(@>0), from the region where it is finite at T, (a<0).
The boundary between regions I and II is determined by
the relation ¢n=a/v. We have assumed ¢ >0 for 2<d<4,
and ¢ =0 for d=2, so that the dotted line (o =0) lies
in the interior of region I for 2<d <4, but meets the
boundary at d=2 and d=4. The existence of region III,
as indicated in Fig. (a), is suggested by the recursion
relation analysis of Sec. IV. An alternate phase diagram
for case C, in which region III is absent, is indicated in
Fig (b). If this latter phase diagram is correct, then the
approximate recursion relations do not give the exponent
z correctly to first order in €e=4—d, for 2<n <4,
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the conventional theory. Region III is expected to
have a number of anomalous properties, including
a breakdown of dynamic scaling even in its “re-
stricted” sense.”

In order to understand the significance of the
three regions discussed above, it is important to
determine their boundaries in the d-» plane,
away from the line d=4. As discussed in Ref. 16,
there is a boundary between regions I and II given
by the relation

2+m=2+a/v, (5.6)

(assuming ¢ =2 0). This curve, is close to, but not
identical with the curve a =0 (cf. Fig. 4).

The boundaries, and indeed the very existence,
of region Il are more problematical. From the
analysis of the full renormalization group, to be
presented in Ref. 16, it is not possible to deter-
mine the boundaries of region III unambiguously
because the corrections of order € to the recur-
sion relations appear to be divergent for 2<n<4.
One possibility is that region III extends to finite ¢,
and possesses boundaries as shown in Fig. 4(a).
(Note that the curve separating regions III and II
has zero slope near n=2, d=4, and there is a
“tail” of region II coming down between region I
and region IIl near n=4, d=4.) Another possibili-
ty, however, is that the recursion relations of
Sec. IV do not give the exponent z correctly even
to first order in €, for 2<n<4. In that case,
region Il would not exist for finite €, and the
phase diagram would be the one shown in Fig. 4(b),
where the area 2< d<4, is simply divided into
two regions. This possibility was not considered
in earlier presentations®®'!* of the results of this
work, but it is consistent with our calculations.

It should be noted that in the case where region
III has a finite area [Fig. 4(a)], its “upper” boun-
dary is not determined by our reasoning, and the
shape depicted in Fig. 4(a) merely represents a
plausible phase diagram. It has the property that
the point d=3, n=1 (i.e., the three-dimensional
Ising-like model) belongs to region II. Another
phase diagram, which is equally consistent with
our information, but perhaps aesthetically less
attractive, is shown in Fig. 5(a), where there are
two disjoint pieces of region II, and region III may
even extend far enough to include the three-dimen-
sional kinetic Ising model. Finally, we remind the
reader that in the problem of critical dynamics,
just as in the simpler question of the static critical
behavior, it is possible in principle to have an
arbitrarily complicated phase diagram, such that
the points of greatest physical interest (i.e., points
along the line d=3) lie within various interior
regions where the critical behavior cannot be
divined by any analytic continuation from €- 0 or

n-. One of the more pessimistic pictures of
this situation is shown in Fig. 5(b).

We shall end this subsection by making some
remarks on the behavior of the energy relaxation
in case C. First, let us note that a diagrammatic
analysis’® implies that for any fixed T>T,, in the
limit 2—~ 0, the exact transport coefficient A will
be precisely equal to the bare transport coefficient
kg. This would seem to imply a scaling exponent
for the energy equal to z2; =2 +@& /v, even in region
I. In fact, however, it turns out that in region I,
the energy response function does not have the
scaling form, with a unique frequency scale.

In particular, at T, the relaxation rate for the
energy is the same in case C as in case A, and

Y (b)

FIG. 5. (a) An alternate form of the phase diagram
similar to Fig. 4(a), but where the anomalous region
(III), extends up to the three-dimensional Ising-like
model. (b) A schematic diagram showing a situation in
which most the the d-n plane, and in particular the line
d=3, is occupied by an unknown region (IV) whose prop-
erties cannot be inferred from expansions near d =4 or

n—=oo,
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the energy scales with the exponents given in (5.2)
or (5.3), and not with the exponent 2 +&/v.

From a heuristic point of view we may now
characterize the phase diagram for case C as
follows. In that part of the phase diagram (region
I) where the characteristic relaxation rate of the
energy, at T,, is already slower in case A than
the value AZE?/C(k), the imposition of energy con-
servation does not affect the critical behavior of
either the energy relaxation or the order-param-
eter relaxation. Where the relaxation rate k**°"
is faster than AZk2/C(k), the imposition of energy
conservation must reduce the energy relaxation to
a rate =~ \Zk2/C(k)~ k***/V [cf. the inequality (3.12)],
and the nonlinear coupling between the energy and
order-parameter relaxation modes will tend to
reduce the relaxation rate of the order parameter
as well. If the coupling between the modes is
strong enough, in some sense, the order-param-
eter relaxation rate will be pulled down until it
has the same exponent as the energy (region II).
If the coupling is not sufficiently strong, the
order -parameter relaxation may lie somewhere
between £%*%“¥ and k*"°" (region III).

C. Cases B and D

In these cases the order parameter ¢ is con-
served, and the recursion relations do not lead
to any renormalization of the transport coefficient
A,, in analogy to the result for A; in case C.
Thus the conventional theory holds for the order
parameter, and we have z=4 -1 [Eq. (3.38)].
Furthermore, at least in case B, we find'® that
there are no terms in the complete perturbation
expansion of Z(k, w) which behave as i w/k* when w
and % go to zero, for fixed T>T,, so that in the
long-wavelength limit the exact transport coeffi-
cient A, is equal to its bare value A,. For case
B we have also calculated Z(k, w) explicitly a¢ T,
to order €%, and have confirmed that the conven-
tional theory applies to that order.?

VI. APPLICABILITY OF MODELS AND
UNIVERSALITY OF DYNAMIC CRITICAL BEHAVIOR

In this section we wish to elucidate the connec-
tion between the models we have studied and mi-
croscopically defined systems; in particular, we
shall attempt to identify those properties of a
real system which affect dynamic critical be-
havior.

As our first example, let us consider a collec-
tion of Ising spins on a lattice, each one of which
is coupled to a reservoir consisting of a set of
oscillators. The total system obeys reversible
equations of motion, which may be transformed into
irreversible equations for the spin system alone, by
a trace over the reservoir variables. In this

way it is possible to “derive” Glauber’s kinetic
Ising model” from a microscopic starting point.
Depending on the form of the spin-reservoir
coupling in the original Hamiltonian, the model
may or may not obey spin conservation or energy
conservation (i.e., conservation of energy in the
spin system alone). In order to obtain the models
of the present paper from the Ising models, one
merely takes spatial averages over regions of
linear dimension A~!, just as one passes from an
Ising model to the Ginzburg-Landau-Wilson
model™* in the static case. When properly car-
ried out, this procedure must preserve the con-
servation laws.

As a second example, consider a model de-
scribed by the classical Hamiltonian:

3= J‘d"x(rozp2 Fught + [V +11%), (6.1)

where ¢(x) is a scalar displacement field and I (x)
is the conjugate momentum field, with »,<0 and
wave vectors restricted to be less than the cutoff
A. This model may be used to represent the an-
harmonic phonon gas in a solid undergoing a
structural phase transition. Far from the transi-
tion this system can be considered to be a set of
weakly damped modes (“dressed phonons”) with
finite frequencies. As the temperature approaches
T,, the frequencies of one group of modes (the
“soft modes”) go to zero,*® and the modes become
overdamped. [For situations represented by
(6.1), in which ¢ is not “conserved,” these soft
modes may either be acoustic phonons at a point
in the Brillouin zone away from the zone center,
or they may be optic phonons anywhere in the
zone.] In principle, one could imagine applying
the renormalization group directly to the diagram-
matic series generated by the Hamiltonian (6.1).
Once the long-wavelength modes are overdamped,
however, the renormalized propagator for ¢ will
look precisely like (3.23), in the limit of long
wavelengths and low frequencies. The renormal-
ized four-phonon vertex will not be regular in
frequency, however, but will have a singularity
near zero frequency for small values of the mo-
mentum transfer, which is a consequence of the
energy conservation in this model. The introduc-
tion of the energy density as an auxiliary field

in model C, enables one to keep track separately
of the singular and nonsingular parts of the four-
phonon vertex, in a simple approximate fashion.
Thus, we expect that the time-dependent critical
behavior of the anharmonic phonon system de-
scribed by (6.1) should be the same as that of
model C above, for n=1. It must be noted, how-
ever, that the temperature region over which this
equivalence holds, i.e., where one may neglect



10 RENORMALIZATION-GROUP METHODS FOR CRITICAL... 151

the real part or propagating component of the pho-
non frequencies, may be quite small.

Turning now to purely magnetic systems, con-
sider a three-dimensional anisotropic Heisenberg
ferromagnet or antiferromagnet, in which the
coupling constants for the three components of
the spin are all different. In this system there is
no conservation law other than conservation of
energy, and the only low-frequency mode at long
wavelengths, for T #7T,, is the thermal diffusion
mode. Since the spin has a single easy direction,
the order parameter is characterized by n=1, and
the static exponents are expected to be the same as
those of the Ising model. Similarly we expect
that the dynamic critical properties should be the
same as those of the model with energy conserva-
tion, i.e., of case C with n=1.

In the uniaxial Heisenberg ferromagnet, the
couplings of the x and y components of the spin
are equal, but smaller than the coupling of the z
component. The order parameter is the z com-
ponent of the spin, which is now conserved by the
Hamiltonian. We expect that the dynamic critical
behavior should be the same as that of case D.

In the uniaxial antiferromagnet, the order pa-
rameter is the z component of the staggered mag-
netization which is not conserved. In addition to
the energy, there is now a second conserved
quantity, the z component of the total magnetiza-
tion. However, under repeated application of the
renormalization group, the (nonlinear) coupling
of the order parameter and the energy to long-
wavelength fluctuations of the z component of the
magnetization becomes vanishingly small, and
we do not expect this variable to affect the critical
dynamics. Thus the uniaxial antiferromagnet
should have the same critical behavior as case C
above.

Considering more general systems undergoing
phase transitions, we can immediately identify a
number of Hamiltonians for which the phenomeno-
logical models discussed in this paper are nof ap-
propriate. Examples include systems whose hy-
drodynamics lead to low-frequency propagating
modes,” such as a superfluid, or an isotropic
magnetic system obeying ordinary spin dynamics
and not coupled to a reservoir. The phenomeno-
logical equations appropriate to an isotropic Hei-
senberg ferromagnet, for example, would not be
those in models B or D, but rather

ot TS 7%E
with 3C given by Eq. (2.2), with n=3.
It is clear from the preceding discussion that a

class of systems showing the same static critical
behavior may be divided into several classes of

(6.2)

dynamic behavior. For example, the four cases
treated in this paper all correspond to systems
with the same static properties, for given n and
d. Moreover, these four cases by no means
exhaust the possible types of dynamic behavior,
since the classical isotropic Heisenberg ferro-
magnet and antiferromagnet also correspond to
the same static Hamiltonian.

As in the static case, a complete classification
of all universality classes of dynamic critical be-
havior has not been achieved, but it is apparent
that the important features are conservation laws,
and the symmetry of the coupling of the order pa-
rameter to other slowly varying physical quanti-
ties. These features determine the low-lying
modes of the system, which in turn govern the
dynamic critical behavior.

VII. EXPERIMENTAL CONSEQUENCES

Generally speaking, the time-dependent Ginz-
burg-Landau models considered in the present
paper are rather well approximated by the conven-
tional theory, since the deviations of the critical
exponents from their conventional values are of
order « orn, whichare numerically smallinall
known cases. Thus, inorder to observe these devi-
ations, which constitute the main result of our work,
extremely accurate measurements would have to be
made. It wasarguedabove that there exist systems
innature whose critical dynamics should in principle
be well approximated by the time -dependent Ginz -
burg-Landau models. Interesting examples are
uniaxial antiferromagnets such as FeF,, and per-
haps also binary alloys. A straightforward method
of obtaining the critical relaxation frequency
wy(k) is by inelastic neutron diffraction. The re-
sults on FeF,* certainly support the conclusions
of the present work, that the exponent z is close
to 2, but they are not able to distinguish between
the conventional result and the various cases cal-
culated above. A more promising method of mea-
suring z is via the NMR linewidth A ~«™'? which
according to restricted dynamic scaling” has an
exponent

x/v=z-d+2-1. (7.1)

The temperature dependence of A has been mea-
sured quite accurately by Gottlieb and Heller,*!
who found

x*P'=0.67+0.02. (7.2)

A comparison with the different possible theoreti-
cal predictions is rendered difficult by uncertain-
ties in the values of the static exponents for
either FeF, or the ideal three-dimensional Ising
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TABLE I. Exponent x for the NMR linewidth.

a=0,125 a=0,08 a=0.125
v=0.625 v=0.64 v=0.64
x=v(z-1-1) n=0 n=0.047 7n=0.047
S?o?.‘v'i‘;n_o’:)al XM= p(1 —27) 0.625 0.58 0.58
Case A
zh=2+cn MA=va-3n) 0.625 0.625 0.625
=2+37
Case C c_
2C=2+a/v x~=v+a—-vn 0.75 0.69 0.735
Expt. expt _
(Ref. 31) x =0.67+0.02

model. In particular, the presently accepted
“best values” for the latter do not satisfy static
scaling,3? which is certainly necessary for the re-
normalization-group ideas to be valid. Neverthe-
less, we may make different choices of a, v, and
1, and compare the predictions for z in the con-
ventional theory, and in cases A and C treated
above. The corresponding values of x [Eq. (7.1)]
are listed in Table I for three sets of plausible
values of a, v, and n; the first two sets satisfy
static scaling, and the last one represents the
best values from series estimates.*® It is seen
that in all cases the conventional result is too
small, and cases A and C agree somewhat better
with the experiment.

1t is difficult to decide a priori whether case A
or case C is more applicable to the experimental
situation, since in a real crystal the phonon
thermal conductivity may be much larger than that
of the isolated spin system. In the experimentally
obtainable range of temperatures, the extrapolated
thermal relaxation rate given by A¥k?/pC, may be
much faster than the characteristic rate of relaxa-
tion of the order parameter. Thus one has not
attained the critical region described by case C,
in which the two relaxation rates are comparable.
The exchange of energy between the lattice and
spins may be sufficiently slow so that one cannot
describe the dynamics as in case A, in which the
system freely interacts with a heat bath of infinite
thermal conductivity. At the same time, energy
exchange with the lattice may be too fast to con-
sider the spin system as thermally isolated from
the lattice, so that case C could be applied to the
spin system alone. It is therefore likely that the

observable dynamics might be intermediate be-
tween case A and case C, as seems to be suggested
by the experimentally measured exponent (7.2).
However, in the absence of a more detailed anal-
ysis of the spin-phonon system it is not possible
to draw firm conclusions from the NMR linewidth,
other than to say that the deviations from the con-
ventional theory are in the same direction as our
theory.

A method of obtaining similar information to the
NMR linewidth is via perturbed-angular-correla-
tion measurements.*® At present, however, ex-
periments have only been performed on Ni, which
is Heisenberg-like. The results there are rather
far from the scaling prediction,” and qualitatively
different from the neutron scattering results.

In closing let us mention the binary alloy Ni;Mn,
whose time-dependent behavior has recently been
investigated by neutron scattering.®® The quoted
exponent (zv=1.04+0.09) is rather far from the
expected value zv=~1.3 for.an Ising-like system.
The reason for this difference is not presently
understood.

Note added in proof. The recursion relation
approach has recently been applied to a number of
models in which the master equation is non-
Hermitian, and where one or more transport co-
efficients are found to diverge at the critical point.
These include simplified models for the binary
fluid separation and gas liquid critical points,
the isotropic Heisenberg antiferromagnet, the
XY model, and the superfluid transition in helium.
Results are given in B. I. Halperin, P. C. Hohen-
berg, and E. Siggia (unpublished).
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Z=2+cT

FIG. 3. Dynamic critical exponent z for the time-
dependent Ginzburg-Landau model with neither energy
nor order parameter conserved (case A). Ordinate and
abscissa are lattice dimensionality d and order param-
eter dimensionality ». Values of z at boundaries come
from expansions in (4-d) or n~!, value at d=2, n=1
comes from high-temperature-series expansion for the
two-dimensional kinetic Ising model (Ref. 26).
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FIG 4. Possible “phase diagram” for the dynamic
critical behavior in case C, where energy is conserved
but the order parameter is not. In region I energy con-
servation does not affect the dynamic critical exponent
for the order parameter, which has the value z=2+c¢n,
found in case A (Fig. 3). In region II the energy and or-
der parameter have the same critical exponent 2=2z5=2
+a/v, which is larger thanthe value 2=2+ c¢n for case
A. In region III, z obeys the inequality 2+ cn<z<2+a/v,
and dynamic scaling does not hold. The dotted line & =0
separates the region where the specific heat diverges
(@>0), from the region where it is finite at T, (a<0).
The boundary between regions I and IT is determined by
the relation ¢n=a/v. We have assumed ¢ >0 for 2<d<4,
and ¢ =0 for d=2, so that the dotted line (x=0) lies
in the interior of region I for 2<d <4, but meets the
boundary at d=2 and d=4. The existence of region III,
as indicated in Fig. (a), is suggested by the recursion
relation analysis of Sec. IV. An alternate phase diagram
for case C, in which region III is absent, is indicated in
Fig (b). If this latter phase diagram is correct, then the
approximate recursion relations do not give the exponent
z correctly to first order in e=4—d, for 2<n <4,
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FIG. 5. (a) An alternate form of the phase diagram
similar to Fig. 4(a), but where the anomalous region
(ITT), extends up to the three-dimensional Ising-like
model. (b) A schematic diagram showing a situation in
which most the the d-n plane, and in particular the line
d=3, is occupied by an unknown region (IV) whose prop-

erties cannot be inferred from expansions near d =4 or
n—ow,



