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Nonlocal effects in absorption edges: Energy-dependent psendopotentials
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The promotion of electrons between parallel single-particle bands in the neighborhood of zone

boundaries is known to constitute a major source of those excitations largely responsible for the

dominant structure observed in the optical conductivity cr(ro) of simple polyvalent metals. Departures

from parallelism are shown to lead to distinct features in this structure (particularly at interband

edges), and the origin and consequences of these departures are investigated particularly insofar as they

bear on energy nonlocality in the effective onewlectron pseudopotential.

I. INTRODUCTION

Noticeable structure is frequently observed in
the optical conductivity o(&u) of pure polyvalent
metals, and has been attributed' 4 to singular be-
havior in the joint density of levels corresponding
to the single-particle band structure, the latter
generally being accountable (for simple metals) in
terms of a weak pseudopotential description. Upon
the assumption that a pair of bands (one of which
must be occupied) are exactly parallel over sub-
stantial regions of the zone near its faces, it is
possible to show that, in the absence of lifetime
effects, o(~) will possess striking absorption
edges, commencing at photon energies Scu equal to
the band splittings on the zone faces themselves.
There is reason to suppose that the assumption of
parallelism of the principal bands in the neighbor-
hood of zone faces is essentially correct in metals
whose band structures closely resemble nearly-
free-electron behavior. However, even when the
corresponding pseudopotential VR used to interpo-
late the band structure is taken as completely lo-
cal, precise parallelism is not to be expected sim-
ply because the higher bands in the complete band
structure (normally ignored) lead to small second-
order distortions. Incorporation of these distor-
tions into a description of the bands using a low-
order secular equation can, of course, be achieved
by the use of "folded" Fourier components Ug. The
Ug are then weakly energy dependent, a direct con-
sequence of the folding procedure. But in addition,
the Vg (from which the US are constructed) are in-
herently energy dependent, a nonlocal property
characteristic of most pseudopotentials. ' It is the
purpose of the present paper to extend the theory
of Ref. 3 by including, with the aid of a simple
model, these (combined) energy dependences in UR;

and we shall show presently that the manifestations
of energy nonlocality can be particularly revealing
in the edges themselves (and are, indeed, quite

reminiscent of the broadening produced by scatter-
ing effects). To this end, we shall briefly recapit-
ulate in Sec. II the second-order theory of optical
absorption in nearly-free-electron polyvalent met-
als, and in Sec. III develop the modifications nec-
essary to include the major effects stemming from
the use of energy-dependent effective potentials.
Section IV is devoted to a discussion of the results,
and in particular of their bearing on the interpreta-
tion of the data taken from real metals (for ex-
ample those of Mathewson and Myers' on Al), in
which discrepancies with theory have already been
attributed in part to the possibility of energy de-
pendence in the potentials.

II. OPTICAL CONDUCTIVITY e(~)

Ne shall restrict our discussion to metals whose
transport coefficients are isotropic. %e suppose
the valence bands of the polyvalent metals to have
sing1. e-particle energies a„g and corresponding
Bloch wave functions q„-„. ln the absence of scat-
tering, the contribution to the optical conductivity
a(~) from interband excitation may be written (for
a volume V of the metal) as

x
I

(q„,„-I v
I

@„„-)I' s(c„,-„-c„;-a~),
where the f's are Fermi-Dirac occupation factors.
In the pseudopotential method, the energies z„-„fol-
low from a secular equation admitting, by fiat,
solutions restricted to the valence bands. Accord-
ingly, the band indices n and n' in Eq. (l) are con-
fined to the spectrum of valence levels, and the
energies E„„-are taken as solutions to

det(Hygr —5-„Src) = 0,
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where

&Ra = 6ydt [«~a+ Vxa(k)]+ Van (k)

V—,(k)=(k+K
~

V
~

k+K'),
and

«-„q = (a'/2m)(k+ K)'

(&)

(4)

are the free-particle energies. {When the pseudo-
potential operator V is assumed fully local, it is
customary to take the diagonal elements to be zero
[i.e. , VxR(k) = V0=0], a procedure which in princi-
ple requires, as we shall see in a moment, the in-
troduction of an effective mass in the free-particle
energies. ]

Since the structure in o(~) is dominated by the
behavior of the bands near zone boundaries, as dis-
cussed above, it is sufficient to fix attention on a
pair of bands (say n= 1 and 2) associated with a
chosen reciprocal-lattice vector K, and given by
solutions to

«g «+ U00 («) Uo R(«)
«- a —«+ Un(«)

where

URN'. (k, «)= Vxa (k, «)

(6)

that o(&u) (for N&u in the neighborhood of a particular
edge) can be cast in the form

V22" (k, «)Vg" R. (k, «)

R"AR, R' ~ -&~R"
('7)

is a "folded" Fourier component. In the analysis
of Fermi-surface data (« = «z, ), it is quite common

practice (though not universal) to overlook the k
dependence explicitly displayed in Eq. (7), a pro-
cedure that has at least a posteriori justification
for many simple metals. Ne will also adopt this

procedure, concentrating here on energy-dependent
effects which, as is clear from Eq. (7), are partly
a consequence of "folding down" the starting secu-
lar equation, and partly the intrinsic energy de-
pendence of the VKR. . By ignoring the spatial non-

locality [i.e. , URg. («) = Ug it. ], it is readily shown,

provided that the current matrix element in Eq.
(1) can be written

bodied in Eq. (8) amounts to an assertion that the
current carried by the true valence eigenfunctions
is given well enough by calculating it as if it were
indeed carried by the pseudowave functions. This
clearly merits further discussion, ' but in the
present work we are concerned with a quite sepa-
rate point, namely the extent to which possible
modification of the structure in o(&u) can arise sole-
ly as a consequence of the energy dependence of V.
It is recognized (and in some cases expected) that
a more detailed treatment of the current matrix
elements can lead to overall corrections to the
ma, gnitude" of e((u).

III. ENERGY-DEPENDENT POTENTIALS

In what follows, we shall assume that the folded
pseudopotential coefficients Uz are known at some
reference energy, the Fermi energy e~ being a
choice of some practical importance. For ener-
gies differing from «r (but not differing too great-
ly), we shall take

U~-„. («) = Uq -„(«,) + -„-„,(« —«, ) + ~ ~ .

(~ « «,
,
/«-. « I) . (10)

+0 ™00 +RR &
+K +OR &Ko

=E —gg,

Eq. (6) becomes

&K+ 8+R
&K+ ~ ~K &j.j—~

where
0

ep= (m/m')(«„" —«r)

and

We note [especially from Eq. (7)] that the ogx. can
be calculated, provided that the energy dependence
of each VKK. is known. Since the interpolation of

a pnori band-structure calculations by a few pseu-
dopotential coefficients determined at a set of
points of high symmetry reveals discrepancies (at
other points in the zone) which are generally small,
we may take the ERR. as first-order quantities,
and discard in the following calculations all second-
and higher-order products. Accordingly, if we

choose URR(«r) = 0, then with the notation

m/m* = 1/(1 —o,) .
%e have also defined

u;= (m/m')U-„

(12)

[e,=e /24vaow= 5.48X10— sec '],
where the sum extends over the equivalent recipro-
cal-lattice vectors. Aside from the evident low-

order nature of Eq. (9), the approximation em-

so that, with Eq. (12), the effects of the energy de-
pendence of the average of the pseudopotential are
incorporated in an effective mass. The solutions
to Eq. (12) are most easily given by writing
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]k= —,K —q

in terms of which

(Is) e

( q))= 0)

e = [(m/4m*)ay+ e~]+ «u[t+f[(a'/2m*)K q]'

+ u'-„+ (2um) «[(m/4m')xm+ eg]] '", (14)

where cg=K K /2m. We shall also resolve q into
its components perpendicular (J.) and parallel ([[)
to E.

p a r a[I el

bands

q= qj. +q[[ ~

With the aid of the notation

K"

FIG. l. Band structure corresponding to Eq. (16)
[or [14)] and plotted in the zone plane (q„=c or k=gK).
The dashed lines represent (within the same model) the
bands appropriate to an energy-independent pseddopoten-
tial. Agreement between the two sets of bands occurs at
the Fermi energy (or e = 0 here), where the UK and Uo are
defined. It is the smaller of the energy differences
labeled 1 and 2 which determines the onset of interband
absorption.

«=««
I

flax I

we may rewrite Eq. (14) as

I

»-
I

'e= (m'/m)
I
2«

I
e

= (z+y) + z 'ra+ 4+y(tt2+ &)+ «z]' " .
(16)

The two bands represented here are shown in Fig.
1, and are directly compared with those corre-
sponding to the use of energy-independent poten-
tials («= c.a=0). Note in particular that, for fixed

y (or q~~) the separation between the two bands,
namely,

I

2 -
I

'& =[I+4y(«+&)+4 R ] (i7)

is no longer independent of x (or q, ), as is clearly
the case for aK= 0. This departure from paral-
lelism in the elementary two-band model is one
immediate consequence of energy nonlocality. The
other is a, general scaling of the energy eigenval-
ues by the factor (1+on), an effect noted by
others, ' particularly in the context of band effec-
tive masses. It may also be seen from Eq. (17)
that the k space surface of constant energy differ-
ence (a plane when «=0) is now a conic section
of revolution about K.

Interband absorption commences at an energy
which is now straightforward to determine. When

tax = ao = 0, (energy-independent potentials), the
levels associated with the onset of interband ab-
sorption are those in the neighborhood of the zone
face (q~~ Oy y 0). The same situation obtains
when ag, @040, the essential difference arising
through the slight changes in q~ values correspond-
ing to a given choice of q„. In fact, the limiting
values on q~ (those for q„=O) are given by setting

e = 0, (e = &r) in Eq. (6). Once these are known,
the excitation energies follow immediately, and
(again to first order in «, ao) interband absorp-
tion for a zone face labeled by K begins at

h~.~.= I
2u2 I(I+«) =

I
2« l(1+ ++«)

or (18)

"~ ~ =
I

2ux l(I -~x) =
I
2« I(I+oo-«),

2QRx I d qft(l -fz) ~ 6(gz~ —at& —)I&@),
"one

where the occupation factors

f~ f(~~;)

whichever is the smaller. It follows that the
spread in energies associated with the "edge, " as
a consequence of the energy dependence of the ef-
fective potential, is

~(+~~.) =
I
4««

I
~

We turn next to a discussion of the form e(u)
takes when the solutions (16) are used in conjunc-
tion with Eq. (1). For the reasons discussed
above, we shall continue to set (as in Refs. 3 and
4)

(t[,I I

v
I

t[,t& = -.' I K
I
2uga~

I

.
Then the contribution to o,a(&u) from the bands
(u= 1, 2) in the neighborhood of a zone plane labeled
by Eis

&ta(~) = &~
~R 0

@co & 2%2



1346 K. STURM AND N. W. ASHCROFT 10

Re Crle(Q l

(a' a K)

6t-

5 l-

3-

08 =A
09 1.0 )1 ).2

whereas for y itself, the range is (apart from sec-
ond-order corrections')

0 &y & ~ P(2k+/K —1)

Integrating the 5 function in Eq. (21) is a, straight-
forward procedure, and the result is

f(A) = [1/(1+ a, ) ][I/2 ay][(A'+ 2a-„A —I)' ~ e(A —A )

- (A —2«A —1) ~ e(A —Ao)], (23)

where

Q = 1 —«, Ao
——1+ 5g .

FIG. 2. Form of the interband optical conductivity
from a pair of nearly-parallel bands [Eqs. (24) and (25)].
The four full curves shown correspond to progressively large
values of ~; namely, A {0.025), B (0.05), C (0.1), D
{0.20). The dot-dashed curve is the limiting case (Q.g
= 0) corresponding to one of the contributing terms in
Eq. (9). Note how quickly the peak height falls with
increasing QK. When I GK[ && {v 2 —1) {1+0.'p), the maxi-
mum of o'(Q) is no longer at the cusp. For the sake of
clarity, the Drude or intraband contribution is omitted.
In the same units, and at high enough frequency the con-
tribution wouM be [{2Ag/E) (8/&} ( Ep/2U~ I 0 {K/&}/
~F]. [m/m~t(1+ 20.'p)].

and

I —
I «I &A&I+

I «I

4 1
gm (A) = c,(ao K)(1+ ao) '—

It is apparent that Eq. (23) is independent of the
sign of «(and hence of UK). Accordingly, we may
write the conductivity as

pre(A)= o (aoK)(1+ ao) Ao
4 1 1

I 2&El

are assumed (for normal conditions) to be suffi-
ciently close to step functions. Further, if we
write

d q= 4 x Ko(2q~/K) d(2q„/K) d(2q„/K),

then

And finally, if we change to the variables g and y
defined above, we arrive at

o'to(~) = o;(ao K)
I

2U

where, with the supplementary definition

A=ff /I 2UR I(I+,)=a /I2 2I,
we have

(20)

f(A)=( ), A
p'

l~ dxll g(o

5(A-[1+4y(«+ p)+«Rx]'"), (21)
with the implied understanding that the limits on
integration now include the requirements imposed
by the factor f, (1 —fo). From Eqs. (11) or (14) we
see that, for fixed y, the range of integration for
x is set by"

»/&[(A+
I « I)'-I]'"+[(A-

I « I)'-I]'"),
(25)

1+
I «I &A&Ao,

where Ao= p(2k+/K I). Equat-ions (24) and (25)
are the main results and should be compared di-
rectly with Eq. (10) in Ref. 3. Similarly, Fig. 5

of Ref. 3 should be compared with Fig. 2 in this
paper, in which aze(A) is plotted. Before turning
to a detailed discussion of these results, we ob-
serve at this point that, whereas the overall sign
of «(as noted) does not affect the form of the re-
sult, the sign of a0 is of some consequence.

IV. DISCUSSION

The physical origin of the absorption edge de-
scribed by Eqs. (24) and (25) can be readily traced
to the singularity in the joint density of levels cor-
responding to the two bands of Eq. (14). I et
S&o(k, Rru) be the surface of constant energy differ-
ence defined by the locus of k vectors satisfying

CZ j —$1 j= S(d

Then the contribution to Eq. (1) from those levels
in the vicinity of a given zone plane may be writ-
ten'

y ——,'(I+4Py)'~ &-x&y+-,'(I+4Py)'~o, (22)
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dSzp(k, Izzp)
( )

2UR

I V„-(epf —czf —K(o) I kzp

(26)
and it is clear that the possibility of singular be-
havior in a»(~) is controlled both by the vanishing
of I V„"(cpz —azf —If&p)1 and the extent of Sz&(k, S&p)

over which this may occur. In the case of energy-
independent potentials, Szp is a plane surface (per-
pendicular to ff) over which I Vz(cpf —(zf -lf&p)l

takes the (constant) value (2szz/ff) [(1 —2UK/%p) ] ~ .
The divergence, at threshold (K&@= I 2' I ) is im-
mediately apparent. However, when aztec 0, Szp(k,
ffzp) is no longer planar, I Vz(cpf —czf - h&u) I

' can-
not be removed from the integral in Eq. (26), and

any singular tendency associated with the integrand
is compensated by the behavior of the surface
element. Accordingly, the result is finite although,
as can be seen from Fig. 2, a steeply rising curve
for small nzt. The maximum occurs at I 2Ult I (1
+ zzp+ I azz I ) and the corresponding value of a is

, Res, s(a
(v aoK)

0 z

09 10

FIG. 3. Effects of scattering for the 0'(~) curves ap-
propriate to I &Kl =0.03, and values of 6=(@/&) I 2uKl:
A (6=0); J3 (6=0.009); D (6=0.036). Curve C is included
to show the relative effects of scattering and energy-
dependence. It corresponds to the case ( eK~ =0 and 6
= 0.036.

a ((u)=a.(apE)
l

aR
l

'", (27)

a potentially useful relation connecting the peak
height to quantities characterizing the energy de-
pendences of the effective potential. " In this re-
spect, the role played by I eg )

' is not dissimilar
to that of thermal or collisional smearing of ab-
sorption edges in the energy-independent potential
analysis. ' Scattering effects within the present
model can also be included in a phenomenological
relaxation-time approximation. Following the
steps leading to Eq. (19) of Ref. 3 [or (6) of Ref.
(4)], we find for the real part of the conductivity

a (0)= P
~ fI,'

(1+ ap)' v

x
ll d» dyy-' [1+4y(zzmyP)+4zzg»]-' '

x(([l y4y(azz+P)+4a2»] 0 6)P+40 6P)-z

(28)
where 5 incorporates the relaxation time 7. in the
combination

5=(I/T)
l

2U-„ l(1+zz ) .
Equation (28) can be integrated numerically, '

and leads to results of the type shown in Fig. 3.
In accordance with expectation, the cusp-like and

threshold features of the infinite re1.action time
result (6- 0) are seen to be smoothed out, the peak
height is generally decreased, but the area under
the curve is essentially unaltered. The latter re-
sult is, of course, related directly to the optical
effective mass m„„which in the present model is
most conveniently discussed in terms of the sum

rule on the entire (Drude and interband) transverse
conductivity, the interband contribution to which

[azs(&p)] satisfies'

m, p, 2apizr 4o, l er

or alternatively, [using, Eq. (20)]

(28)

I dn.„(a).
+0

(30)
Using Eqs. (24) and (28), we can immediately cal-
culate that contribution to the right-hand side of
Eq. (30) which is linear P in UR. For a single zone
plane, this is simply

1 — 1 1+ Q0 2UK

04

m E 2Ug 1 2'R =
8 2I, , (1+ n)P '0( &)

and to this order in UK

=~ SR
~oyt {R)

where the sum extends over the set of reciprocal-
lattice vectors whose associated zone planes cut
the Fermi surface. It must be remembered that
we are regarding n0 as a first-order quantity, so
the corrections (from energy dependence) to m, ,
are essentially of second order. In view of the as-
sumption made in connection with the calculation
of the current matrix element, these can have lit-
tle significance.

Finally, it remains to comment on the relation
of the results presented here to the experimentally
determined optical conductivities. By way of ex-
ample, consider the case of Al for which Mathew-

son and Myers have noted, on the basis of careful
measurements of the temperature dependence of its
zz(&p), that the location of the edge appears to dif-
fer slightly from the value expected from an analy-
sis of Fermi-surface data. These differences re-
main after appropriate corrections for dynamic ef-



1348 K. STURM AXD N. W. ASHCHOFT 10

fects in the lattice (chiefly the Debye-Wailer fac-
tor), and have been ascribed to possible energy de-
pendences in the UR. In the fitting of Fourier com-
ponents of the pseudopotential to Fermi-surface
dimensions, the value of m* (or no) are not deter-
mined. This can be readily perceived from the
generalization to higher dimension of E(I. (11), with
the stipulation that at the Fermi energy, 8 =0, and
that solutions are sought not for energy but wave
vector. Thus it is gg rather than Ug that is ex-
tracted from the analysis of Fermi-surface struc-
ture. But if aR=O, it is precisely the gg that fix
the locations of the absorption edges in o(~) [see
Eq. (18)]. It follows that deviations from these
locations are a reflection of the values taken by the
j ug I. In the case of Al we can deduce from the
data of Mathewson and Myers that for K = (2, 0, 0)

the corresponding value of ) ng I is in the range

0.021 &
i

n"„~ & 0.04'I .

Values of aR taken from recent band-structure cal-
culations ' are comparable to these experimen-
tal results, and it is therefore reasonable to con-
clude that not only can optical measurements pro-
vide estimates of pseudopotential coefficients, but
high-precision data can in addition yield informa-
tion on their energy dependences.

ACKNOWLEDGMENTS

One of us (N. W. A. ) wishes to thank Professor
G. Eilenberger of Kernforschungsanlage, Julich,
and Professor A. B. Pippard and Dr. V. Heine at
the Cavendish Laboratory, for kind hospitality.

*Permanent address: Laboratory of Atomic and Solid
State Physics, Cornell University, Ithaca, N. Y. 14850.

W. A. Harrison, Phys. Rev. 147, 467 (1966).
A. I. Golovashkin, A. I. Kopeliovich, and G. P. Motule-
vich, Zh. Eksp. Teor. Fiz. 53, 2053 {1967) [Sov.
Phys. -JETP 26, 1161 (1967)].

N. %'. Ashcroft and K. Sturm, Phys. Rev. B 3, 1898
(1971).

M. J. Kelly and N. %'. Ashcroft, Phys. Rev. B 8, 2445
(1973).

A full discussion of the origin and importance of nonlocal
effects in pseudopotentials may be found in the. article
by V. Heine, Solid State Phys. 24, 1 (1970).

There is also a nonlocality in momentum k which we
take to be subsumed, if noticeable, into an additional-
contribution to the energy nonlocality. The fact that so
many of the simple metal Fermi surfaces can be param-
etrized by k-independent Fourier components gK((.'&) sug-
gests that this approximation is reasonable.

A. G. Mathewson and H. P. Myers, J. Phys. F 2, 403
(1972).

The modifications required to deal with noncubic simple
metals are straightforward and can be extracted from
Ref. 4.

In the heavy {but simple) metals, spin-orbit coupling
can have noticeable effects on the band structure; these
will be the subject of a f'urther communication.
The point has received some attention (in connection.
with "optical pseudopotentials") from J. Appelbaum,
Phys. Rev. 144, 435 (1966); A. O. E. Animalu, Phys.
Rev. 163, 557 (1967); M. J. Kelly, thesis (Victoria
University, %'ellington, 1970) (unpublished); and J.
Hammerberg (private communication) .
It should be noted, however, that Eq. (8), or its modi-
fication when scattering is included [Eq. (19) of Ref. 3],
can lead to good agreement with the data (in some
simple metals) with regard to location of structure and
overall magnitude.
See, for example, N. %'. Ashcroft, thesis (Cambridge
University, 1964) (unpublished); D. Weaire, Proc.
Phys. Soc. Lond. 92, 956 (1967); R. W. Shaw, J. Phys.
C 2, 2350 (1969), and V. Heine and R. O. Jones, ibid.
2, 719 (1969).
Note that at the Fermi energy (e= 0), the effects of O, K

and G',
p are, of course, absent.

14When l QKI &
5 (v 2 —1) {1+np), the maximum in o is to2

the right of the cusp, and has the value o ~=o,(ap&) —,
'

l O'Kl (1/xp) (2xp+ O.'Exp), where xp= —2 &K+ @~2(1
+ a.p).

45If the phenomenological relaxation time is taken as v,
then it is easy to shown from Eq. {9) that the maximum
value of o for a single zone plane is approximately
fTfftlx= o'q(ap~) I 2&/&K& l, and comparing this with Eqs.
(19}and (28) leads to the result that scattering effects
and energy-dependent broadening are roughly equivalent
when l O.'KUK l

- M/v. It should also be noted that,
whereas the effects of eK are striking in the absorption
edges of polyvalent metals, they will be much less no-
ticeable in monovalent metals. The scaling due to &p
will be present in both classes.
A reasonable approximation to Eq. {28) can be obtained
by noting that the last term in the integrand is sharply
peaked for small 6 {in Al, 6 - 0.04) at {1+4y gK+ G.p)

+4xo.-)' '= (a'+6')'" so that

pi/2
o.~(n) =f7,(a+)

( )4 jdx J gy2(1+up) mg

x4S(O1+4y(oK+P)+ 4xoll) -O'-S )+40~62) (

which can be integrated directly, and which also leads
to the results shown in Fig. 3.
See Eq. (38) of Ref. 3.
The contributions quadratic in UK are also straightfor-
ward to obtain, and suffer similar corrections.
It must be remembered that the analysis of Ref. 7 is
carried out within the energy-independent pseudopoten-
tial model. The location of the peaks in o(~} are deter-
mined by adjusting NK and ~ in an equation such as (19)
of Ref. 3. Notice, therefore, that if the value of O'K

is such that the location of a corresponding peak in o{~)
is in fact not dominated by scattering (but rather by
energy-dependent effects), then the values of 7 so de-
duced (and the consequent extraction of gK) can be
slightly in error.
Note that in the analysis of the Fermi surface of Al
[N. %'. Ashcroft, Philos. Mag. 8, 2055 (1963)], a
secular equation of fourth order was used. Thus, the



10 NONLOCAL E F F ECTS IN ABSORPTION EDGES:. . . 1349

folded Fourier components used here (second-order
secular equations) differ slightly from those appropri-
ate to the Fermi-surface determination, eveninabsence
of any energy-dependent effects; but these differences
are quite small.
If band-structure calculations provide L~ and L2 (at an
average energy &&); X~ and X4 (at an average energy
&x); and W&, S'q, and S"2 (at an average energy. e~);
then from U~~~(E&) = ~(L~ —L2) and U~~~(&z) = g{S'~—W2),
we deduce aalu aud fromU+, (e„')=$(Xq-X4) aud

U2o&( w) &{Wg+ W2 —2W'g), we deduce o'2oo ~ By this
means, we find from the band structures of Smrka

[Czeck. J. Phys. B 20, 241 (1970)], values of 0.014
and 0.012; of Segall [Phys. Rev. 124, 1797 (1961)],
values of 0.03 and 0.074; of Greisen [Phys. Status.
Solidi. 25, 753 (1968)], values of 0.013 and 0.019; and
of Arbman and von Barth (unpublished) values of 0.024
and 0.036, for efff and o'.

2pp respectively.
Representative values of aK and eo can be obtained from
an examination of various model potential formula-
tions of the pseudopotential. See, for example, R. W.
Shaw and W. A. Harrison, Phys. Rev. 163, 604 (1967);
R. W. Shaw, J. Phys. C 2, 2350 (1969); and M. L.
Cohen and V. Heine, Solid State Phys. 24, 37 (1970).


