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We find that within local-density schemes for calculating the cohesive energy of simple metals greater
sophistication in treating the atom is required. The outermost electron in, e.g., the sodium atom has an
unpaired spin. For this and the many similar cases a generalization of the scheme to a
spin-density-functional formalism is needed. Application of the local-spin-density approximation gives,
e.g., the energy of the hydrogen atom within 1.6% of the exact value, while the local-density
approximation is 10% off. The improvement is due to our use of a better model system, i.e., the
spin-polarized electron liquid, in the local approximation. We elaborate on the factors leading to the
smallness of the error, and we find that there is a systematic partial cancellation between too attractive
and too repulsive contributions to the binding for valence electrons in hydrogen and similar atoms.
When we extend Tong’s calculation for sodium metal along these lines, we find the cohesive energy to
lie within 4% of the experimental value. A similar improvement is found for lithium. The spin-density

scheme should be a very useful practical method for a large range of applications, including the

calculation of chemisorption and charge transfers.

I. INTRODUCTION

In this paper we want to point out how a calcula-
tion of the cohesive energy of sodium by Tong and
similar applications of the Kohn-Sham scheme can
be improved to give results of a useful accuracy.

The Kohn-Sham density-functional formalism?
provides an efficient, useful scheme to calculate
ground-state properties of electron systems. In
particular, this is true in situations where the
electron density has a weak and slow variation in
space. Then the effects of exchange and correla-
tion can be approximated by a local potential in
the Schrodinger-like equation for the calculation of
the density and by a local expression for the cor-
responding contribution to the total energy of the
system. Parameters for these two quantities can
be extracted from results for the homogeneous
electron liquid.

Among real physical systems, sodium metal
would seem to be an ideal system for applying this
scheme. Tong? has made such an application. In
a full, self-consistent computation, in which the
only parameter input is the total number of elec-
trons per atom, Z =11, he finds the equilibrium
lattice constant and the compressibility within 1.3
and 11%, respectively, of the experimental data.?
However, the calculated value for the cohesive
energy is 23% larger than the experimental result. 2

The former two quantities concern only the solid
state, while the cohesive energy is obtained by
comparing the energies of the solid and atomic
states. Following a suggestion by Kohn® we seek
the source of the discrepancy between the calcu-
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lated and measured cohesive energies in the atomic
part of the calculation. By performing calcula-
tions for the hydrogen atom we are able to com-
pare results from the Kohn-Sham scheme with
those of the exact solution and in this way get an
indication of the applicability of the local-density
(LD) approximation used by Tong? and many others.

The purpose of this paper is to show by nu-
merical examples and by a priori arguments that
for the hydrogen and sodium atoms and for other
applications with unpaired valence electrons a spin-
density formalism should be used. *3

We find that a local-spin-density (I.SD) approxi-
mation gives a value for the energy of the hydrogen
atom only 1.6% smaller in magnitude than the exact
Rydberg energy, as compared to the 10% deviation
in the LD approximation. Thus, inclusion of spin-
polarization effects lowers the hydrogen atomic
energy by 1.1 eV. We may use this number for a
basis to estimate the same effects in other atoms.
Basically the spin-polarization-dependent contri-
bution to the exchange-correlation energy scales
like (density)!/? or #3!, where », is the commonly
used electron-gas parameter. Taking the density
in the valence-electron orbit as characteristic for
the atom, we get the characteristic values 7,;=1.8
for H and 4.7 for Na. A crude estimate of this
correction to the energy of the sodium atom should
thenbe (3:)1.1 eV =0.4 eV. We see that this
lowering of the cohesive energy is of roughly the
right size to account for the discrepancy (0.26 eV/
atom) between Tong’s theoretical result for the
cohesive energy (32.0 kcal/mole =1. 39 eV/atom)
and the experimental number (26.0 kcal/mole

1319



1320 GUNNARSSON, LUNDQVIST, AND WILKINS 10

=1.13 eV/atom). In a more detailed calculation,
to be described below, we find the spin-density-
functional formalism in the LSD approximation to
give a value for the cohesive energy of sodium
within 4% of the experimental number.

In Sec. II we briefly summarize the Kohn-Sham
density-functional formalism and its generalization
to spin densities. In another paper® we have cal-
culated the exchange-correlation energy and po-
tentials to be used in the scheme from a study of
the homogeneous electron liquid in an approxima-
tion which focuses on the dynamical effects of the
correlation on the one-electron spectrum. Here
we only present the resulting interpolation for-
mulas, which we then use in the applications. The
calculation on hydrogen is described in Sec. III.
We find that the good results in the LSD approxi-
mation are connected with an unexpetedly good
representation of the exchaage-correlation hole in
the region of space where the 1s electron is most
likely to be. In addition, for the hydrogenic ions
we find results having small relative errors, too,
and illustrating trends consistent with qualitative
arguments about the exchange-correlation hole.
The calculation of the cohesive energy of sodium
is described in Sec. IV. Additional evidence for
the importance of using the LSD approximation for
the unpaired atomic valence electron is given there
by a perturbative estimate of the cohesive energy
of lithium. We conclude in Sec. V with some re-
marks about the broad applicability of the spin-
density-functional formalism.

1I. KOHN-SHAM SCHEME

The Kohn-Sham density-functional scheme for
the ground state of an interacting electron system
in an external potential v(T) is based on a varia-
tional principle,” which states that there exists a
universal functional of the density F[n(F)] that has
as its minimum value the correct ground-state en-
ergy associated with »(¥). This minimum princi-
ple does not apply strictly to approximate function-
als, as we then do not know whether the minimum
value is above or below the correct ground-state
energy, only that the scheme gives the appropriate
density for the chosen functional. By an unphysical
approximation, as in the so-called Xa method®
with a large a, we could easily obtain minimum
values far below the correct ground-state energy.
Hence, some physical insight is required in the
construction of an approximate functional, as we
will discuss later. In many situations this re-
quires a generalization of the original scheme.

The Kohn-Sham self-consistent scheme in the
local-density (LD) approximation is summarized
in Egs. (1)-(9) of Tong’s paper.? The scheme can
be generalized to apply for spin-polarized sys-
tems.”® The case where the spin density is local-

ly restricted either along or opposite some fixed
direction, the same throughout the system, has
a large range of applications. For this case the
generalization amounts to (i) replacing the density
n(T) in Egs. (1)-(9) of Tong’s paper by a two-
component spin density 7,(¥), with one component
[,(¥)] for spin-up and one [n_(¥)] for spin-down
electrons, (ii) adding a spin index s to the set ¢
of Schrodinger-equation solutions on Tong’s Eq.
(3), and (iii) performing the appropriate summa-
tions over the spin index s.

Within the LD approximation [Tong’s Eq. (2)]
the exchange-correlation energy and potential can
be obtained from results for the homogeneous,
paramagnetic electron liquid. When accounting
for exchange and correlation, the theory in this
form thus views the electrons as a spin-compen-
sated electron liquid. Though there are good
reasons to have confidence in this for such systems
as simple, paramagnetic metals, e.g., sodium
metal, it is obviously not appropriate for systems
with unpaired electrons, like the hydrogen atom,
the outermost electron in the sodium atom,® and
ferromagnetic systems. *®°

Our improvement in the applications described
in the subsequent sections is to use the spin-
density-functional formalism instead of the density-
functional formalism. We assume the local-spin-
density (LSD) approximation to hold, i.e., Tong’s
Eq. (2) generalized to spin densities,

E*(n,,n.]=> [ €, (), n. (D) n(F)d¥
= [ (r (F), L) n(F) dF . 1)

For the description of the calculation of the ex-
change-correlation energy and potentials for the
homogeneous, spin-polarized electron liquid, we
refer the reader to Ref. 6. In our computations
here we use as inputs the following interpolation
formulas for the exchange-correlation energy €*°
and potentials u%°, expressed in terms of the elec-
tron-liquid parameters r,, defined by 4m3aj/3
=1/n, and the fractional spin polarization ¢ = (n,

- n_)/n:
€tr,, 1) = €+ (€5 - &) /(D) Ry, @

where

O =[M+)2+ (1 -0 -2]/(24° - 2)

and
eF=el—c; [1+ ) +1/x)+3x;, -2 -3],
i=P,F

with x; =7, /7;, €=-3/(2nar,), a=(4/9mM3, and

€5=2"%¢€% (cp=0.0666, cr=0.0406, rp=11.4,
and 75 =15.9), and
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FIG, 1. Exchange-correlation energy density of the
hydrogen atom €*(y) (in Ry), as defined in Eq. (4), in the
local-spin-density (LSD) and local-density (LD) approxi-~
mations compared with the exact result. The LSD result
is calculated from Eq. (2) with £ =1 and the LD result
from the same equation with { =0. The distance from the
nucleus is denoted by ».

L, £) = — —2 (Bil o >Ry, @)

Tar, 3 1xy¢
where
B=1+0.05457,1n(1 +11.4/7 ),
6=1-0.0367,-1.367,/(1+107,),
and
y=0.297.

These interpolation formulas reproduce the
calculated values within about 1 and 2% re-
spectively.® Not knowing the exact solution of
the electron-gas problem, we cannot give a firm
estimate of the error, but these results are likely
to be within 0.1-0. 2 eV of the exact exchange-cor-
relation energy and potentials for », above about
1.% For smaller 7, values the absolute error of the
interpolation formula is expected to be slightly
larger.®

III. HYDROGEN ATOM AND HYDROGENIC IONS

Approximations are introduced into the Kohn-
Sham spin-density-functional scheme through ap-
proximations for the exchange-correlation energy
tunctional E*°[n, ,n.]. The exchange and correla-
tion forces are fundamentally nonlocal in nature.
In practical applications, however, we have had
to resort to local approximations, like the LSD
[Eq. (1)] and LD approximations [Eq. (2) in Ref.
2]. The fundamental theory says that such an ap-
proximation should be good only in the limit of
weak and slow spatial variations of the spin density
but has not yet provided any useful criteria for
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how strong and rapid variations we can use a local
approximation.

A. Hydrogen atom

The hydrogen atom can provide an informative
test case for the LD and LSD approximations, be-
cause (i) there is an exact solution to the problem
available, and (ii) the electron density of the hy-
drogen atom is in a region [r=(3/4)}/%¢%"/? going
from 0.9 and up] where the approximations and
available electron-liquid data are commonly used.
We will in this section present results for the hy-
drogen atom and then from a discussion of the ex-
change-correlation hole draw conclusions about
the applicability of these approximations for other
electron systems.

The electron of the hydrogen atom obviously has
its spin unpaired. In the Kohn-Sham scheme, the
appropriate local functional should then be for a
spin-polarized, homogeneous electron liquid.

A straightforward, numerical application of the
Kohn-Sham scheme with the LSD approximation
gives the value —13. 38 eV for the atomic energy
of hydrogen in good agreement (within 1.6%) with
the exact result, —13.60 eV.

The total energy is composed of a kinetic part
and an electron-nucleus-interaction part. In the
Kohn-Sham scheme there are in addition electro-
static and exchange-correlation terms, describing
the intrinsic interaction of the electron-charge
distribution [see Tong’s Eq. (1)]. In an exact ver-
sion of the scheme these latter two terms would
cancel for the hydrogen atom, as the single elec-
tron does not interact with itself. In an approxi-
mate treatment the electrostatic integrals are
handled exactly, while a model functional is used
to simulate the role of the exchange-correlation
forces in reducing (ideally, in eliminating) the re-
pulsive electrostatic forces. Being approximate,
such a model is bound to fail in some regions, and
the best we can hope for is that we have a good
representation in the important regions and some
cancellation between the misrepresentations in
other regions. Figure 1 is meant to illustrate that
such is the case for the hydrogen atom in the LSD
approximation. It shows the approximate and ex-
act exchange-correlation-energy densities €**(r),
defined by

E*= [ €(r)n(r)d . (4)

We see that the difference between the LSD approx-
imation €*(r)= €*(»(r), £(r)) and the exact re-
sult is positive for large » values, negative for
small 7, and zero at a distance about 1 Bohr radius
from the nucleus, i.e., where the electron is most
likely to be.

It should be noted from the figure that the result
in the LD approximation deviates from the exact
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FIG. 2. Hartree (Vy) and exchange-correlation (u3®)
potentials of the electron in the hydrogen atom. The
curve [4° +Vy is drawn to illustrate the relative constancy
of the difference between the approximate (LSD) and
exact (== Vy) exchange-correlation potentials, Equation
(3) has been used to get the LSD (¢ =1) and LD (£ =0)
results for (¢,

result for the whole » range of importance. Ac-
cordingly, the energy value, —12.25 eV, deviates
significantly more (10%) from the exact result.
This is not surprising, because in describing the
exchange and correlation effects by the LD approx-
imation we are simulating the fully spin-polar-
ized electron distribution of the hydrogen atom
locally by a spin-compensated homogeneous elec-
tron liquid. A priori, the spin-polarized electron
liquid, used in the LSD approximation, should be

a more appropriate model system. The same is
true in all applications on systems with unpaired
electrons. Stated in the Hartree-Fock practitioner
jargon: The “unrestricted ” rather than the “re-
stricted ” scheme should be used.

The “wave function ” in the Kohn-Sham scheme
has to be calculated from a SchrSdinger equation
[Eq. (3) of Ref. 2], which in the approximate ver-
sion has a potential differing from the true Kepler
potential. In Fig. 2 we show the electrostatic Vy
and the exchange-correlation potentials u¥® for
majority spin (s =+) electrons. The exact ex-
change-correlation potential should equal — Vy
within a constant.'® We see that the additional
potential Vi + ui® is almost constant as a function
of 7 in the LSD approximation. A constant shift
in the potential does not affect the wave function.
As a matter of fact, our calculated density de-
viates everywhere less than 4% from the true hy-
drogenic density. The dashed curve illustrates

the stronger » dependence of Vy+ u*° in the LD ap-
proximation.

B. Exchange-correlation hole

Figure 1 raises questions about why the LSD ap-
proximation gives such a good representation of the
exchange-correlation-energy density €*°(r) and
why the errors involved tend to cancel in the in-
tegration giving E**. Another question concerns
the implications for other electron systems. We
attempt to answer by both general, qualitative
arguments and explicit calculations for the hydro-
gen atom. The discussion will focus on the ex-
change-correlation hole and the way the LSD ap-
proximation closely models this quantity and elec-
trostatic integrals over it that contribute to E*,
We will show the following.

(i) Near the nucleus the approximation overem-
phasizes the higher-density regions. This leads
to an LSD hole smaller than the exact one and thus
€)ZI':‘:SD < e:iact .

(ii) In the tail the LSD hole is at the wrong place,
being centered around the electron while the ex-
act hole is around the nucleus, and has the wrong
size, the low density in the tail making it too ex-
tended. This makes €% > €., in this region.

(ii) The crossover region, where €i5p= €, ,,
happens to occur around 1 a.u. for the hydrogen
atom. Its location is affected by the magnitude
of the electron-gas screening. The greater the
screening, the smaller the LSD hole, and the
smaller the misrepresentation in point (ii) above.
In the hydrogen atom a large part of the tail is in
a low-density regime with strong screening. In
the hydrogenic ions, on the other hand, increasing
nuclear charge increases the density and reduces
the effect of screening. This reduces the ratio
(crossover radius)/(orbital radius) with an in-
creasing misrepresentation of E*® as a conse-
quence. Finally, for valence electrons in atomic
systems with lower average valence-electron den-
sity than the hydrogen atom, i.e., in the alkali
atoms, the higher screening should contribute to an
improved representation of E*¢.

A central quantity in a discussion like this is the
interaction energy!!

2

Em:%J’dsrn(F) J’ 2y I_FE—?_I P, 7). (5)

The quantity
pee(F, T) = [g(F, T) = 1]n(@), 6)

where g(T, ') is the pair-correlation functions,
expresses how the electronic charge density around
a particular electron (at T) is suppressed owing to
the exchange and Coulomb interaction with that
electron. In the electrostatic energy, omitted
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FIG. 3. Illustration of the similarities and differences
between the exact and approximate (LSD approximation,
using the random-phase approximation for the spin-polar-
ized electron liquid) exchange-correlation holes. We
have plotted the contribution €(F, 7)) [Eq. (7)] to the inter-
action energy density at different points » due to the sup-
pressed charge at a distance », from the point T. The
area under the curve gives the interaction energy density
at r,

from Eq. (5), the Coulomb interaction between the
charge distributions - en(F) and - en(¥’) is in-
cluded, and Eq. (5) corrects for the fact that the
charge is suppressed. The quantity p.(%,T’) then
describes this decreased density, called the ex-
change-correlation hole. It is this quantity which
is described approximately in the LSD approxi-
mation.

In the hydrogen atom the exact pair-correlation
function g(¥, ¥') is zero. Accordingly, the ex-
change-correlation hole is p. (%, ') =-n(t"); i.e.,
it is centered around the nucleus and independent
of the electron position ¥. In the LSD (and LD)
approximation, the hole is assumed to be spherical
around ¥. The hole is thus misrepresented in
some regions. The interaction energy, however,
can still come out reasonable owing to cancella-
tion of errors in the integration.

The simplest form of the arguments uses the
fact that the size of the exchange-correlation hole
in the homogeneous electron liquid decreases as
the density increases. As the density is highest
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at the nucleus (»=0), the LSD approximation over-
estimates the density surrounding an electron
there, and the LSD hole will be too small there.
The contribution to the integral in Eq. (5) from
this region will thus be too negative. For large

7, owing to the low local density, the hole will be
too extended. Besides, it has the wrong shape.
This will give a contribution to E,,; which is not
negative enough.

By considering an explicit calculation for the
hydrogen atom we can see how these arguments
work and what increased sophistications are needed
to understand more complicated systems. Con-
sider the calculation of the quantity

2
€F, 7o) = = j @' p(F, T 8(|F=F| =7p) . ()
0

This quantity is suitable for comparing exact and
LSD-approximation results (Fig. 3), since (i) after
integration over 7, it gives the interaction-energy
density in Eq. (5) for different » values, and (ii) it
is a spherical average of the exact hole, which can
then be readily compared with the spherical hole
of the LSD approximation. For the calculation of
the pair-correlation function g of the homogeneous,
spin-polarized electron liquid we have here used
the random-phase approximation. We see from
Fig. 3 that the LSD approximation agrees well with
the averaged exchange-correlation hole [Eq. (7)]
for r around 1 a.u., but less well, when the elec-
tron is either closer to the nucleus (hole is too
contracted) or further away (hole is too extended).
Figure 3 thus substantiates the qualitative argu-
ments given above. It is due to the heavy weight
on the region around =1 a.u. and due to the
cancellation between the small positive errors from
the outer region and the small negative errors
from the inner region that the exchange-correla-
tion energy agrees so well for the hydrogen atom.

To understand the differing behavior of the hole
it is important to keep three length scales in
mind'?;

(i) The inhomogeneity length scale, which char-
acterizes the density variations: In hydrogen and
hydrogenic ions the orbital radius a,, is a con-
venient measure. In the uniform electron gas the
length is of course infinite, while for alkali atoms
it lies in between. The next two lengths, while
defined initially for the homogeneous electron gas,
apply to the inhomogeneous one, as well, where
their values are accordingly modified by the chang-
ing local density.

(ii) The Fermi length A =0.527,(1+¢)/% a.u.,
where £ =0 in the paramagnetic limit and 1 in the
ferromagnetic limit: Crudely speaking, this length
sets the size of the hole in the high-density region,
where one often says exchange effects dominate.

(iii) The Thomas-Fermi screening length
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App=1.2373 2 n {201+ ¥/

[(1 +€)1/3+(1 - §)1/3] }1/2 .

This length scales the size of the hole in the lower-
density region, where, again, one says that cor-
relation effects dominate. It would be tempting to
choose the density, where the latter two lengths
are equal (r,=1.5, when £ =0) as the dividing line
between exchange and correlation-domination. In
fact, of course, there is no line and only a diffuse
boundary between the high- and low-density limits.

C. Hydrogenic ions

An illustration of increasing exchange domina-
tion and hence a resulting deterioration in the
balance between exchange and correlation seen in
the hydrogen atom is provided by the one-electron
or hydrogenic ions. Increasing nuclear charge Z
in the hydrogenic problem gives a higher and
spatially more varying electron density, 7, going
from 0.9/Z and up, 7,=1.8/Z, and the orbital
radius a,, decreasing like 1/Z a.u. The latter
characteristic length should be compared with Ay
and A;p. Just as for the hydrogen atom, the LSD
approximation gives too contracted a hole close to
the nucleus and too extended a hole in the outer
parts of the electron distribution. However, as Z
increases, there is a growing fraction of the elec-
tron-density distribution in the exchange-dominated
regime.. Relatively speaking, i.e., relating Ap
and Apy to a,,, the exchange-correlation hole is
more extended in this regime. The approximate
hole is thus too extended in a relatively larger re-
gion of space. The balance found for the hydrogen
atom is thus slightly upset, and as a result the ap-
proximate E*® will not be negative enough, the
relative error growing with Z. As both Ay and a,,
scale like Z™!, the relative error in accounting for
E* should approach a constant in the limit of large
Z.

As the kinetic and electron-nucleus-interaction
energies go like Z2, while the interelectronic-
interaction energy increases proportional to Z, the
relative importance of the latter contribution de-
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creases as Z increases. The relative error in the
total energy should thus decrease with increasing
Z.

Table I shows how all these features are present
in the results from explicit calculations. In ad-
dition, the table shows that the relative errors are
rather small throughout the series.

We see that the limiting value of the relative
error in accounting for E*® for large Z is about
14%. The same relative error is obtained for the
hydrogen atom (Z=1, E=-11.4 eV) when the
Hartree-Fock results

€=-3[(1+"3+ (1 -0)*®] /amar Ry
and
ui=-2Q )3/ mar Ry

are used instead of Egs. (2) and (3), respectively.
This is one way of illustrating that the hydrogenic
ions for very large Z are entirely in the exchange-
dominated regime. The last column of Table I
shows how gradually this regime is reached even
at small 7,.

It should be stressed here that we are not advo-
cating the use of the LSD approximation for de-
tailed descriptions of tightly bound electrons.
Table I also shows that the absolute error grows
with Z.

D. Implications

Our point has been to show that the applications
to the exactly solvable cases support the qualita-
tive arguments. We argued earlier that the ap-
proximate hole is too extended in the outer parts
of the atom (large 7). Now we see that this mis-
representation is reduced for densities in the cor-
relation-dominated regime. A smaller hole gives
a more negative interaction-energy density. Ac-
cordingly, we expect that for valence electrons in
atomic systems with lower average valence-elec-
tron density than the hydrogen atom, such as the
alkali atoms, the LSD curve for the exchange-cor-
relation-energy density should come closer to the
exact result at large 7 than the hydrogen-atom
curve shown in Fig. 1. This would imply that the

TABLE I. Total energy E and exchange-correlation energy E* of the hydrogenic ions,

Total energy E (eV) Error AE*® Exact E* AE*/E*®

z Ton 7s exact: — 13,622 LSD appr. (eV) AE*/E (%) 8.5Z (eV) (%)

1 H 1.8 -13.6 ~13,38 0.22 1.6 8.5 2.6

2 He' 0.9 —54,4 ~53.3 1.1 2.0 17.0 6.5

3 Li% 0.6 -122.4 -120,3 2.1 1.7 25.5 8.2

5 BY 0.4 —340,0 —-335.7 4.3 1.3 42,5 10.1
10 Ne® 0.2 —-1360 —1350 10 0.7 85.0 11.8
50 In®® 0.04 —34013 ~33956 57 0.2 425 13.4




crossover between the LSD and the exact curves
should lie further out, relative to the orbital
radius, and that hence the exchange-correlation
energy of the valence electron should be better
accounted for by the LSD approximation here than
in the hydrogen atom.

The core electrons have not been considered in
the preceding. However, the essence of the argu-
ment still holds with them included, and we esti-
mate that at least for the alkali atoms the error
introduced by them is smaller than the built-in un-
certainty in Eqs. (2) and (3) (0.1-0.2 eV). In, for
instance, Na (Li) the core-valence exchange and
correlation effects contribute about — 0.3 (- 0, 2)3
and - 0.1 (- 0.1)!* eV each to the total energy.
The essential contributions to these effects come
from the exchange-dominated region, where the
local approximation might have an error up to
about 15%, judging from our results for the hy-
drogenic ions. Similar numbers for this error
have been obtained by Tong and Sham.!® However,
even a maximum error in this region will intro-
duce a small error in the core-valence contribu-
tion to E*®, well below 0.1 eV in sodium and
lithium, for instance. In conclusion, the argu-
ments presented above should cause the reader,
we believe, to attach significance to the numbers
presented in Sec. IV.

1V. COHESIVE ENERGY

Finally we turn to the objective of the preceding
arguments: How well does the LSD approximation
do in improving the cohesive energy of the alkalis ?
Of course, it is a little foolish to bury so much
physics—or at least what we perceive as physics—
in one single number. But fortunately we see other
possible applications of the approach, which will
be discussed in Sec. V.

For the moment, however, let us see if Tong’s
result for sodium can be improved by LSD. Of
course, there may be more conventional explana-
tions for the discrepancy between the experimental
number (1.13 eV/atom) and Tong’s. One possibili-
ty, as Tong? has suggested, might be computation-
al difficulties. The cohesive energy is obtained by
subtracting the total energy per atom of metallic
sodium from the total energy of the isolated atom.
These two very large numbers have been calculated
from different computer programs, and thus the
small difference might be inaccurate. However,
the independent calculation of the cohesive energy
by Averill supports the view that the computational
error in Tong’s calculation is small.®

Another possible explanation for the deviation
cculd be a limited ability of the local-density ap-
proximation to describe the effects of exchange
and correlation. These effects are fundamentally
nonlocal. Lacking quantitative criteria for the
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applicability of the local approximation, we can-

not definitely reject this reason for the deviation.
The qualitative arguments expressed in Sec. III,

however, point at sodium as an ideal system for

applying the approximation.

A third reason, suggested by Kohn® and which we
favor, is that the discrepancy should be due to an
insufficient description of the sodium atom in the
LD approximation. In the atom, the outermost 3s
electron is unpaired, giving a nonzero net spin
density. In the LD approximation used by Tong,
the exchange-correlation potential and energy have
been obtained from results for the spin-compen-
sated electron liquid. This should give a bad rep-
resentation of these quantities for the unpaired
3s electron. In the following we will provide re-
sults in the LSD approximation, which support
Kohn’s suggestion.

Tong solved his Eqs. (1)-(9) numerically both
for the sodium atom and the metal.? We see no
reason to repeat the calculation for the metal,
Tong’s result having been essentially checked by
Averill.® To obtain the effect of the improved
theory we calculate the difference in total energy
of the sodium atom between the “unrestricted ”
(LLSD approximation) and “restricted ” (LD ap-
proximation) cases. This difference is then added
to Tong’s value for the cohesive energy.

Equations (1)-(9) of Ref. 2, generalized as de-
scribed in Sec. II, have been solved self-consis-
tently for the sodium atom by a numerical pro-
cedure. We have made one computation, in which
we let the relative spin polarization ¢ take the
self-consistent value from the local spin density,
and another one, in which we lock the parameter
¢ to the value zero, the value for a completely
spin-compensated system, and we calculated the
total energies in the two cases.

We obtain the value - 0.29 eV/atom for the dif-
ference between these two energies. When this
number is added to Tong’s result (1. 39 eV/atom),
the cohesive energy becomes 1.10 eV/atom.

Our values for the correlation energy of the pa-
ramagnetic electron liquid deviates slightly from
the values used by Tong. We estimate the effect
of this deviation on the exchange-correlation en-
ergy [Eq. (1)] to give a contribution of 0.07 eV/
atom to the cohesive energy.!” When this contri-
bution is included, the cohesive energy becomes
1.17 eV/atom, i.e., within 4% of the experimen-
tal value.

We thus see that an a priori calculation starting
from no other information than the nuclear charge
Z =11 gives a result in ridiculously close agree-
ment with the experimental value 1.13 eV/atom.

In Sec. III we argued that the Kohn-Sham scheme
in the LSD approximation should be applicable for
the valence electrons of a range of elements. An-
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TABLE II. Total energies of the lithium and sodium
atoms, in Ry.

Method Lithium Sodium

Expt., Ref. 15 —14,956 —-324,521
LSD appr. -14,766 - 323.268
Hartree-Fock, Ref. 15 - 14,865 -323,717
LD appr., Ref. 15 —14,656 —-322,768
LD appr., Eq. (2) -14,741 — 323,247

other possible comparison is offered by Liber-
man’s calculation on Lithium.!® Liberman has
used the LD approximation, however with only ex-
change included. His result for the cohesive en-
ergy is 1.8 eV/atom, 18 already in good agreement
with the experimental number of 1.65 eV/atom. 19
Using Liberman’s data we estimate the effects of
correlation with and without spin polarization in a
perturbative way. Amusingly, we find that in-
clusion of correlation in the LD approximation in-
creases the cohesive energy to 2.2 eV/atom,
while when the LSD approximation is applied, the
energy of the atom is lowered 0.4 eV from the val-
ue given by the LD approximation, giving back
Liberman’s value of 1.8 eV/atom. The important
point is that correlation effects must be included
in calculating the cohesive energy, and if we had
not taken into account the outer, unpaired spin in
determining the correlation energy, we would
necessarily have overestimated the cohesive energy.
As discussed in Sec. III, we do not attach any
great significance to detailed results for tightly
bound core electrons in the LSD approximation.
However, it might be of some interest to compare
our results for the total energies of atomic lithium
and sodium with experiment and with the results
obtained when using more traditional methods.
Such a comparison is made in Table II. The dif-
ference between our results in the LD approxi-
mation and those of Tong and Sham is due to the
use of different interpolation formulas for the elec-
tron-gas input, their correlation energy likely
being above the exact result and ours below. The
reason that the spin polarization affects the total
energy so little is of course that it is primarily
only the lightly bound valence electron which is
affected by the spin polarization and the major
contribution to the total energy comes from the
core electrons.

V. DISCUSSION AND CONCLUSIONS

We have discussed and applied the Kohn-Sham
spin-density-functional formalism in the local-
spin-density approximation. We have argued that
the spin-density formalism includes additional
relevant physics compared to the commonly used
density formalism, as it takes proper account of
the exchange-~correlation effects of systems with
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unpaired electrons. In Sec. III we have shown
that the LSD approximation gives a good repre-
sentation of the exchange-correlation energy of the
hydrogen atom. The qualitative arguments about
the exchange-correlation hole are supported by
trends through the hydrogenic-ion series. These
arguments also imply that the approximation should
give a good representation of the exchange-cor-
relation energy of valence electrons of systems
with a lower density than the hydrogen atom. Sup-
port for these arguments is obtained in Sec. IV,
where values for the cohesive energies of sodium
and lithium in close agreement with the experi-
mental numbers are calculated.

The usefulness of the spin-density-functional
formalism in its approximate form is of interest
not only for atoms but still more so for molecules,
for atoms interacting with solids, and for other
situations where the complicated geometry causes
a need for simple schemes of calculation. We are
presently developing such a scheme for chemisorp-
tion problems. First we observe that the scheme
works well for separated entities of surface and
adsorbate. For example, the work-function values
calculated with the Kohn-Sham scheme are close
to the experimental numbers.2® For the isolated
atom, the LSD approximation gives good results
for the relevant parameters of the hydrogen ad-
sorption, the ionization energy I=- E(H), the af-
finity A=E(H) - E(H"), and the Coulomb repulsion
energy U=I-A. The ionization energy I of the
hydrogen atom has been calculated in Sec. III.
Further, we have calculated values for A (1.0 eV)
and U (12.4 eV) close to the exact results 0.8 and
12.9 eV, # respectively. We see no a priori rea-
son why the scheme cannot be used to describe the
interaction between adsorbate and surface. How-
ever, obviously there are difficulties in describ-
ing the transition between the paramagnetic limit
of the surface and the spin-polarized limit of the
adsorbate. In particular, as the adsorbate ap-
proaches the surface, there is a tendency to form
a local moment, so that it may be necessary to
build spin-fluctuation effects into the exchange-
correlation-energy functional. 2

In conclusion, we have shown that the use of the
spin-density-functional rather than the density-
functional formalism gives an improved descrip-
tion of the exchange and correlation effects on
atomic valence electrons with unpaired spins.

An application on the cohesive energy of sodium
brings Tong’s result in close agreement with the
experimental value.
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