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The kq representation is introduced into lattice dynamics. As in electron dynamics it turns out to be
useful both conceptually and for calculational purposes. An integral effective-mass-like equation is
derived. It is shown to reproduce the mell-known results for localized impurities in lattice dynamics.
Similarly the kq representation can be introduced into the description of magnons.

Lattice vibrations in solids are most commonly
described by giving the deviations of atoms from
equilibrium u(R„+qz) as a function of the lattice
point R„+q&, where R„ is the position vector of a
unit cell and q& is the location of the atom inside
the unit cell. In an ideal crystal these deviations
are Bloch waves' or phonons while in perturbed
crystals one usually finds also localized modes, '
which can sometimes be given conveniently by
Wannier functions. ' The description of the devia-
tions u as a function of the radius vector R„+qz
of the atom leads to the lattice dynamics in the
coordinate representation.

In a recent series of papers' the dynamics of
electrons in solids was described in the kq rep-
resentation. It was shown that both conceptually
and practically this representation can be useful
in solving a great variety of problems.

This article is intended to introduce the kq
representation into lattice dynamics. It is shown
that the equations of motion assume an integral
form in the kq coordinates. As in the electron
dynamics, the kq representation facilitates the
separation of coordinates in lattice vibrations.
In particular, it is used in this paper for rede-
riving the equations for the lattice-impurity
problem.

The idea of the kq representation is based on
the use of the quasimomentum % and the quasi-
coordinate q instead of the radius vector r in
describing dynamics in solids. 4 The quasimo-
mentum % varies in a unit cell of the reciprocal
lattice while the quasicoordinate q assumes values
inside a unit cell of the Bravais lattice. Together
the kq coordinates can be used instead of one
variable r, which assumes values in all the space.
Conceptually the kq representation was introduced
on the basis of translations in the direct and the
reciprocal space and a quantum-mechanical
meaning was attached to the kq coordinates.
Namely, % labels the eigenvalues of translations
in direct space while q defines the eigenvalues
of translations in inverse space. However, at the
same time E and q can be looked at as regular

coordinates (like the radius vector r ) on which
any function can depend. As such, the kq coor-
dinates can be used in any dynamics, be it clas-
sical or quantum mechanical. In particular, any
function of the radius vector r can be transformed
into a function of the kq coordinates. Thus the
kq transform C(kq) of any function g(r) (not
necessarily a wave function in quantum mechanics)
is as follows4:

1
C(%q)= ~ P e '"'

(((q +R ),
Rm

where V, is the volume of a unit cell in the re-
ciprocal lattice. In particular, for a displacement
u(H„+qz}, relation (1) will be

C(kqz) = g e ' '
~~u(qz+R ) .

vV~
m

In lattice dynamics the radius vector r =R„+q& is
discrete and the quasicoordinate qz assumes
discrete values, while for electrons q is a con-
tinuous variable. In formal expansions of func-
tions, this will be the only difference in using the
kq coordinates in electron dynamics and in lattice
vibrations. As will. be seen below all the relations
that are connected with expansions of functions and
transformations from one representation to another
can be directly carried over from the wave func-
tions for electrons to displacements for vibra-
tions. As an example let us write down the dis-
placement in the kq representation C(K qz) for a
Bloch wave (a phonon) with a branch index I and a
wave vector Re. In the radius vector r =8„+qz
representation this displacement is

u, ~ (R„+gq) =(I/vV, )e' e»„(q ), (3)

and the corresponding displacement in the kq
representation becomes

Cg, (Rqq} =5(%-ke)v~~ (qq) . (4)

This is in complete analogy with the Bloch functions
in the kq representation for electrons. 4

Let us now write the equations of motion for the
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vibrations in the kq representation. We shall as-
sume in this paper the validity of a harmonic ap-
proximation. In the regular coordinates these
equations for a general perturbed crystal can be
written as follows' (where renormalized force
constants p are used in order to eliminate the
masses):

In order to write the equation of motion in the kq
representation both the displacements u and the
force constant fIJ) have to be Fourier transformed
according to the inverse relation of (2),

u(qq+H„) =
~&

e' ' "~ C(le~~) d% .
b

(7)

The equations of motion in the kq coordinates
become [the force constants p are transformed
twice according to (7)]

4) „e(R„+qz, R„'+qI )Me(H„'+qz)= uPii„(R„+qz).
Bn f

(5)

The force constants will in general contain the
unperturbed part p and a perturbation V caused
by a defect or some kind of irregularity in the
crystal:

()(R„+gy H„+gy) = (t) e (R„+qy R„+qii)

+ V~e(A„+(fg ~ ft„+qy )

As was already mentioned the functions (4) are
solutions of Eq. (11) for a branch index I and a
wave vector Pcs. Being solutions of Eq. (11) the
functions (4) form a complete set and therefore
any functions C(%qz) can be expanded in them.
This is of particular importance when the per-
turbed problem (8) is being solved.

No matter which problem is solved the dis-
placement in the kq coordinates C(k qz) is a Bloch-
like function and satisfies therefore the same
boundary conditions as Bloch functions do'.

C(%qz+H„) =e' ' "C(%q~), (12)

C(%+Kq~) =C(1rqq) . (13)

It is therefore possible to expand any function
C(%qz) in the complete set of functions {4)with the
result

C(&qy) =Q &i(&)via(qg) . (14)
l

The latter expansion is in complete analogy with
the one used in electron dynamics. The simplicity
of this expansion is that it contains a summation
over the branch index only (no integrations over %).
In electron dynamics this expansion turns out to
be useful in a variety of problems. 4

By using (14) and (7) one can arrive at another
expansion which was also used in electron dy-
namics. For this purpose let us expand 8, (%)
and vg, (q y),

where

1
B,(Q= ~
vi)((qy) = Q

e-ik Rnp (R )

e' '~~a(q~ —R ) .

(15)

(16)

y s«qi &'q~)

(H q H(+q( )e-il( Ii„+ i'f' ~ I(„'

()

In (15) and (16) the summation is over the Bravais-
lattice vectors. In the last expansion a, (q&-H )
are the localized or the Wannier functions for the
vibrations. ' By putting (14)-(16) into (7) we have

Relations (8) are the equations of motion in

integral form for the lattice vibrations. For an
ideal crystal (It) ~

= ft) '~ the latter depends only
on the difference of 8„-R„' and not on each of
the vectors H„.H„' separately. We have therefore

y"e) (k q~, k'q,')

= P @&()8)(H, +q~, q~~)e-' "'i 6(K-%')

=D '(I(k, qqq~ )6(%-%') .

The eigenvalue equations (8), will become

g DI„'&(K,q, q, ,)C,{kq,'}=~'e„(fey ) . (11)
Sf'

u(q, +R„)= Q a, (q, -R„)F, (H„+H.)

= Q vi), (qy )Ei (H„) with k = —i
n

(17)

The last equality is obtained by using the connec-
tion between Bloch functions v,~(qz) and Wannier
functions a, (q~ —R„) as given by relation (16).
The operator vz(q&) in (17) is given by (16) with
%= —is/SR„. Relation (17) is similar to the cor-
responding one in electron dynamics.

The expansions (14) and (17}are simply Fourier
transforms of one another. They were shown to
be useful in electron dynamics and here we shall
apply them to the impurity problem in lattice
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dynamics.
Let us first rewrite the eigenvalue equation (8)

by using expansion (14). It will be assumed that
the force constants are given by relation (6) and
also that the solutions for the eigenvalues (d'(%)
and eigenvectors v, (qz) of the unperturbed crystal
are known. By using expansion (10}and the
orthogonality relations for v»(qz),

impurity.
In general, relation (20) can be rewritten

V, (fc&) = Q v* «(qq+R„) t„»i(qr +R„),
afn

where

(21)

Q v* «(qg)v r«(qr) =6)
gf

(18)

one obtains the fo1.lowing equation for the coef-
ficients B„(k):

where

v. , (%% )

(19)

vmm«(qr)e
'"' V~8(H„+qr, R„'+qf)

agff 'nn'

~p ik'x vs)«. (qr)e (20)

Equations (19) are the exact lattice-dynamics equa-
tions written in the nk representation (branch-
index and wave-vector representation). They form
a coupled system of integral equations and they
have the structure of effective-mass equations for
electrons. ' The application of these equations to
specific problems will be discussed in future work.
Here we shall show that Eqs. (19) very simply
reproduce the eigenvalue equations for a localized

i

b, (q~+H„') = P A, (R„+q„H„'+qr)b (q, +R„),
afn

(24)

where

b (qt+8„) = g d% t„„(qr+R„)B,(%) (25)

and

t„, (q~+H„) = Q V„a(R„+qr, R„'+qr')v()» (qr+8„').
Bf'n'

(22)

If only nearest neighbors are affected by the
impurity then the summation in (21) and (22) is
clearly only over those atoms that surround the
impurity (including the impurity}. By assuming
that (d' 0(d'(%) (we are looking only for perturbed
modes), it follows from (19) and (21)

(~) g~. v' «(qr+R. )2:r fd&'t. ll (qr+R. )Br(&')
& —~.(k)

(23)

Now multiply both sides of Eq. (23) by t8 1;(qr'
+R„'), sum over m and integrate over %. The re-
sult is

+ H I + ( i ~ dk avm( «qrR )«t ()m( «q+rnH)
a8& n+qf t n+qf ~

(d —(v (k}2

v*,(qr +8, ) V«(R„'+qr', R„"+q,"}v„,(qr+H„")
(d' —(d' (K)

(26)

Equations (24) are linear homogeneous equations
for the impurity modes of the perturbed crystal ~

They are the same equations as those obtained by
the Green's-function technique. ' The frequencies
of the perturbed modes are given by the secular
equation

det(A -I) =0, (27)

where I is a unit matrix and the A matrix is given
in (26).

As is well known, Eqs. (24) assume a particularly
simple form for an isotopic impurity where an
atom with a mass My replaces the atom with mass
M, at the lattice point R„=O and qr with f= 1. For

this situation the perturbation matrix V becomes'

V„8(R„+qr, A„'+qr') =(I M', /M, )(«)'b„ob„iob-r)bye, bm8 .

(28)

Relation (21) assumes then a very simple form:

V, (%f ) =(I-M,'/M, )u' p v*, (q, )v „.((I,) .

Correspondingly the matrix A in (26) that defines
the eigenvalue equations (24) and the secular equa-
tion (27) is a 3x 3 matrix,
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A„8 = (1 -M', /M, )(d dg
U* a(fli)&s i(qi)

u' —&u2 (f)
in the lA representation (a result that was ob-
tained in Ref. 6):

(3o) -i E~R + V~) R, R'E, R'

We have therefore shown that the integral equa-
tions (19) in the nk representation can be used as
starting equations for reproducing the well-known
results for localized impurities in lattice dynamics.
However, since Eqs. (19) have the structure of
the effective-mass equation one should expect that
they will be useful in treating extended impurities.
Recently this extended-impurity problem has been
treated by an effective-mass-equation approach"
and by integral equations of the type (19) but for
the Green's function. '

An alternative form of Eqs. (19) can be obtained
by using expansion (17). This will lead to equa-
tions for lattice dynamics in the /8 representation,
I being the branch index and R the Bravais-lattice
vector. In order to arrive at the other form of
the equations, expansion (17) is substituted into
Eqs. (5) (expression (6) will again be assumed for
the force constants), the result multiplied from
the left by the operator u1~ (gz), and everything
summed over u and f. Alternatively, the same
result can be obtained by Fourier transforming
Eqs. (19). One arrives at the following equations

where

= ~'E (R), (31)

V~, (R, R') = dttd%' V~, (%tt')e '~'~
b

a* (q~-R+R„)
any'nn'

&&V 8(R„+qx'R +qt)as'(qy —R +R,').

(32)

In (32) V, (ltd ') is given by relation (20) while
a and aa, are the Wannier functions defined in
(16).

One should expect that in some problems of
lattice dynamics the eigenvalue equations in the
form (19) will be useful while in other problems
one will prefer using Eqs. (31).

In conclusion we would like to point out that
exactly the same method as in lattice dynamics
can be used for introducing the kq representation
into the description of magnons.
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