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Optical properties of molybdenum. I. Experiment and Kramers-Kronig analysis*
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A study of the optical properties and electronic structure of molybdenum is reported in a two-paper
experimental and theoretical series. Reflectivity data between 0.5 and 6 eV are presented, and
Kramers-Kronig analytical procedures used to determine the optical functions &I(~) and &,{co) are
discussed. Procedures are discussed for obtaining suitable extrapolations of R {co) in the ranges co,„,„-0
and co,„-~. (co,„and co,„are the energy extremes of the measured spectral range. ) A new method
{for metals) is presented for optimizing the extrapolation R(co} in the range «o,„—0. Recently reported
sum rules are evaluated to test the inversion procedures.

I. INTRODUCTION

In this two-paper series we present a study of
the optical properties of molybdenum and their
relation to the electronic structure. In paper I
we report near-normal-incidence reflectance
measurements taken bebveen 0.5 and 6.0 eV and
the determination of the complex dielectric func-
tion 8 = e, + ie, obtained by Kramers-Kronig in-
version of the reflectance data. In paper II, e,(u)
is examined within the context of one-electron
theory. Specifically, a new relativistic-aug-
mented-plane-wave (RAPW) band calculation is
presented from which a, (up) is computed within
the framework of both direct and indirect inter-
band transition models.

%'hereas a number of measurements of the opti-
cal constants' "have been reported for molybde-
num below 6 eV, substantial disagreement is
found between the reported results of the different
investigators. To illustrate, the magnitudes of
the reported ref lectivities vary by as much as 0.3
(at least 40% of the measured refiectivity) at 5 eV
and the uncertainties in the optical constants are
correspondingly large. Surprisingly, among the
lowest-reported ref lectivities are data presented
in Ref. 12 which were taken on samples prepared
and measured in high vacuum (10 "-Torr range).
However, optical-reflectance studies of chemi-
sorption on clean molybdenum surfaces" have
shown that, between 2 and 5 eV, the ref lectivity
decreases a small amount with increasing oxygen
adsorption. Thus it does not appear that the large
discrepancies in the literature result from sur-
face oxidation (at least with bulk sample studies)
but more likely from a combination of experi-
mental difficulties. Our ref lectivity measurements,
taken under a variety of surface preparation con-
ditions, are generally consistent with Refs. 1-5
and are in good agreement with the recently re-
ported absorptivity data of Ref. 6 taken at cryo-
genic temperatures. The experimental procedures

are discussed in See. II.
Since the Kramers-Kronig inversion requires

the evaluation of integrals over an infinite spectral
range, extrapolations of the reflectance are
needed for w both larger and smaller than the
measured data range. A nearly unique extrapola-
tion procedure appropriate to metals was de-
veloped for the spectral range u . -0 where &
is the lowest-energy datum. point: measured. By
including the dc conductivity as a datum point,
the inversion procedure yields the remaining
Drude parameter 7, the mean-electron scattering
time. This extrapolation procedure, as well as
the procedure for doing the v -~ extrapolation,
is discussed in Sec. III. An example is presented
to illustrate that unknown structure outside the
measured spectral range has a minimal effect on
the inverted results within the measured range.
In Sec. IV, we present computations of several
sum- rule integrals.

II. EXPERIMENTAL

Samples were prepared from at least 0.9999-
pure Mo cut from both single (unknown orientation)
and polycrystalline ingots. After cutting, lapping,
and mechanical polishing (final finish with 3-ij.m
diamond grit), the samples were electropolished
to remove any residual surface damage or con-
tamination. Three electropolishing solutions were
used, all of which produced reasonably specular
surfaces. The solutions, polishing conditions and
the estimated surface removal are listed in Table
I. After electropolishing, sample III was subse-
quently sputtered for 1 h at 1000 V in an argon-
glow discharge at 50 p, argon pressure. After
sputter etching, the sample was transferred to
the ref lectometer with a vacuum-capping pro-
cedure designed to prevent exposing the sample
to air. Measurements were then taken with the
sample in an ion-pumped vacuum system at -5
x 10 7 Torr.
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TABLE I. Sample electropolishing conditions.

Sampl e Elec tr opolish
Temp.

Cathode {'C}

Estimated
current
density
{A/cm )

Amount
Time removed '
{min} {p. )

III {large-grain
polycrystal)

IV {small-grain
polycrystal)

U {single crystal)

85% H&SO4, 15% HF platinum

68% H)PO4, 15 jp H2SO4 Stainless 60
17Vp HoO steel

1 part H&S04, 7 parts platinum 15
methanol

0, 5 20

10

50

' As determined by loss of weight.

Sample IV was also electropolished and sputtered
but was measured in air. Sample V was simply
electropolished with no ion etching and was also
measured in air. The electropolishing and ion
sputtering left the surface rather rough and wavy
with the result that some light was lost from the
reflected beam. In order to compensate for the
roughness-dependent light loss, a film over-
coating procedure" accurate to about 2/g was used.
With the exception of sample IV, all results were
reproducible within this accuracy. For sample
IV, a noticeable dropoff occurred in the measured
ref lectivity above -4.2 eV although for lower ener-
gies the results were indistinguishable within ex-
perimental error from the other samples. The
reflecting surface of sample IV was prepared
from an ingot which was cold worked and subse-
quently strain relieved (15 min at 920'C) to pro-
duce extremely fine grains. It may be that the
sample contained residual cold work or that etching
of the fine-grain structure produced a microrough-
ness favorable for the excitation of surface plas-
mons. " The reflectance of samples with micro-
rough surfaces will show increased attenuation
(relative to smooth surfaces)" ~" when e, of the

bulk material is approximately equal to —1. Since
e, is apparently small and negative over much of
the range between 1 and 15 eV, ' " the probability
of surface-plasmon excitation in Mo for E & 6 eV
for appropriately rough surfaces would be high.
Because of the possibility of anomalous surface-
dependent behavior, the data for sample IV were
not Kramers-Kronig analyzed. Figure 1 shows
the measured ref lectivity for molybdenum (sample
V) taken between 0.2 and 6 eV.

Precision of at least one part in 10' was avail-
able for energies greater than -1.5 eV, but the

precision dropped to approximately 5 parts in
10' at 0.5 eV. Data points were taken at 0.05-eV
intervals or less with a spectrometer bandpass of
0.02 eV or less. Thus, for energies greater than
-1 eV, data were available at sufficiently high

precision and density to justify numerical dif-
ferentiation. Since the precision in 8 is pre-
served in the inverted E„ the energy derivative
d(E2e, )/dE was calculated and can be seen in Fig.
6 of paper II.

6 —Eg +262 .

The inversion procedure involves the calculation
of the phase

ln R(&u ')der '

1T 0 (d —(d
(2)

from the measured ref lectivity A(&u'). The com-
plex dielectric function is then computed from
Fresnel's relation

( )
1+r(u)) '
1-r(u))

l00

sot-
f

K

70t—-

50(—
0 3

E {eV)

FIG. 1. Measured reQectance of molybdenum between
0.5 and 6 eV.

111. KRAMERS-KRONIG INVERSION

A. Analytical procedure

The ref lectivity data were Kramers-Kronig in-
verted to obtain the components of the complex
dielectr ic function
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where the complex ref lectivity is defined as

where

[e( )
1/2

[e( ) 1/2~ I

and

e

e((d) = 1 +
((d& —(d ) —2T&(dj=l

(6}

with phase

Im r"
8((g) = arctan

Re r" (9)

where n is the number of harmonic-oscillator ab-
sorbers located at positions e,.; I"& represents a
broadening parameter.

The parameters of Eq. (6) are chosen so that

A(ur ) =R(&u ), where ~ is the high-energy
extreme of the data range. (Also, we define &u

as the lowest-measured energy). If we allow the
model function (6) to provide the high-energy
extrapolation, we see from Eqs. (2) and (5),

&u
" InA(&u'} du' u " ln B(&u')

8u& = —P + —g d(d
2 (d —(d 2 (d —(d

m2~ [In R(&u ') —ln A(ur ')]d&a
'

~2 ~ I 2

We have now separated 8(&u) into two terms, an

integral which need be evaluated only for energies
less than &u„, [since R(&u) is assumed equal to
A(u) above &u,„]and a term 8 (u) which is readily
computed from Eq. (9). The integral of Eq. (10)
is then evaluated with the integration program de-
veloped by Kreiger et al. '

This inversion procedure has proven to be par-
ticularly satisfactory since the calculation can be
performed with a minimum of computer time

Equation (2) is an infinite integral and, of course,
data are available for a restricted energy range.
Thus a procedure is needed to extrapolate R(ru}
toward both zero and infinite frequencies.

To carry out the Kramers-Kronig inversion,
the following procedure was used: Let us repre-
sent InR(~) as the sum"

InR(&u) = ln A(&u) + InB(&u) .

Now let us assume that A(cu) represents the re-
flectivity of a collection of harmonic-oscillator
absorber s. We have"

(-10 sec of machine time on the IBM 360/75/195
is needed to evaluate 8 at 500 energies from 500
input-ref lectivity datum points) and it provides a
natural extrapolation function with the correct"
R ~ I/~' dependence at high frequencies. Also,
very weak spectral structure found in R(~) will
be preserved in the inverted e. This feature is
particularly useful when high- precision- reflectance
data are available. (Such a capability would not
generally be available for inversion routines which
require functional fitting ' " to experimental data
since fitting errors would appear as spurious weak
structures in e.)

For per forming Kr amer s- Kroni g inver sions, the

principal computation difficulty rests with the fact
that Eq. (2) is a principal-value integral which
normally has the largest contribution to 8(~) when

the variable of integration cu' is near the singular
point &. It has been our experience that use of the
integration routine'0 alone provides satisfactory
results at relatively low energies (below -15 eV)
but becomes increasingly unsatisfactory for cal-
culations at higher energies as evidenced by in-
creasingly anomalous behavior of 8(~). However,
with the procedure outlined above, integration is
needed merely to provide a perturbation-type
correction on the model-function reflectivity only
within the measured data range. The procedure
has been verified by inverting ref lectivities calcu-
lated from a variety of harmonic-oscillator model
functions.

8. Extrapolation w-~~

For the +-~ extrapola. tion, we have found that
it is always adequate to represent Eq. (6) with a
single Drude-like absorber; that is, with n=1
and u, =0. The two parameters f, and I', are then
chosen to match the magnitude of the experimental
R(u,„) and to scale the resultant Kramers-Kronig
inverted e(ur). Our experimental measurements
(to 5.6 eV) were extended to 25 eV with the data of
Juenker ef al. ' (see Fig. 2, curve A) and were
extrapolated beyond that point with the two-pa-
rameter function discussed above using f, =600
eV' and 1', = 7.622 eV ' where u is expressed in

eV.
However, if we had chosen to ignore the Juenker

et al. data, we could use the two-parameter ex-
trapolation starting at 5.6 eV (Fig. 2, curve B).
If these extrapolation parameters are carefully
chosen, we find that the Kramers-Kronig inverted
results (below 5.6 eV) are nearly indistinguishable
from the results of the previous inversion which
made use of experimental data between 0 and 25
eV. These results for the frequency-dependent
conductivity o(cu) are shown in Fig. 3 where the
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FIG. 2. Extrapolation functions {dashed lines) used for
Kramers-Kronig inversion of the measured reQectance
(solid line) obtained below 6 eV. Curve A was taken from
Ref. 5 and Curve 8 is a Drude-type model function.

IQOt )

solid line was obtained making use of the 0-25-eV
data and the diamond-shaped points were obtained
from the inversion of data extrapolated with a
model function above 5.6 eV. We see that these
results are essentially identical for the entire
data range. This illustrates that structure in

R(e} which might appear outside the data range
is a matter of little consequence to the inverted
results within the data range. We must emphasize,
however, that the magnitude of o(&u) wiihin the data
range is strongly dependent on the choice of ex-
trapolation function. Thus one might decide upon
an alternate extrapolation procedure, namely of
choosing the parameters f, and I', in order to
match R(~ } and to scale o(&u) at some cv = &u, to

some independently measured o(uo). In Fig. 3,
for example, we also show (open circles) data
reported by Kirillova et al. ' for samples mea-
sured ellipsometrically in air. In Fig. 4, we
show Kirillova's results along with the inverted
o(&u) obtained with an extrapolation (from 5.6 eV
to ~}which scales o to Kirillova's results at 2.3
eV. These data are in generally satisfactory
agreement but show significant differences, par-
ticularly for E ~ I eV. Unlike normal incidence-
reflectance data, ellipsometric data are very
sensitive to thin films which might be adsorbed
on the sample surface. Since the ellipsometric
measurements were taken in air, surface-film
contaminants could seriously affect the reported
results. Of course, uncertainties in the measured
ref lectivities and in the Kramers-Kronig inversion
can also account for some of the difference be-
tween the ellipsometric results and the inverted
results of Fig. 3. We note parenthetically that
normal incidence-reflectance measurements are
simpler, are less sensitive to sample contamina-
tion, and generally afford higher precision than
ellipsometry. Nonetheless, ellipsometry provides
a direct measure of o(&u}. As we have seen, even
a single o(u) point which is accurately known will
enable one to perform accurate Kramers-Kronig
inversion of ref lectivity data even though the data
are available over a very limited spectral range.
A few carefully acquired ellipsometric measure-
ments used in combination with normal incidence-
reflectivity data can thus provide a powerful mea-
surement technique.

For the purposes of subsequent analyses (par-
ticularly for the succeeding paper II of this study)
we will use the results of the inversion given by
the solid line of Fig. 3. That is, the result de-

80
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FIG. 3. Measured frequency-dependent conductivity
beIow 6 eV. The solid line was obtained from Kramers-
Kronig inversion of the measured reflectance using
extrapolation A of Fig. 2; the diamond points using
extrapolation B of Fig. 2. This figure iIIustrates that
unknown structures outside the measured spectral range
need not seriously affect the inverted optical functions
within the measured range. The circles are from Ref. 1.

20—

4
E(ev)

FIG. 4. o(u) (solid line) obtained using a Drude-type
extrapolation with extrapolation parameters chosen to
satisfy the conditions (~ma )ale (~mm)exptl and o(~)
=0(~)~ at 2.3 eV, where a(cu)~ (circles) are the results
of Ref. 1.



1284 B. W. VEA L AND A. P. PAULIKAS 10

rived exclusively from near-normal-incidence-
reflectance measurements.

C. Extrapolation m~0

The inverted o(&u) within the data range shows
some sensitivity to the & -0 reflectance extrap-
olation. However, it appears that a self-con-
sistency condition is available within the Kramers-
Kronig formalism so that an optimum extrapola-
tion function for the & -0 region can be obtained.
We shall impose the conditions that (a) o(cu) obey
a Drude expression over the maximum possible
energy range (consistent with the data) for &u & 0
and (b) o(0) be equal to the bulk dc conductivity

od, ; i.e. , we shall regard o d, as a legitimate
datum point. [If prominent structure resulting
from the anomalous skin effect appears in R(cu),
our extrapolation procedure may be invalid. How-

ever, the work of Bennett et c$."on silver shows

that for reasonably smooth sample surfaces, the

anomalous skin effect has a minor effect on room-
temperature reflectance measurements. Also,
low-energy interband transitions or frequency de-
pendence of the electron scattering time may mean

that, for this analysis, data are needed to very
small &u. j

The rationale for condition (a) is based on the

argument that, at some sufficiently small ~, o(&u)

should become Drude-like. Hopefully, experi-
mental data would be available at sufficiently low

cg where interband absorption would be negligible.
In the absence of sufficiently low + data, how-

ever, there is little point in speculating on the

possible interband absorption below u . Instead,
it would seem appropriate to use an inversion
procedure which, consistent with the dc conduc-
tivity, minimizes the interband contribution below

The procedure is valid if data are available
to sufficiently low ~; it should give a good ap-
proximation to the Drude parameters if + is
greater than (but close to) the interband absorp-
tion threshold, and, in any case, should provide
as good an approximation to the Drude absorption
as can be obtained from the limited spectral-range
re flectivity data.

For the e-0 extrapolation, we used the Drude
expression plus a single harmonic-oscillator ab-
sorber. The Drude expression for R(a&) is given

by Eq. (8) if n = 1, &u, = 0, f~
—= (u2~, and r, =- 1/T,

where ~~ and ~ are the plasma frequency and

scattering time, respectively. Thus, for the
~ -0 extrapolation, we have

2
&p 7'm f2e((u)= 1—, . +

+(d T~+ X(d ((d2 —(tP } fI 2(D

The extrapolation is thus determined by fixing two

Drude parameters, 7 and

2&p Tm
dc 4&

as well as the three parameters f„&u„andI', of
the harmonic-oscillator term Using f, =0 and

the bulk od, (4vhod, =1304 eV in esu for molyb-
denum") a trial r = 1/I" is chosen which yields
a calculated R(&u) somewhat higher than the mea-
sured R(u) at the lowest energy. This procedure
will generate a Drude-type extrapolation function
shown as the dotted line (and labeled EB=0) in

Fig. 5. Then the parameters f„&u„andI', in Eq.
(11) are chosen to provide a slope and magnitude
match between R(&u ) and R(~ ),. The &u -0
extrapolation function R(&u} is then computed using
Eqs. (6) and (7), and the data are Kramers-Kronig
analyzed. We recall that Drude theory gives"

e, (u)) =4vo„/(u(l+(u'T'},

1 —e,((u) =4wod, r/(I + (u'r'),

(12)

(13)

r/h = (1 —e,)/Ee, ,

where E =km, and from Eq. (12)

r/h =(I/Z)(4saa„/Ee, —1}'". (15)

Thus, for small u, a calculation of Eq. (14) or
(15) from the inverted e„e2 should produce the
constant r/K. We find the surprising result that

100

90
0 0.2 0.4 0,6

E (ev)
0,8 l.0

FIG. 5. Extrapolation of the reflectivity from ~~~ to 0.
These extrapolations were made with the model functions
of Eq. (11) where I'=1/& . From inspection of this
figure alone, there is no obviously preferable extrapola-
tion.
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there appears to be a (nearly) unique extrapola-
tion to ur = 0 which leaves r/h constant for &u & e
and thus satisfies conditions (a) and (b). Figure
6, for example, shows v/h computed with Eq. (14)
(solid lines) and from Eq. (15) (dashed lines).
The corresponding extrapolations of R(~) to &u =0
are shown in Fig. 5. Clearly, from an inspection
of Fig. 5 alone, there is no obviously preferable
extrapolation. From Fig. 6, however, we see
that (consistent with our extrapolation procedure),
only one value of r„= 1/I' will give Drude behavior
near co . Furthermore, only for this choice of
I' is r/k as computed from Eq. (14) equal to that
computed from Eq. (15). The behavior of r/h
(Fig. 6} is essentially independent of the harmonic-
oscillator parameters f 2+„a dnI, in Eq. (11)
but depends sensitively on the choice of 7 in Eq.
(11). The sensitivity to r enables one to obtain
a nearly unique extrapolation. For the optimum
extrapolation, I =1/7 = (0.046 eV)/h', f, = 26.5

(eV/h)', &u, =(0.97 eV)/h, and I', =(0.8 eV)/h. We
emphasize that the accuracy of the optimized re-
flectivity extrapolation (subject to the limitations
mentioned earlier} depends on the accuracy of the
reflectivity data. For the data reported here, one
is probably not justified in arguing that the I"
=0.046/h extrapolation is more accurate than the
other illustrated extrapolations because the un-
certainties in the reflectance measurements are
too large. However, the procedure for deter-
mining an optimum extrapolation function has been
demons trated.

For all extrapolation functions consisting of a
sum of harmonic-oscillator and Drude terms, in-

~s& I

30

dependent of the choice of I', the input o„, is ob-
tained from the Kramers-Kronig inversion. This
is expected (although it does not appear to be
generally realized) since, as ~-0, 8(&u) should
approach 8(u)o, . (For proof, see Appendix. )
This is illustrated in Fig. 7 which shows

me ~t.f
—t9D

6) OD,

for the case I'=0.046/g where 8n, is calculated
from the Drude part of the extrapolation model
function and 8„, is the phase from the Kramers-
Kronig inversion. For cu & 0.1 eV, the interband
absorption tail produces a strong upswing in

A8/8. Also, below -10 ' eV, the function again
shows strong divergence indicating that the nu-
merical-inversion procedure has begun to break
down. [We found it necessary to go to very low
energies (-10 ' eV) with a fine integration mesh
in order to obtain generally satisfactory con-
vergence of A8/8. For this purpose we use a
logarithmic integration mesh. ]

As we have seen in Fig. 6, the behavior of c(~)
from the Kramers-Kronig inversion is not, in

general, Drude-like near the low-energy data
cutoff. These results are also illustrated in Fig.
8 where we show the way in which o(&u) for the
different extrapolation functions approaches o„, .
Only for I' =0.046/h' is c(u) Drude-like. The
optimization procedure for the cv -0 extrapolation
apparently provides a separation of the inverted
o(&u) into a Drude part and an interband part where
the interband tailing of g(&u} below &u is repre-
sented by the harmonic-oscillator term of Eq.
(11). The Kramers-Kronig routine will always
give back the input Drude parameters at suffi-
ciently low energy, providing that the numerical
routines are sufficiently precise (recall that the
computation of e, comes from

25
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0.06—
0.05'—

0.04—
0.03—
0.02—
0.Ol—

Ol————
O.OI Q02 0.04 0.10

E (eV)

0.20 0.40 0.0 i

)0 10 jo

!

lO )0 )0 iO )0'

FIG. 6. &/& as computed from the inverted Eg,
using the Drude formalism and the ~ . —0 reflectivity
extrapolations shown in Fig. 5. The solid lines were
computed from Eq. (14) and the dashed lines from
Eq. (15). This figure shows that a nearly unique extra-
polation function for the range 0 ~ ~ ~ ~~~ can be ob-
tained since only one extrapolation leaves the derived
7/I constant and hence Drude-like below ~~ .

FEG. 7. Phase difference ~0/0 = (8„,—OD, )/6)D,
vs energy, where 8„, is the Kramers-Kronig inverted
result and OD, is calculated from the Drude extrapolation
model function. As ~—0, the inverted phase approaches
that of the extrapolation model function; the divergence
in M/0 for ~ &10 ~ eV results from breakdown of the
numerical integration routine.
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g2 Q2
1

and as ~ -0, n and k both diverge but the dif-
ference e, is finite. Thus fy represents the rela-
tively small difference between two very large
numbers, a numerically difficult situation}. Our

purpose is thus to maximize the energy range
(below e ) over which the behavior of the inverted
optical functions exhibit Drude behavior. It is
this requirement which leads to a nearly unique
extrapolation function for R(&u) below u&

The optical parameters e,(~}and e (&u} below
6 eV, as determined from Kramers-Kronig in-
version of the reflectance data with an extrapola-
tion to 25 eV taken from the work of Juenker et al. ,
and with the optimized co -0 extrapolation, are
shown in Fig. 9.

The Drude parameters obtained from the analysis
of Sec. III are

4m'~, =1304 eV

(as reported in Ref. 26), and

r/5=21 eV '.

With o~, as input, the latter parameter was de-
rived from ref lectivity data taken for Ice ~ 0.5 eV.
r/fi reported here agrees well with the value of
18 eV ' reported by Kirillova et al. ' which was
derived from infrared measurements between 0.06
and 0.15 eV (Kirillova's analysis yields a value
of a~, = 0.5 of the bulk value, however).

Since the Drude parameters are now determined,
we can extract the free-e&ectron contribution from
the total o(&u) to obtain o „„,(this requires the
assumption that 7 is frequency independent). Sub-

sequent figures (paper II) will show only the inter-
band contribution to «(&u).

IV. SUM RU LES

Evaluating the mell-known sum rule"

[1—e,((u')]d(u'= (2v ')o„, (18)

have recently been reported by Altarelli et al."
These sum rules, when expressed as

f(E) = [n(E') —1]dE',

2
g(E) =— [1—e,(E')]dE',

0
(20)

m 4mNe2

(where N is the atom density, m is the free-elec-
tron mass}, which is a measure of the number of
electrons available for excitation by a photon of
energy Aced, we obtain the reasonable result that
pl ff 5.2 at 25 eV indicating that the oscillator
strength of the six valence electrons in molyb-
denum (atomic configuration d's') is nearly ex-
hausted at this energy (no contribution to n,«at-
tributable to transitions from outer-lying elec-
tronic levels of the krypton core would be expected
for E & 25 eV"). This result differs appreciably
from the value of approximately 7 (at 25 eV) de-
duced by Juenker et al. '

In addition, the sum rules

1600'~(
1SOOL

provide tests of the numerical accuracy of the
Kramers-Kronig inversion routines. Figures 10
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[OOOI—
b

~ 800I-

50

30

800,

400I—

200I-

L

0
[

0.05
I

0.10

E(eV)
0.15 0.20

-IO—

-30—

-50

FIG. 8. Frequency-dependent conductivity for u & ~~,.„
obtained from the three extrapolation functions shown in
Fig. 5. Whereas, in each of these curves, a 0&, as

0, only the solid line has Drude-like behavior.

FIG. 9. Real and imaginary components of C(~) for
molybdenum from Kramers-Kronig inversion of the
reflectance data.
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and 11 show the functions f(e) and g(&u), both of
which apparently satisfy the sum rules given by
Eqs. (17) and (18). These sum rules thus provide
additional evidence that the inversion routines are
satisfactory.

We notice that both of the functions f(ur) and

g(~) are heavily weighted by the Drude region of
the spectrum. When k(d =See =0.5 eV, each of
these functions has reached 50%, or more, of its
maximum value with a substantial contribution
coming from the region h+ & 0.01 eV. The sum
rules thus provide tests of the numerical accu-
racy of the inversion routines, particularly as
the routines are affected by the extrapolation kw
-0

V. CONCLUSIONS

The near-normal-incidence reflectivity of molyb-
denum has been measured between 0.5 and 6 eV.
New analytical procedures are reported for per-
forming the Kramers-Kronig inversions. Using
the dc conductivity as input, a procedure is de-
scribed for the cu -0 extrapolation which permits
one to extract the Drude parameter v in a (nearly)
unique fashion. Sum rules computed include the
well-known "f sum rule, " as well as recently re-
ported integrals which serve as useful tests of
the numerical- inversion routines. An estimated
intraband contribution (based on the derived Drude
parameters) is extracted from the measured o„,(~)
for comparison with the corresponding theoretical
quantity discussed in the subsequent paper.

APPENDIX

We wish to show that the Kramers-Kronig in-
version of reflectance data extrapolated from
co to 0 with a Drude function must yield the in-
put Drude functions e, (&u) and e,(&u) at sufficiently
low ur; i.e. , the inverted phase e„,(u) must ap-

proach the Drude phase 8n, (&u) as ur -0.
With the assumption that Drude theory describes

optical absorption at sufficiently low energies in a
metal, it follows that the complex dielectric func-
tion of the metal can be represented as

(A 1)

namely, as the sum of a single Drude term and
some number n of harmonic-oscillator absorbers
with parameters f, , e, , and I", appropriately
chosen. "" It may be that v is a frequency-de-
pendent parameter, but one might expect this
dependence to be small near u = 0 so that the Drude
formalism would be appropriate in this regime.
For higher energies, the representation given
above is valid.

Recall that the phase is related to ~ through the
definition

so that

Im r"
8= Arc tan Re y"'

To evaluate x, we use Fresnel's relation

(AS)

with 8 expressed as

e= Isle' -=s, +is, .
Algebraic manipulation yields the result

(A5)

(A6)

From Eq. (Al), we obtain

4&&dcT ~ f» g Ay1+ s 2 ~( 2 2)a+F2 s

26)

24—

20

—16
LIJ

12

O.0OOI O.OOI O.OI O. IO I.O

EleV)
lo l00 l000

1400~
1200

1000

800

600

400

200

0
0001 001 I

E (sV)
100

1500

1240

1220

—1200

~ I180

1000

FIG. 10. Sum rule f(E) =f [ng') —1] dE' (see Ref.
29) calculated from the refractive index obtained by

0

Kramers-Kronig inversion of the molyMenum reQectance
data. For large E, f(E)—0.

FlG. 11. The sum rule g(E) =(2/x) J jl —&&(&')jdE'
(see Ref. 29} for molybdenum. As E 4comes large,
g(E) —4r&&d, . This sum rule and that of Fig. 10 provide
tests of the numerical accuracy of the inversion pro-
cedure.
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~
e ~'" =~co '"(k +h ~'+h ~'+ )' h =E '"

(A8)
3/4F, , (A12)

We now perform a series of expansions and list
the coefficients needed to get the first-order term
of (8„,/8n, ) in a power series in ~.

I
e I- I = (g/~)(I +g,~+g 2~' +g ~'+g6~'+ " )

g, = -I/h'„g, = 2h, /h, . (A13)

Rem = Co+ C,&u'+ C,u'+; Co =1 —4wa~, r+ f, /uP, ,

(A9)

Combining Eqs. (A9)-(A13) with Eq. (A6), keeping
terms to order w'/', w'e obtain

Im E=- B '/(d + B (d + B &d + ' ' ' '

Bo=4wad„B, =(4wad, 7 t- f(II/u)(}, (A10)

2~ z/z

(I+I ~ +k ~'+ )'
0

=(Ree)'+ (Ime)' =(I/~')(E, +E &'+ E ~'+ ~ ~ )
(, =g„(2= Co/2EO+ jb/ho —g2 —g (A14)

=h, 5, = Co+ 2j908, , (All)
I

The final expansion yields

2 I/2

p,=, —1.95~4wa r+ ~' —~ (1 —4wa r) —— ~ 1+2 I. /2
"

(4wad, r)' f 1 f 8wad I'

(4wad, )' 4wad, dc 4 ~2 dc 4 2 (A15)

rvhere 8,„, represents the phase of a real metal.
We have 8„,(&u)-0 as &u-0 as expected The .Drude phase 8n, is the same as 8„, except f, =0, thus

8 =q &u'"+q u'~'+q u' '+ ~ ~ q =p q = p, , q, =p, (with f, =0), (A16)

+ e ~ ~
~~o~

~Dr

2

and hence 8t, & /8„, - 1 as &u -0. Q. E. D.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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