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The driving force in electromigration is generally assumed to consist of a “direct force” due to the
applied field and an “electron-wind” term due to momentum exchange with the current carriers. In the
case of the ‘“direct force” it is uncertain how effectively the charge is screened. In the case of the
“electron wind” it is unclear whether the moving atom senses the carrier’s change in lattice momentum
or real momentum. A method first utilized by Bosvieux and Friedel, and expanded by Sorbello, resolves
these problems by calculating driving forces on the unscreened ion resulting from the nonuniformities in
spatial carrier distribution. These theories depend, however, on an incomplete picture of the spatial
variations in the electric field, which inevitably accompany current flow past localized scatterers.
Furthermore, “screening” of the charge of a lattice defect is related to inhomogeneities in carrier
density and the resulting spatial inhomogeneity in the rate of current production which a uniform field
would provide. Terms of this latter sort have never received explicit consideration.

1. INTRODUCTION

The transport of matter through metals in the
presence of a dc current, known as electromigra-
tion,! has a long history, and has recently become
technologically important as a potential source of
component failure in integrated circuits.® The
conceptual understanding of the process started
in 1907 with Skaupy, who recognized that the mov-
ing conduction electrons can drag atoms along
through a frictional force. A series of modern
publications®=7 has contributed considerably to this
clarification, and has culminated in a significant
recent paper by Sorbello.® Despite these advances,
we believe that there are some very basic points
which are still unappreciated, and we will try to
make these points in this article at the simplest
possible conceptual level.

Electromigration in bulk crystals is found to oc-
cur for solute atoms as well as for the host metal.
In the latter caseitis, of course, a vacancy that is
driven in a direction opposite to that of the ob-
served motion of matter. To cover both vacancy
and impurity motion with one phrase, we shall re-
fer to “lattice inhomogeneities.” It is easiest,
however, to think about the case of an interstitial
ion, and our language will reflect an implicit em-
phasis on that case.

An observed rate of atomic drift can generally
be regarded as a consequence of two factors: a
mobility and a driving force. We shall, in this
discussion, be concerned exclusively with under-
standing the driving force. There are, of course,
serious problems also involved in understanding
the mobility, e.g., the effects of correlated mo-
tion for several types of lattice defects.®

In studies of the force term, it has been custom-
ary to distinguish two types of contribution: that
from the scattering of the electrons by the ion in
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question (the electron-wind term) and that from
the direct interaction of a local charge with the
applied field (the direct force).

Consider first the electron-wind force. Fiks®
and Huntington and Grone* have calculated this
force by considering the momentum exchange be-
tween the impurity ion and the electronic current.
In this approach, it is necessary to decide how the
momentum exchanged in a scattering event is
shared between the impurity ion and the lattice.
This is equivalent to the question: Does the scat-
terer “sense” the carrier’s change in lattice mo-
mentum or the change in real momentum or some
compromise of the two? This is a difficult ques-
tion and it is not clear that it has been adequately
resolved.

Similar physical uncertainties turn up in the
direct-force term. The impurity is in a dense
electronic medium, and is tightly screened. If
there were no current flow present, then the
screening charge would have to move with its im-
purity, and the moving entity would be clearly
neutral. It is in fact possible to have electric
fields, without simultaneous currents, produced
for example by strain gradients. In that case!’
it is believed that the electric fields do not pro-
vide a driving force for atomic motion. Hunting-
ton® has, however, particularly emphasized that
in the presence of electronic current flow it is not
clear that the screening cloud really moves along
with the impurity.

An alternative approach to these physical dif-
ficulties was initiated by Bosvieux and Friedel,’
continued by Gerl,” and most recently extended
by Sorbello.® Their basic point is that we should
calculate the forces on the unscreened bare ion.
This bare ion is characterized by essentially the
same mobility as the screened ion. The forces on
the bare ion can be calculated by taking into ac-
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10 DRIVING FORCE IN
count all the charge disturbances accompanying
the electronic transport process, and then finding
the interaction between these disturbances and

the bare unscreened ion. These charge distur-
bances include those caused by the ion under con-
sideration, those centered about other ions, and
those at the ends of the specimen and responsible
for the uniform field. Under this viewpoint, we can
explicitly assert that screening, if it exists, must
be manifested in the local conduction-band charge
nonuniformities near the obstacle.

Sorbello® invokes pseudopotential techniques.

His calculation is thus not nearly as dependent on
an assumption of weak electron-ion scattering as
the earlier work of Bosvieux and Friedel® (here-
after called BF) and of Gerl.” Our discussion will
be oriented toward impurities in a uniform elec-
tron gas (rather than the complexities of pseudopo-
tentials), and therefore relates more directly to
the “jellium” calculations of BF. The basic ideas,
however, also apply to the work of Sorbello.

The BF theory and its subsequent elaborations
attempt to calculate the charges piled up in the
vicinity of an impurity. This is a part of the over-
all force calculation. To make our own subsequent.
points clear, it will be useful here first to discuss
those terms of the BF theory which agree con-
ceptually with the terms also invoked by Sorbello. ®
These are terms which result from following the
motion of the incident carriers, in the presence
of a current distribution, past the scattering cen-
ter. As a result of the deflection by the scattering
center, carriers are deflected preferentially into
some parts of space and charge inhomogeneities
result.

I. POLARIZATION DUE TO THE SHIFTED FERMI SPHERE

A single point charge Ze is placed at the origin
in an otherwise uniform electron gas of density 7,
and in an externally applied field E,,. Additional
uniform background scattering is assumed to
exist, depending only on the angle through which
the carrier is scattered, and thus gives rise to a
characteristic time 7 for current decay. BF’s
localized conduction-band charge disturbance
8p(T) consists of three terms, Jpg+ Op; + &ps, €ach
to be discussed separately. 0p, is the static
screening of the ion in question in the absence of
current flow and exerts no force on the ionic point
charge. The ion in question and the screening
charge dp, together determine a self-consistent
field which scatters incident carriers. Far from
this ion the current is uniform, and the distribu-
tion in K space, f (E), is the usual shifted Fermi
sphere. This shifted Fermi distribution in the
absence of a localized scatterer prevails uniform-
ly throughout the space of the sample and corre-
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sponds to the same charge density as the original
unshifted equilibrium distribution.

Near the impurity the current carriers are scat-
tered and the charge changes due to the motion of
the scattered carriers are given by 6p;,. These
piled-up charges in turn are screened by an addi-
tional charge distribution 6p, which is not associ-
ated with any current flow. BF calculated 6p to
first order in the self-consistent potential V which
exists in the presence of current flow. The Born
approximation is used to determine ¢;, the wave
function for a scattered carrier with incident mo-
mentum K. bp is then given by weighting these
changes with the incident distribution f (E),

Sp(F) =22 FE) (0|2 - |05/ . (1)
k

¢ is the eigenfunction at zero V and Ee,. The
above expression is then calculated to first ovder
in V, and thus emphasizes the interference terms
between incident wave and scattered wave. Equa-
tion (1) as written differs, in fact, from the strict
prescription given in BF by terms which are sec-
ond order in the applied field. (The reader should
note that we have just referred to the externally
applied field, not to the scattering potential.) We
are concerned, however, only with effects pro-
portional to E.,. BF found that the asymptotic
expression for 6p, is

Bpy (F) ~ = X (kp/27%) TE ox(T/7%) sin(2kp7), as r—o.
(2)

A is a constant indicating the strength of the scat-
tering potential; it is proportional to the charge
Z. hkgp is the Fermi momentum.

The force on the point ion due to 5p, + dp, as-
sociated with it is then found to be

Fi=—eEoA0/po, Ap=Syhiks/e?, (3)

where S is the transport scattering cross section
of the impurity, and p, is the unmodified host re-
sistivity. In our notation the additional resistivity
produced by a density of N ions is NAp/n. BF
show that this result agrees with the momentum-
exchange term predicted by the Fiks-Huntington
approach. Indeed, for the simple model under
consideration, an impurity ion in jellium, the mo-
mentum-vs-pseudomomentum question does not
arise since there is no lattice.

III. RESIDUAL RESISTIVITY DIPOLES

Section II summarized the BF calculation of the
electron-wind force. BF utilized the Born ap-
proximation and calculated 6p to first order in the
scattering potential V. Their 6p is an oscillating
function of 7. In this section, we consider con-
tributions which are of order V2. These contribu-
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tions do not exhibit the rapid oscillations of 5p,
in Eq. (2). The result is that the contribution of
these V2 terms to the field at the ion site may be
of the same order of magnitude as the first-order
terms considered in Sec. II.

A calculation very similar in spirit to that of
BF in calculating 6p; was first carried out by one
of the authors of this article!! some years before
the appearance of BF. This earlier calculation
was semiclassical and did not permit interference
terms of the type which are the basis of BF’s &p,.
The earlier calculation dealt with the details of the
spatial variation for transport in the presence of
localized scatterers. Consider a block of homo-
geneous copper, 1 m along each edge, carrying a
uniform current density. Now introduce one local-
ized scatterer into this block, keeping the total
current flow through the block constant. Since the
resistivity has gone up, the voltage across the
block must have increased. It seems most un-
likely that the increase in field, i.e., the resid-
ual resistivity field, is uniform. The spatial dis-
tribution of the residual resistivity field must be
related to the location of the scattering center.
The simplest localized field with a nonvanishing
average is a dipole field. These residual resis-
tivity dipoles were studied in detail in Ref. 11 and
found to account for the total increase in average
field required by more conventional theories. While
the actual calculation in Ref. 11 is somewhat com-
plex, the main result is not. Roughly speaking,
one can think of the incident carriers piling up
against the scattering center and building up a di-
pole until the dipole potential becomes big enough
to move the carriers around the scattering center,
almost as if the localized scatterer were a macro-
scopic inclusion of poorly conducting material.
The charge density responsible for the dipole
field will be called dp,.

This theory of residual resistivity dipoles' not
only is approximate inits semiclassical nature, but
alsoinitsreplacement of the actual scattering center
by apoint scatterer with the correct differential
cross section. It thus does not do justice to the
exact path taken by the scattered carriers in the
immediate vicinity of the scattering center. The
exact path is, presumably, handled more correct-
ly in the BF theory. Since, however, the residual
resistivity dipoles account correctly for the total
required increase in field, the details of the motion
in the immediate vicinity of the scattering center
can only generate higher-order corrections to the
residual resistivity dipoles, i.e., more rapidly
oscillating fields. In the residual resistivity di-
pole calculations, as in Sec. II, dp, consists of
two terms, 8p, and 0p,,. Op,e is the screening
for 6p,, which in turn is determined by the car-
riers present in nonequilibrium numbers and de-
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flected out of the incident distribution into new
directions. Thus we find 8p, proportional to dif-
ferential scattering cross sections and therefore
proportional to second and higher powevrs of the
scatteving potential. In contrast to Eq. (2) dp,
does not change sign with Z. Infact, as already
pointed out, the field associated with the residual
resistivity dipoles is the residual resistivity
field; i.e., on the average it is always in the di-
rection of current flow.

To find the residual resistivity dipole p, con-
sider a density N of identical scatterers per unit
volume. Let N be small enough so that the scat-
terers are essentially noninteracting and the over-
all resistivity remains dominated by the uniform
thermal scattering. The polarization per unit
volume will then be Nﬁ and the space average of
the associated field is Edipole =—47 Nﬁ. This is
just the additional field needed to drive the current
J past the obstacles, i.e., j NAp/n. Hence, we
find

B =(4p/po) (Eex/4Tn) (4)

where Ap and p, are defined as in Sec. II and » is
the conduction electron density.

To evaluate the contribution of the residual re-
sistivity dipoles to E, ., the field at the ion site,
we must know more than the magnitude of the di-
pole moment; we must also know where the
charges which constitute the source of that dipole
moment lie. If we were really dealing with a point
scatterer, then the dipole source charges would
lie within a screening length 7 of the scattering cen-
ter. If the scattering potential is distributed over
an atomic volume, then we would expect the charges
to be distributed over a sphere which goes bevond
the atomic volume by a screening length. Actual-
ly, in fact, the self-consisent potential of the scat-
terer, in the absence of transport, already ex-
tends beyond the volume of the scatterer because
the screening electrons are more widely distrib-
uted than the original differences in atomic poten-
tial. As a crude guess, let us take the dipole
source charges as concentrated on a surface /;
away from the impurity-ion core surface. If they
are less concentrated in space for the same net
dipole moment, then the field will be smaller.

The core radius is of the order of a Bohr radius
ay, and [  depends on the density of states at the
Fermi surface.

Now a dipole of moment p deposited on a sphere

of radius a will give a field inside the sphere

E=-p/a’. (5)

Combined with Eq. (4) this yields a field at the ion
site
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E®) = (ap/po)(1/41na®) B
= 5(8p/po) Eex (7,a0/a)° (8)

where $7(74a,)® is the volume per electron. For

a system at room temperature, I can be evaluated
in the Fermi-Thomas approximation. For 7,=3
and mass of the electron equal to the free-electron
mass, I;~a, and hence a~2a,. Thus, we find

El(gt): = (Ap/Po) Eox
and (7
F® =~ Ze(Ap/po) Eex -

We see that this is comparable to the BF term of
Eq. (3). For a more realistic model, the scat-
terer may well be more extended in space, partic-
ularly if we take into account the elastic distor-
tions produced by the lattice inhomogeeeity. The
greater spatial extent will reduce F.?’.

We have shown that the second-order contribu-
tion given by Eq. (7) can be comparable to the
first-order one given by Eq. (3). This leaves the
size of still-higher-order terms uncertain. When
we examine the ratio of charge densities rather
than forces, the first-order terms of BF are in
fact (as one might expect) large compared to our
0p,. It is only after integrating over volume to
calculate a force that the second-order terms be-
come comparable, because the second-order
charge density is not an oscillatory one. This
feature, however, can be invoked only once; the
third-order terms in V cannot be “less oscil-
latory” than the second-order terms.

IV. ADDITIONAL SOURCES OF LOCAL FIELDS:
SCREENING

Sorbello® asserts that the local fields discussed

in Sec. II are the only local fields. In his treat-
ment, in addition to the forces caused by the
charge accumulations of Sec. II, the bare ion is
exposed to the uniform background field, whose
sources can be taken to be at the boundaries of

the specimen. Thus, if the Sec. II forces can be
labeled electron-wind forces, then Sorbello has the
bare ion exposed additionally to the unscreened
background field.

Sorbello essentially agrees in this with Hunting -
ton,® who argues that the motion of the screening
electrons, which compensate for the bare ionic
charge, is the important factor. Huntington thus
emphasizes the motion of the essentially symmetri-
cal screening charge whereas BF emphasize the
asymmetry of the local charge and the resulting
force on the bare ion. Huntington argues that the
“screening electrons” do not follow the impurity
motion. Hence, they are ineffective in screening
out E., the uniform background field. Hunting-
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ton’s arguments depend upon a particular “gedan-
ken” experiment, ® in which the electrons do not
follow the impurity. Huutington’s argument un-
doubtedly does show that screening electrons do
not absolutely have to follow the ion with which
they are associated. It is unfortunately not equal-
ly clear that his “gedanken” experiment, which in-
volves ions being taken in and out of the specimen
and in fact far away from the specimen, is close-
ly related to the particular sequence of events in
the real electromigration situation. BF, on the
other hand, claim that for an interstitial impurity,
screening is completely effective in eliminating
the “direct force,” while for a substitutional im-
purity the deviation in charge from the host lat-
tice is supposedly screened and ineffective. In
other words, the deviations in charge from the un-
perturbed lattice are screened. That is essential-
ly a generalization of the conclusion of Ref. 10,
which confines its attention to substitutional im-
purities. Reference 10, however, only applies to
the case of a field unaccompanied by current, and
not to an open system.

BF’s calculation of screening charge proceeds
by applying perturbation theory to the ground state,
in the presence of a field but without a current. It
is not clear (to the present authors at least) that
such a treatment has any bearing on the distribution
of charge in a dissipative current-carrying open
system. The accumulation of charges in the pres-
ence of current flow must be such as to give rise
to a field which in turn causes a current pattern
providing continuity of current. This is analogous
to the calculation of voltage distribution in a net-
work of resistors in which each resistor is paral-
leled by a capacitance. In the steady state it is
only the resistors (i.e., the transport effects)
which determine the potential distribution. Thus
we fail to see how the BF screening fields, cal-
culated from ground-state polarization effects with-
out regard to scattering effects (resistors), can be
relevant. Despite this criticism we shall see that
there are arguments for an additional screening
charge which has some resemblance to the BF re-
sults.

Let us first consider, as a sample problem, an
isolated hydrogen atom in space. In the presence
of a field it becomes polarized. As a result the
nucleus “sees” the applied field as well as the field
due to the polarization of the electron, and these
cancel, resulting in complete screening. The
screening is complete just as if the nucleus were
imbedded in a conducting sphere which in turn is
inserted into a region with a uniform field. The
field disappears from the region in which there are
readily displaceable charges and becomes concen-
trated in the region devoid of such charges. It is
immediately apparent that our case is different.
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FIG. 1. One-dimensional model of a repulsive lattice in-
homogeneity, creating a region of lowered carrier den-

sity.

All of the metal is conducting; we are not dealing
with an impurity atom in empty space. It is true
that the immediate vicinity of the impurity atom
has a greater or lesser density of carriers in it,
and therefore we can expect the applied field to be
modified. The field will be reduced if the carrier
density is larger in the vicinity of the impurity but
increased in the case of a repulsive impurity.

Let us go through a highly oversimplified calcu-
lation to suggest that such terms really do exist.
Consider a one-dimensional system as shown in
Fig. 1, with a localized bump representing a re-
pulsive lattice inhomogeneity. The extra scatter-
ing due to the bump has already been considered
in earlier sections; here we are concerned with
the effects of the variable carrier density, and
will assume that there is a spatially uniform back-
ground of lattice scattering. (A clear separation
of carrier-density inhomogeneities from scatter-
ing effects is possible only in our semiclassical
one-dimensional model.)

Consider first current flow in the absence of any
lattice scattering. Letn, and n_ be the respective
densities per cm of right-moving and left-moving
electrons within some modest energy range at the
Fermi surface. Then the current j = - evp(n, —n.),
where v, the magnitude of the velocity at the
Fermi surface, is a function of x. Continuity of
current will exist, and therefore n, —n_c1/vp(x).
Now turn on a spatially uniform but incoherent lat-
tice scattering (Einstein scattering) characterized
by a relaxation time 7. This will cause the car-
rier imbalance #, - . to start decaying as e™t/",
Now, however, if we apply a field E(x), it will gen-
erate a carrier imbalance locally at a rate propor-
tional to (dn/6k)(dk/dt). In one dimension &z /8k,
the density of states at the Fermi surface, is in-
dependent of x. The electron acceleration term
dk/dt is proportional to E(x). Thus, if E(x)

« 1/vp(x), the carrier imbalance initially present
can be maintained. Hence very localized field non-
uniformities can come into existence and must be
added to those discussed in earlier sections. We

do not put this forth as a serious analysis of screen-

ing, but only as an argument to point out that the
terms related to a spatially nonuniform rate of cur-
rent genevation by a uniform field do exist. Note,
however, that our discussion does do justice to the
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nonvanishing size of the mean free path; it is not a
macroscopic treatment averaging over regions com-
parable to a mean free path. We have used a
Fermi-Thomas type inhomogeneous electron-gas
picture. This is much more likely to do justice to
the case in which no bound charges are involved in
the screening process than in the case where an
attractive impurity potential is deep enough to trap
a conduction electron.

Despite their apparently very different origin,
the fields we have just discussed do resemble the
BF screening fields resulting from an equilibrium
calculation, Consider a region in which a smeared-
out ionic charge density p,(x) varies slowly, and
differs from its value in the unperturbed metal.

If the scale of variation of p,(x) is slow compared
to the screening length in the metal, then the com-
pensating equilibrium electronic-charge density
ny(x) will be proportional to p;(x). In the simplest
possible case of constant effective mass, the Fermi
velocity vp(x) will then also be proportional to
p;(x). E(x) will then, in turn, be inversely propor-
tional to p;(x). The force per unit length p,(x)E(x)
on the bare ionic material will be independent of
ps, and will equal the value in the undisturbed sur-
rounding matrix. Thus the deviation from the un-
disturbed matrix will be screened, as in the BF
theory. We have had to make a great many ap-
proximations to get this result, but it is not clear
that all of these are necessary. Thus, in this dis-
cussion, we have emphasized a very slowly vary-
ing ionic and electronic charge distribution. At
the other extreme, however, where a deviation in
ionic charge is neutralized by bound states drawn
well out of the conduction band, one would again
expect the deviation in ionic charge to be screened
against the effect of an applied field.

In conclusion we wish to point out that we have
only discussed the effect of an electric-field in-
homogeneity on the particular lattice inhomogeneity
responsible for that field. As Sorbello makes very
clear, there are interactions; one inhomogeneity
“sees” the fields produced by others. As far as
the long-range dipole terms are concerned this
leads to situations related to the Lorentz correc-
tion. The role of Lorentz corrections in the re-
sidual resistivity problem has already been em-
phasized in an earlier paper,. 2

Note added in proof. Das and Peierls'® have
recently supplied an additional analysis of the
electromigration problem. They calculate elec-
tronic charge disturbances to first order in the
perturbation potential and, as a consequence, the
residual resistivity dipoles are not included. The
Das-Peierls analysis is more consistently clas-
sical than the original discussion of residual re-
sistivity dipoles.!! In contrast to that analysis
Das and Peierls do not assume a differential scat-
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tering cross section, but invoke classical laws of
motion, through the Boltzmann equation, to cal-
culate particle deflections. Within these assump-
tions we believe that their analysis is correct and
consistent, and does not require ad hoc superposi-
tion of terms as in BF.® We believe that the Das-
Peierls calculation includes the conductivity modu-
lation effects discussed in our Sec. IV above, de-
spite verbal insistence by Das and Peierls that
their calculation demonstrates the absence of

screening effects.
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