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A new theory for calculating the effects of electron correlation in metals is described and applied to
the electron gas. The method is based upon the derivation of a pseudo-Hamiltonian, which describes
the motion of the electrons after long-range collective motions (plasma oscillations) have been accounted
for. The partition function is also expressed in terms of this operator. The cohesive energy, the density
of states, and the thermodynamic properties are calculated in a self-consistent-field approximation, which

takes shifts in the band population at high temperature into account. The calculations are in good
agreement with exact high- and low-density expansions.

I. INTRODUCTION

We propose a new approach for calculating the
effects of electron correlation on the cohesive en-

ergy and thermodynamic properties of metals.
Throughout this work, we restrict our attention to
the "electron gas, " a system of interacting elec-
trons moving about in a uniform background of pos-
itive charge. This simple model of a metal has
been studied by many theorists, a,nd exact solutions
are known in the high- and low-density limits.

The effects of electron correlation in metals
were first calculated by signer. ' His work showed
that the Hartree-Fock (HF) approximation under-
estimates the energy of the electron gas by about

35/q in the region of maximum binding. Bardeen~
demonstrated that the HF theory also predicts an

unrealistic behavior for the specific heat. %'ohl-
farth3 noted that this difficulty with the specific
heat arises from the long range of the Coulomb

forces, and he suggested that electrons in a metal
interact according to a screened Coulomb law.

The explanation for this screening was developed
in a series of papers by Bohm and Pines (BP).~6

They showed that the electrons in a metal undergo
long-range collective motions similar to plasma
oscillations. These motions create an oscillating
field which cancels the long-wavelength compo-
nents of the Coulomb interaction. The BP theory
eliminated the problems encountered in the HF the-
ory. However, objections to the BP use of an ex-
tended variable Hamiltonian and the random-phase
approximation have been raised. Coldwell con-
tends that their approach leads to difficulties, par-
ticularly at low densities. 8

Since the work of Bohm and Pines, numerous
alternative treatments of the electron-correlation
problem have been given. ' " Of particular inter-
est is the paper by Gell-Mann and Brueckner, '~

who obtained the exact expression for the correla-
tion energy in the high-density limit. signer s
expression for the low-density limit was improved

by the more-accurate calculations of Coldwell-

Horsfall and Maradudin. "
In our work, we return to the spirit of the BP

theory. Our method, like theirs, is based upon
separation of the short-range interactions from the
long-range interactions which lead to plasma os-
cillations. However, we do not use either the ran-
dom-phase approximation or the extended variable
Hamiltonian. In Sec. II, we derive a pseudo-Harn-
iltonian that describes the motion of the electrons
after plasma oscillations have been taken into ac-
count. The effective electron. interaction is re-
lated to the ground-state wave function of a charged
boson gas, which is derived in Sec. III. In Sec.
IV, we propose a method for calculating the parti-
tion function, taking into account changes in the
band population as the temperature is increased.
In Sec. V, we present our results for the energy,
the density of states, and the thermodynamic prop-
erties. The calculated correlation energy is good
at low and intermediate densities. The ca.lculation
gives poor results at high densities, but correlation
is a very small contribution to the total energy in

this region. Moreover, our ca.lculati. on of the heat
capacity is in good agreement with the exact high-
density limit.

II. THE PSEUDO-HAiMILTONIAN

We consider the Schrodinger equation for .V elec-
trons in a box of volume V, with a uniform back-
ground of positive charge that makes the system
neutral:

(1b)

(1e)

The indices 5 and j are summed over the X elec-
trons in the box. Equation (1c) is the Fourier ex-
pansion of the potential; the term k = 0 is to be

omitted from the sum, since it is cancelled by the
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positive charges. This restriction will hold for all
sums over R, without being explicitly indicated.

We propose to write correlated wave functions in
the form

Unfortunately, we do not know the exact expression
for X, but in Sec. III we derive a fairly simple ap-
proximation that is adequate for our purposes.

X can be written in the form'5

(2) X= ee (6)

The function X, which is the same for all states of
the system, is intended to describe the collective
features of the electron motion; it is symmetric
with respect to exchange of electrons. 4„de-
scribes the electron motion after the plasma oscil-
lations have been taken into account.

In a variational calculati in of the ground-state
energy, 40 is approximated by a Slater determinant
of plane-wave states. "'4 This approach requires
either the evaluation of many-body integrals or the
determination of the two- and three-body distribu-
tion functions, so that further approximations must
be made. Moreover, thi. s method gives little in-
sight into the band structure and the thermal prop-
erties of the electron gas. In our theory, we seek
to express the energy and other properties interms
of integrals that do not involve the compli. cated
many-body weighting factor,

Substituting Eq. (2) into Eq. (1) and dividing by

X, we obtain. an equation. for 4„:
R4„=E„4„, (3a)

X=- ~V'- ~VX V +E
X

F- =U- ~V~X2mX,
(3c)

provided X is never zero and is bounded, Eq. {3}is
equivalent to Eq. (1), and its solutions completely
determine the wave functions and energies of the

system. We will regard the operator X as an ef-
fective "Hamiltonian" for the electrons after plasma
oscillations have been taken into account. How-

ever, K is not Hermitian and cannot be regarded
as a true Hamiltonia. n. The functions (4„}do not

form an orthonormal set. The correct normaliza-
tion is given by

jC~C„)('d~ =6„..
Next, we propose that X be the ground-state wave

function for the charged boson gas; then E~ is the
ground-state energy, a quantity which does not de-
pend upon the electronic coordinates. This pre-
scription may seem arbitrary, but we offer two

reasons for our procedure. If E~ is a constant,
then the electrons at the bottom of the band will be

closely approximated by plane waves, since the op-
erator V,X ~ V; makes no contribution for an elec-
tron with zero momentum. Second, this choice for
X insures that our theory will be exact at low den-

sities, where the kinetic energy becomes negligible.

where e is a constant, and $ is a function of the
e1ectronic coordinates. Using this expression, it
is instructive to write 3C in the form

(6b)

(2ViS Vi+Vi8) . (6c)2~

The quantity U can be regarded as the effective po-
tential function after long-range correlations have
been taken into account. In Sec. III, we show that
U' is a sum of screened Coulomb interactions be-
tween electron pairs. The operator 7 can be writ-
ten

6 = —[Xs- Sx), (6d)

where X = - (lf2/2m) ZiV2. From Eq. (6d), we ob-
serve that 5 is anti-Hermitian. It is this term
which frustrates our efforts to obtain a rigorous
solution to Eq. (3). However, we will show that,
for many properties of the electron gas, satisfac-
tory results are obtained by neglecting this opera-
tor altogether.

Hl. CHARGED BOSON GAS

&@22 = 4&e N/I V, (7a)

p (~)t2) 1/2Q sii7 xi (7b)

~here +~ is the plasma frequency, and the p„» are
Fourier components of the electron density. In
terms of these quantities, Eq. (lc) becomes

fr=(- mid22)Q ()P2~2-0') . (6)

Equation (6) resembles the potential for an infinite
set of harmonic oscillators of frequency &~ and

Next we derive approximate expressions for the
wave function and energy of the charged boson gas.
The method used is essentially that proposed by
Gross. " However, we will adopt a slightly differ-
ent point of view, in order to bring out the similar-
ity of our approach to the plasma-oscillation theory
of Bohm and Pines.

We define the quantities
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FIG. 1. Ground-state ener~ of the charged boson gas,
according to Brueckner (dashed curve), Coldvvell-Hors-
fall and Maradudin (dotted curve), and Eq. (11) (solid
curve).

We see that Epo depends only on the electron den-

sity, and that Ep3 is a sum of three-electron inter-
actions. Following Gross, Eq. (13) is the condition
obtained by requiring that all two-electron contri-
butions to Ep vanish.

Converting the summation in Eq. (13) to an inte-
gral, the following result is obtained:

g, (x)'+ x'g, (x) —1 —x'P(x)/x& = 0,
where

amplitudes IpkI. This fact suggests that we take
g to be a product of harmonic oscillator functions:

1 " gk(x )g„( I x —x I ) (, &, , r

[x —x '
I

k

We have introduced the definitions
X=&e )

3="2'~' Z l p.-l'
& = ()fa02/»&(s, )'",
g„(x) = f(&(x/ao) .

(18a)

(18b)

It turns out that the above expression leads to di-
vergence in some of the terms which appear in the

theory. Following BP, we could eliminate this di-
vergence by introducing a cutoff in the sum, but

we will adopt a procedure similar to that of Qas-
kell. ' Let us assume that each Fouri. er component

p„- oscillates with an effective frequency (dk =fkk&k .
Then

k

Now substituting for pk from Eq. (7b), and eliminat-
ing constant terms from 9, we obtain

fk i&( (x(-xz&-
ax . . ~i&j k

Equation (9) agrees with the expression proposed
by Gross. We further remark that our method does
not allow for the excitation of "plasmons. " It may
be that we could improve upon the theory by includ-
ing contributions from "excited" plasma states,
but we will not explore that possibility here.

The ground-state energy Ep is found to be

(10)

where

ao is the Bohr radius. We have solved Eq. (14) nu-

merically; details of the solution are given in the
Appendix. We find that gk(x)- 1 as x- 0 and g„(x)
—1/xk as x- ~. Because of this asymptotic be-
havior, there are no diverging terms in our theory.

In Fig. 1, we compare the quantity Fpo with
Brueckner's exact high-density expansion'~ and the
low-density expansion of Coldwell-Horsfall and

Maradudin. '3 Brueckner's expansion is of the forrr.

Ek =A/(r~/ao) ~ +8 Ry/electron,

where A= —0. 8031, B=0.028, and r~ =(3V/4&(f&f)'ls

is the signer-Seitz cell radius. Our result for the
constant A agrees with that of Brueckner, but we

obtain 8=0.058. If our expression for X were ex-
act, Ep would be completely independent of the
electronic coordinates. However, the good agree-
ment shown in Fig. 1 indicates that the term E» is
fairly small. Therefore, we feel that our approxi-
mation for y is adequate, particularly at high den-
sities.

W ith these re suits, we can w r ite the pseudo-
Hamiltonian X in the form

hx= — v ~ +Eko+Qa(lxl xll)+Ekk+7 ~ (17a)
i i&j

where
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Our value for the constant A agrees with theirs. In
Fig. 3, we show the function E~ for two densities.
The exponential formula, while not exact, is a fair
approximation to our function g„.

IV. CALCULATION OF THE PARTITION FUNCTION

A. No correlation

Although greatest interest in the electronic prop-
erties of metals usually centers upon the ground-
state, a complete calculation of the thermodynamic
properties requires evaluation of the partition func-
tion. Our method is a generalization of the Har-
tree-Fock theory to finite temperatures, and it re-
duces to the usual HF result at zero temperature.
In Sec. IV B we show how the formalism can be
modified to include correlation effects.

The partition function is given by

xdtpf ika
k

(17b)

«(R) is a screened Coulomb potential. Converting
the summation to an integral, Eq. (17b) becomes

FIG. ~. The function G), in the screened Coulomb po-
tential [Kq. (18)] for r~ =0.01ao {solid curve) and r, =100ao
{dashed curve).

(21)

K = — ~ v; +~ v(i) +~ ur (ij ) .
f&j

(22)

Now suppose the Q„}satisfy eigenvalue equations

where p= 1/k T a.nd Q„}are any complete set of or-
thonormal functions. The Hamiltonian is of the
form

«(R) = (e'/R) G„(R/R, ),
x cO

G,(q) = —
l

g„(x)x sin(qx) dx,
"0

(18a)

(18b)

(28)

Then the Gibbs-Bogoliubov inequality" states that

and R0=a0~ '. The screening function G„ is shown
for two densities in Fig. 2.

Before leaving this section, we will make a few
more observations about the boson wave function.
From Eq. (9), we can write

q ~ e 8&' Q e-Bsxx (24a)

X «~ -2=x(lx; —;I)),
f&j

(R)
~xx'o Q ~f exk a
AX

(19a)

(19b)

i.0—

0.8

s(R) = (A/R) [1 —F„(R/Ro)], (20a.)

Converting the summation to an integral, we find O
0.6

LL.
04

F,(q) = — [1 -g„(x)]x ' sin(qx) dx,
7T 0

(20b)

where Ro=«OX ' and A =e /hxd~. As R-O, s(R) ap-
proaches a finite value.

p 00

s(R) ——'l g„(x)dx, R-0 .
0

(20c) 0
0

R/ R0
Hence y is never zero and is bounded, as is re-
quired by our theory. In their variational calcula-
tions, Stevens and Pokrant" used the expression

s(R) = (A/R)(1 —e-'") .
FIG. 3. The function I'z in the boson wave function

[Eq. (20)] for x~=0. 0lao (solid curve) and x~=100ao
(dashed curve).
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W=g e- n ii (3C g)g„dr pe ~e)(. (24b)
(27)

We take the Q„}to be Slater determinants of one-
electron orbitals

Now we require that the {g„}be an orthonormal set
of functions. From Eq. (26), we can show that, if

0„=(&i) '"Z(-)'&[V (1)e (2)" V~~Ãj f'P('('))'Ada = J 0'()(d( V( dr

f(„;(i)y„,(i) = e, ((i) q ))((i),

h„(i) =- (6'/2m)v', +v(i) +(o„(i),

(26a)

(26b)

and the (d„, are functions to be determined. The
operator Xo of Eq. (23) is defined by

where the sum is taken over all Xt permutations P
of the electrons. The one-electron orbitals satisfy
eigenvalue equations

n, (P)=(l+e "")',

fv=gn, (P) .

(29a.)

(29b)

then the one-electron orbitals {v)~}form an ortho-
normal set, and the {i)„}are orthonormal. We will
see that Eq. (28) is satisfied in our treatment.

Since we are dealing with N electrons, where we
are interested in the limit as N- ~, we can use the
formulas of Fermi-Dirac statistics. ' We define

Then Eq. (24) becomes

Q - e ' e" II (I + e ")'),

1
W= — n, P„*~,P, dr +— n))n, [q,*(l)p~(2) —y~(1) p f(2)]w(12) y, (l) rp, (2) dT, dq-, .

l
(30b)

An approximate expression for the Helmholtz free
energy A is

A= —No(P'+ W- P'g ln(1+e ~'))) . (31)

We have omitted the inequality sign in Eq. (31),
with the understanding that our expression for A
is actually an upper limit to the true free energy.
Now A is a functional of the quantities {(d„}. Hence
our best approximation to the free energy is ob-
tained by minimizing A{(()~}with respect to all vari-
ations in the (d~.

count the dependence of the density of states upon
the change in population as the temperature is in-
creased. We also observe that u, satisfies the
condition imposed by Eq. (28), so that the one-
electron orbitals are orthonormal.

As we noted previously, the procedure outlined
above is unsatisfactory for the electron gas. In
particular, the density of states at the Fermi level
vanishes at zero temperature, leading to incorrect
behavior for the specific heat. ' These problems
are eliminated when correlation is taken into ac-
count.

6A{(u,}=0.
After some manipulation, we find that

(32) B. Correlation effects

A generalization of our method to include corre-
lation effects begins with the following theorem:

(d, (I) =Qn, Wf(2) w(I 2)V((2) dr,
(34)

p( (1)
yf(2)w(12)rp, (2) dr,

Equation (33) is identical to the Coulomb-exchange
potential obtained in the usual HF theory, except
that the contribution from each electronic state is
weighted by its temperature-dependent probability
of being occupied. Hence our theory takes into ac-

Equation (34) is identical to Eq. (21), except that
the true Hamiltonian K has been replaced by the
pseudo-Hamiltonian X, given by Eq. (17). It is in-
teresting to note that Eq. (34) is exact.

To prove the theorem, we observe that

8+@ —g ~fl @n ~
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f 4'nx'4'. « =1
~

Q=g '

4„*X e C„dr .

Now expand the (4„j in terms of the orthonormal
functions. To simplify the form of the equations,
we use Dirac notation ~k) = P„.

4„=Q lk)A,„. (36)

From Eq. (4), we have

where the (4„ja.re the exact eigenfunctions of 3C,
a.s specified by Eqs. (3) and (4). Hence the parti-
tion function is given by

not have a bound to the true free-energy function„
however, the validity of our approximation must be
judged on pragmatic grounds.

C. Tl)e electron gas

In applying our method to the electron gas, we
make the additional approximation of neglecting the
contribution from the three-electron term E~3 in
Eq. (17). In Sec. V we will show that this approxi-
mation is reasonable. Results for the electron gas
are obtained from the equations of Sec. IVA.

From Eq. (33), we find that plane waves, multi-
plied by appropriate spin functions, are self-con-
sistent solutions for the one-electron orbitals.
The dependence of the energy levels on the wave
vector k is given by

gga;„&fix'lk) w,„=6.„,

~ &*.&Ilx'lk) =(& '). .

e, =- k k /2 m + ur ~,

where

(I + eo+ssz)-1A co

(36)

(3Sa)

Substituting Eq. (36) into Eq. (35), we find
,V=2 1+t. ' '"f (3Sb)

= Z&'. «lx'lk&&kl""l ».. .

The free energy is found to be

4 = —Nap'+E~o —2p 'gin(l+e ~ ~'&)

Of+pep -1

Since the trace of a. matrix is invariant under a
simila. rity transformation, Eq. (34) is proved.

By a.nalogy to Eq. (24), we make the approxima-
tion

0
Q

-glv Q e 88~-
W=ge ~a" g*(K- K')5 d7' Pe ~"

tf n

Since X is not a Hermitian operator, Eq. (37) is
not an inequality. However, our approximate ex-
pression for Q does not have an upper limit. To
see this fact, note that

(3'7b)

f+Fir,„dr =0,
since 5 is anti-Hermitian, and all terms which in-
volve 5 drop out of Eq. (37). Then Q is a lower
bound to the partiti. on function for a system having
the Hamiltonian K —5;

0"g(X-Y)
g d~ -. ~-BW' ~"BSn

n n

Because Q is bounded, we can proceed, as in Sec.
IVA, to find an approximate expression for the
free energy that is stationary with respect to vari-
ations in the one-electron orbitals. Since we do

c(x) = p„, '
(xu(x+), (41a.)

3)2 "1 x+y

a(x) ——
2 ydy, g„(Lz)zdz," I~-y I

(41b)

where I.=aokz/X, and pro. = (Sv/4)'~~/(x, /ao)z is the
Fermi energy of the noninteracting electron gas.
The ground-state energy Eo is equal to the Helm-
holtz free energy:

3
~1

E =-=, p +E — (. .).. d. ,"o
(42)

in Ry/electron. It should be noted that Eq. (42) is
the expectation value of the pseudo-Hamiltonian X

The pa rameter n is related to the Fe rmi ene rgy
pz by o.'= —ppz. Equations (39) must be solved by
iteration, until self-consi. stent values for ~ and ~,
are obtained for each temperature.

V. RESULTS

A. Ground state

We define reduced wavevectors x = k/kz, where
kz = (3m N/V)' is the wave vector of an electron
at the Fermi level. At zero temperature, we ob-
tain the following results. The energy levels (in
Ry) are
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I I I I III( I I I I I ilil I I I I I IIIl in the energy near maximum binding. We observe
that our calculation gives a. very acceptable result
in this region. The error is negligible at higher
densities.

The additional contribution of the three-body
term E~3 to the correlation energy is easy to cal-
culate from first-order perturbation theory. The
dashed line in Fig. 4 shows the result when this
term is included. Since the correction is fairly
small, we feel justified in neglecting it.

It might be thought that the correlation energy
could be calculated more a.ccurately by carrying
the perturbation-theory solution of Eq. (3) to sec-
ond order. We will discuss this problem very
briefly. The second-order term from the operator
5 is found to cancel the first-order contribution to
the correlation energy, and we obtain

FIG. 4. Correlation energy: squares, Geli-Mann and

Brueckner; triangles, Stevens and Pokrant; circles.
Coldwell-Horsfall and Maradudin. The solid curve is ob-
tained from Eq. {43). The dashed curve is the correla-
tion ener~ when the three-body term is included.

(excluding the E~~ term) using a Slater determinant
of plane-wave states. Hence our approximation to
the ground-state energy is just a first-order per-
turbation approximation to Eq. (3).

The correlation energy is found to be

~ l(OI Qln) I'
corr ~ @0 ~0

n&0 n O

(44)

where 0= 2,.&J u(l x, —x, I ) +E 3, and the sum is
taken over all excited states. When this expression
is evaluated, it is found that the correlation energy
has the correct dependence on the density, but it is
too small by roughly a factor of 2. We have not at-
tempted a proof, but we believe that the perturba-
tion solution of Eq. (3) gives the same divergent
series as does Eq. (1), although the first diverging
term does not appear until fourth order. Hence

& „=&~o+3 ~(x)x dx+ --'p 0. 91633~O

0 r8
(43)

The correlation energy is shown in Fig. 4, together
with the exact high- and low-density expansions, ' '
and the variational calculations of Stevens and
Pokrant. " Upon first examination, the results are
somewhat discouraging. Our calculation is good at
lom and intermediate densities, but the asymptotic
behavior at high densities is incorrect. The error
at low densities is owing entirely to our use of an

approximate boson mave function, for the calcula-
tion j.n this limit mould be exact, othermise. Evi-
dently, the error at high densities is due to our ne-

glect of the anti-Hermitian operator 5,
However, correlation is a very small contribu-

tion to the total energy for densities corresponding
to y, & lao. Hence the results are more encouraging
when we examine the total energy curve shown in

Fig. 5. The dotted curve is the HF energy, and the
solid curve is our ca.lculation. The dashed curve
was obtained by using the interpolation formula. of

Hedin- Lundqvist for the correlation energy.
Their expression, which is fit to the calculations
of Singwi et al. ,

~3 gives slightly higher values of

the correlation energy than those obtained by

Stevens and Pokrant. " We estimate the dashed
curve of Fig. 5 to have an uncertainty of about 5~~(-

Q.05—
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FIG. 5. Cohesive energy of the electron gas: dotted
line, HF theory; solid line, Eq. {42); dashed line, Hedin-
Lundqvi st.
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FIG. 6. Density of states for the electron gas at
r, =lao. noninteracting gas {1);our calculation (2); BP
theory (3); and HF theory (4).

the prospects of going beyond our modified HF ap-
proach are not encouraging.

The density of states is defined by

I I 1 I i I llI I ! I t if lI I i l i I i1II i & f

o
o 0.9—

O
CL
Oo
O o.s-
x

Our density-of-states curve for the electron gas at

y, = lao is shown in Fig. 6. Also shown are curves
for the noninteracting ga.s, for the BP theory, 6 and

FIG. 8. Density of states as a function of ten~perature
for r~ =5ao.

for the HF theory. ~' As i.n the BP theory, we pre-
dict a larger band width and a lower density of

states at the Fermi level than for the noninteract-

ing gas. In our case, however, the correlation ef-
fects are not as great as those predicted by BP.

At low temperatures, the heat capacity is pro-
portiona. l to the density of states at the Fermi lev-
el. Figure 7 depicts the ratio of the heat capacity
C to the heat capacity CF of the noninteracting ga.s.
A'e also show the exa.ct high-density formula ob-

tained by Gell-Mann, ~ and the result reported by

Pines. At high densities our calculation is in

fairly good agreement with Gell-Mann's expression.
This fact is encouraging, for it is at high densities
where our prediction of the correlation energy is
poorest. %e expect our theory to be even better at

low densities. Further discussion of the heat ca-
pacity is given in Sec. VB.

Piness has compared the bandw idths predicted by

the BP theory with x-ray-emission bands for sev-
eral metals. His estimates, though much better
than those obtained from the HF theory. are still
larger than the experimental va.lues. Our ba.nd-

~idths differ only slightly from those of Pines,
being s~alle~ for & ~ 4&o a"d la ger f r & 4&o.

In view of the uncertainty caused by the electron-
lattice interaction, we have not repeated Pines" s

analys i s.
0.7
O.OI O.IO I.OO

"s/oo
IO.O B. Finite temperatures

FIG. 7. Heat capacity for the electron gas: dashed

line, Brueckner; solid line, our calculation; dotted line,
Pines.

We have solved Eqs. (M)-(40) for finite temper-
atures, using straightforward numerical techniques;
only the results are discussed here.

One important feature of our theory is that we
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take temperature-dependent shifts in the band pop-
ulation into account. In Fig. 8, we show the de-
pendence of the density of states on the tempera-
ure for y, = 5ao. For k T& 1 eV, the density of

states is essentially unchanged from the zero-
temperature result. Then the curve begins to rise
with increasing temperature, until it is essentially
the same as that of the noninteracting gas, for kT
& 10 eV. The temperature at which the electrons
become "free" decreases with decreasing density.

The dependence of the heat capacity on tempera-
ture is shown in Fig. 9, for y, =100ao. Also shown

are curves for the noninteracting gas and for the

Debye law, using the Debye temperature of a Wig-

ner crystal derived by Coldwell-Horsfall and

Maradudin. ' lt is interesting to note that the heat

capacity reaches a maximum at about 80 K, then

decreases to the classical value C„=-,'PQ, at higher

temperatures. According to our calculations, the

heat capacity at low temperatures does not follow

the T' law of a crystal. This result may be a
failure of our theory. However, the concept of a
Wigner crystal implies that the electrons are lo-
calized about certain lattice points. Even so, elec-
trons can move about by exchanging positions. It
seems likely that there are many delocalized "liq-
uid" states, which are only slightly more energetic
than the crystalline ground state. Under these cir-
cumstances, the heat capacity should behave as our
theory indicates.

To complete our study of the electron gas, we
have calculated the Helmholtz free energy, the in-
ternal energy, and the pressure at several densi-
ties and temperatures. A sample of the results is
shown in Fig. 10. Depicted there is the thermal

I I I I I I I
} 1 I 11111

z 1.0

O
I

Cf

I

O.I

O, I I.O

kT(eV)
IO

FIG. 10. Thermal contribution to the free energy as a
function of temperature at r~ =5ao. solid curve, interact-
ing electron gas; dashed curve, noninteracting gas.

contribution to the free energy (deviation from the

ground state) as a function of temperature, for
r, = 5ao. Also shown is the curve for the noninter-
acting gas. The effect of interaction is seen to be

quite small. Similar results are obtained for the

energy and the pressure.

VI. CONCLUSIONS

We have described a new approach for calculating
the effects of electron correlation in metals. The
method is based upon the derivation of a pseudo-
Hamiltonian K, which describes the motion of the
electrons after the plasma oscillations have been
taken into account. An exact expression for the
partition function can be obtained by substituting
this operator for the true Hamiltonian. Approxi-
mations to the ground-state energy and wave func-
tion of a. charged boson gas, which are needed in

the expression for X, were also derived.
Perhaps the most serious objection to our work

is that we have not solved for the eigenvalues and
eigenfunctions of K. The difficulty of such a task
arises from the nonphysical and anti-Hermitian
part of the operator. We have calculated the cohe-
sive energy and thermodynamic properties by a
self-consistent-field approximation that has the ef-
fect of dropping the anti-Hermitian term.

In spite of its deficiencies, we judge the theory
to give satisfactory results for the electron gas.
Extension of the technique to include the electron-
lattice interaction. in real metals is being studied.

FIG. 9. Heat capacity as a function of temperature for

r, =100ao. dashed curve, noninteracting gas; solid
curve, our calculation; dotted curve, Debye law for the

signer crystal.
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APPENDIX

It is also possible to show that

P(x) —C/x', x-
g,(x) —1/x'+ C/x~x',

(A9)

(A 10)

Rewriting Eqs. (14) and (15), we obtain

g,(x)'+ x'g, (x) —1 —x'P(x)/» = 0,

gQ g g X + 'P 2X~

& (xn —y) ~7i,

(Al)

(A2)

To prove this result, we first note that, if Eq. (A9)
holds, then Eq. (Alo) follows from Eq. (A7). To
prove the converse, we note that, if Eq. (Alo)
holds, then Eq. (A3) gives

00

P(x) ——
Jl g~(xy)~2(y)y 'dy

where &=3'~/(r, /ao)3~. By a change of integration
variables, Eq. (A2) can also be written

where

p OO+, g,(xy)n 4(y)y
'

dy,
X dQ

(A 11)

p(x) = xf, g.(xy)y 'dy f„'g~(«)

& (1 —y'- z') z ' dz, (A3)

g)„(y) = f (I —y' —z')z 'dz . (A12)

It can be shown that the second term in Eq. (All) is
of order x at most. %'e also find that

g, (x) - (1+-,' x')'i' —-,'-x', (A 4)

where zo=max(y, 1 —y).
First consider the high-density limit of Eq.

(Al). Assume that, as X- ~, the term involving
P(x) can be ignored. Then Eq. (Al) reduces to a.

quadratic equation for g,(x). Of the two possible
solutions, we take

f, w, (y)y 'dy=0,

u, (y) -~y', y - 0 .
Hence

(A13)

(A 14)

1
[I —y'g. (y)1 dy+ —

3 [I —x'y'g~(xy)1
3Y 4Q

From Eq. (11), E~, becomes
dy x-~ .4 ur, (y)

7 (A15)
2A.

Epo= ——' g„(x) dx,
dQ

(A5)

Z~o- —0. 8031/(r, /ao) ~, r, - 0 (A8)

which agrees with the exact high-density result for
the energy of the charged boson gas. '7 %e also
find that P(x) is bounded as X- ~, so that Eq. (A4)
is indeed the correct high-density limit. Accord-
ing to Eq. (A4), we have g„(x)-1 as x-o, g„(x)

1/x as x
For finite densities, let us treat the term involv-

ing P(x) as a. perturbation. The solution of Eq.
(Al) can be written

4
t+ q()

C=-- ' [I-x'g„(x)jdx. (A18)

Using Eq. (Al), we also have

f oo 4 wcg

C = -
3 g,(x)'dx+3 ~~p(x) dx .

PQ 7F QQ

(A17)

By a limiting process simila, r to that used in Eqs.
(All)-(A16), it can be shown that

It can be shown that the second term in Eq. (A15)
is of order x ' at most. Hence Eq. (A9) is proved,
a.nd the constant C is given by

g„(x) = (1+-,'-x'+ x'P(x)/xX)'i' ——,
' x' . (A7)

f, x2P(x) dx= ——,
' x' .

Hence we have

P(x)- —2 f g,(y)zdy, x-o.
Hence g~(x)-1 as x —0.

(A8)

To so]ve for g„(x), we guess the solution, calculate
P(x) from Eq. (A3), then recalculate g~(x) from Eq.
(A7). This procedure is continued until the solu-
tion is unchanged by further iteration. Using this
method, we have solved Eq. (Al) over the ra, nge

0.01 & r, /ao ~ 100.
Next we consider the asymptotic behavior of

g,(r) and P(x). From Eq. (A2) we find that

P(x) - x '[-;P(O) —x/8X], (A19)

Finally, we note that solutions to Fq. (A7) wiii
not exist unless

P(x) = —»x '(1+-,'x') (A2o)

for a,ll .v. By explicit ca.lculation, we found this
condition to hold over the range of densities con-
sidered (r, ~ looao). However, we have not been
able to demonstrate that Eq. (A20) can be satisfied
as +s
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