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A new method is presented for the calculation of surface and adsorption effects on one-electron states
in crystals. Conceptually, this method is similar to the Koster-Slater resolvent method for impurity
states, which has often been applied to surface states in semi-infinite crystals. The elaboration is very

diferent, however. The proposed scheme works for finite crystals, the resolvent matrix is calculated
numerically instead of analytically, and the applicability of the method depends on a suitable algorithm
for the numerical solution of the Koster-Slater equations. Such an algorithm is described. In comparison
with the resolvent method for semi-infinite crystals, this method permits a more quantitative treatment
of real crystals, such as transition metals or semiconductors. On the other hand, compared with

standard molecular-orbital methods on finite clusters, it can handle much larger crystals.

I. INTRODUCTION

Although many important processes occur on the
surfaces of solids, as for instance chemisorption
and heterogeneous catalysis on transition metals
or semiconductors, the understanding of these
processes is far from being complete. Experi-
mentally, more and more data are becoming avail-
able for adsorption on well-defined surfaces, ' "
but the interpretation of these data is very diffi-
cult. From this situation arises a considerable
need for theoretical calculations on surfaces and
adsorption and, in particular, for improvement of
the methods to yield more quantitative information
on real crystals.

The majority of the quantum-theoretical methods
for the study of surface and adsorption states on
crystals are based on the linear combination of
atomic orbitals (LCAO) or tight-binding formal-
ism. They can be divided into two types: the "sol-
id-state" approach and the "molecular" approach.
The first group starts from solid-state band calcu-
lations on infinite periodic crystals (satisfying
Born-. Von Karman cyclic boundary conditions with
an infinite number of unit cells). These infinite
crystals are then reduced to semi-infinite crystals
with a surface, and the influence of the perturba-
tion which effects this surface formation is mostly
taken into account by a resolvent or Green's-func-
tion technique. A description of these methods can
be found in several review articles. '3' The re-
solvent method applied to this problem is based on
Koster-Slater treatment of impurity states in crys-
tals. " This type of approach requires the use of
an analytical resolvent, to be constructed from the
infinite-crystal solutions. For this reason one has
to introduce various approximations such as ne-
glect of nonorthogonality of the basis orbitals and
of many interactions between them. In practice,
one often falls back on the use of a model Hamilto-

nian depending only on a few parameters, " ' or
one calculates model crystals with one orbital per
atom, or even one-dimensional chains. "'"
The same type of model crystals have also been
studied by different methods, without using the re-
solvent technique. " It is doubtful whether such
models will yield a valuable description of real
crystals such as transition metals, which have
rather localized d electrons on the one hand, and
diffuse conduction electrons on the other. More-
over, these methods only calculate "pure" surface
or adsorption states with wave functions localized
at the surface and energies lying outside the crys-
tal bands. Most states, however, remain within
the crystal bands and are not completely localized,
but are still affected by surface formation or by
adsorption. As Koutecky" points out, these states
must be included when calculating total surface en-
ergies or adsorption energies; although they shift
only by infinitely small amounts, we have an infi-
nite number of them (in the semi-infinite crystal
model).

The second class of methods is of the molecular
type. Assuming that the effects of the surface or
adsorption are localized, which is probably true in
many cases and has been confirmed both by theo-
ry" '6 and experiment, "'"one applies molecu-
lar-orbital methods to a cluster of crystal atoms,
possibly interacting with one or more adsorbed
atoms. ' Although this approach takes into ac-
count all interactions within a (semiempirical) mo-
lecular-orbital (MO) formalism, it suffers from
the drawback that the clusters must remain rather
small (up to about 15 transition-metal atoms or 30
first- or second-row atoms). This gives rise to
undesirable boundary effects. One can try to com-
pensate for such effects, for instance, by saturat-
ing the "dangling" bonds with hydrogen atoms or by
connecting them to other dangling bonds, but it
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would be better to increase also the size of the
clusters.

As we are especially interested in chemisorption
and catalysis on transition-metal surfaces, in
which both the d electrons and the conduction elec-
trons play a role, ""we have developed a method
which does not require the simplifying parametri-
zation of the "solid-state" methods and still calcu-
lates larger crystals than the "molecular" meth-
ods. It a.voids unwanted boundary effects and,
moreover, it calculates all one-electron states in
crystals having a surface, possibly with adsorp-
tion, also those states which are not strictly local-
ized at the surface. By application of the presented
method one can obtain quantitative information
about properties of solid surfaces and about ad-
sorption phenomena. This might also be helpful
for the interpretation and correlation of experi-
mental data for adsorbed atoms and molecules. ' "

II. DESCRIPTION OF THE METHOD

The proposed method works for finite crystals
(in practice up to about 1000 atoms) with two sur-
faces parallel to a. chosen crystal plane. This
plane is defined by two elementary lattice transla-
tions, a, and az, which can be the primitive trans-
lations of the bulk crystal or linear combinations
of them. " The third elementary translation a3,
which is nonparallel to the surface, carries from
one crystal. layer to another. The number of lay-
ers is finite; the dimensions of the crystal paral-
lel to the surface could be infinite, but we find it
advantageous to keep these dimensions finite as
well, while still avoiding undesirable boundary ef-
fects by imposing Born-Von Karman cyclic bound-
ary conditions on the finite number of unit cells
(a» aa}. This implies that we assume the crystal
wave functions to satisfy the relations

ni ——1, 2, . . . , Ni, nz = 1, 2, . . . , N, .
Expression (3) is equivalent to the statement that

layer orbitals with different (k„ka) are noninter-

acting, which is so because they belong to differ-
ent irreducible representations of the finite cyclic
group that is the translation group of this crys-
tal. So we see that the periodic boundary condi-
tions, besides eliminating end effects, result in a.

considerable simplification of the wave equations,
also for finite crystals. Actually, this assumption
of finite, but cyclic, crystals is nonphysical, which
is probably not very serious, however, as it cor-
responds exactly to collecting a finite selection
from the infinite crystal solutions —namely, those
Bloch waves of which the wavelength is a divisor
of the total crystal dimensions.

The method for calculating the one-electron
states of this crystal now proceeds as follows. We
start with a crystal of N3 layers, which is also
periodic in the third (a,} direction. This complete-
ly periodic crystal is called the "unperturbed"
system. The extra periodicity facilitates the solu-
tion of the secular equations for this system if we

use three-dimensional Bloch orbitals as a basis:

l
A"»'a) = g l

a'1 ~ 'a(m ))e"a"a
m3al

with

ka = 2mna/Na, na = 1, 2, . . . , Na .

The summation over m, runs over all layers of the
crystal. The two-dimensional Bloch orbitals

I aa' a(ma)) are called "layer orbitals"; the com-
ponents of the wave vector, &i and kz, must satisfy

k~ = 2wn, /N» ka = 2ana/Na

with

4(r) -=4(r —Nial) = 4(r —Naaa),

N, and Nz being the number of unit cells in the di-
rections a.i and az, respectively. Working in an
LCAO model, we denote the basis atomic orbitals
as

l
X&(»~i, ~a ~3)) = X&(r —»~@~ —»~aaa —»~aaa), (2)

where the index P=1, . . . , v labels the different
atomic orbitals in one unit cell with the origin
(»i,a, + n~aaa+ n~aaa). Now, bees~as of the pe. -dic
boundary conditions the crystal wave function.
be expressed as

V

,t kia kZ skis kZ Ck]'tkZ

m3 p= 1

with

la', a.aa(ma))=Q Q l
x(m„~n„m ))a«siaa a a&

miami

mZ=1

We then define a perturbation V= V + V which
has the following effects:

(i) V removes so many layers from the period-
ic crystal that the two surface layers on both sides
of the crystal interact only with inside layers.
Thus we have created two "Shockley" surfaces, "
just as the removal of a segment from a circle
creates two "ends. "

(ii) V adds the effect of a. surface potential to
the atoms near the surface. If this effect is non-
zero, we shall speak of "Tamm" surfaces. 6

This perturbation effects complete layers so that
the periodicity parallel to the surface is conserved.
The influence of the perturbation is taken into ac-
count in an exact way by the resolvent or Green's-
function method, the resolvent being constructed
from the "unperturbed" periodic crystal solutions.
The combination of this method with the LCAO
model was first used by Lifshitz ' and by Baldocks
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and formulated more generally by Koster and Sla-
ter. " In our case, we obtain a set of simultaneous
equations containing the resolvent matrix and the
perturbation matrix over layer orbitals, which we
shall call the "Koster-Slater equations. " These
equations can be regarded as the matrix represen-
tation of a homogeneous integral equation. 48 The
Koster-Slater treatment of the LCAO problem,
which in fact is a way to deal with the effect of "lo-
cal" changes in the secular matrix, also shows
some resemblance to a matrix-partitioning tech-
nique by Lowdin.

In case of adsorption, we define an extra unper-
turbed problem which consists of a set of secular
equations for nonintera. eting adsorbate layers.
Adding the interactions between the crystal and the
adsorbate layers and the interactions among differ-
ent adsorbate layers to the perturbation, i.e. , V
= V + V + V", we can also take adsorption effects
into account by the resolvent method. As long as
the adsorbed layers have the same two-dimension-
al periodicity as the crystal layers, all equations
can be solved for each (k„A;) separately.

Conceptually, this method is similar to the
semi-infinite crystal treatments. '"" The practi-
cal elaboration is very different, however, for the
following reasons:

(i) All matrix elements between atomic orbitals
are calculated explicitly, within a given (possibly
semiempirical) LCAO model. An arbitrary range
can be specified, outside which the interactions
are neglected. (We have used for this range, for
instance, the fourth-nearest-neighbor distance for
the fcc crystals nickel and copper. ) We work with
nonorthogonal basis functions because orthogonal
orbitals, even of the localized type such as Low-
din or Wannier ' orbitals, always involve some
amount of delocalization. This effect is usually
neglected, but it ean be quite large —for instance,
in case of conduction electrons.

(ii) We do not require the unperturbed problem
to be solved analytically. Instead, we use a nu-
merical method (matrix diagonalization) to obtain
these solutions from a set of secular equations.

(iii) The Koster-Slater equations which are con-
structed from a numerical resolvent matrix (and
perturbation matrix) must be solved numerically
as well. The dimension of these equations is de-
termined by the number of layers which are direct-
ly affected by the surface or by adsorption; so it
is smaller than the dimension of the secular prob-
lem over all layer orbitals. Since the Koster-Sla-
ter equations are nonlinear in the energy, how-
ever, the applicdbility of the method depends on a
suitable algorithm for their numerical solution.
We have found one in the procedure developed by
Williams for solving the Korringa-Kohn-Rostoker
(KKH) equations"'" in solid-state band calcula-

tions. Although the physical background of these
equations is quite different from the surface or ad-
sorption problem, they have almost the same
mathematical structure as the Koster-Slater equa-
tions occurring in our problem. In the next sec-
tions the latter equations will be derived for sur-
faces and for adsorption, in a manner which is
generalized to nonorthogonal basis functions. We
bring them into a, standard form adapted to the al-
gorithm just mentioned and we show the function
of this algorithm. Because of the special charac-
ter of our problem, where the perturbation has to
annihilate interactions between different nonorthog-
onal orbitals, the perturbation matrix in the re-
solvent method depends on the (unknown) energy of
the perturbed problem, and therefore Williams's
algorithm had to be generalized.

if f. SURFACES

Since the periodicity of the crystal permits the
solution of all equations for each two-dimensional
wave vector (k„kz) separately, we shall omit these
indices in the notation for the layer orbitals

~

a~())) )) =
I ap(' 2(»!}),

and for the Bloch orbitals

~

f,a)
~

f,)(, (.P. )) )

Except for the calculation of the matrix elements,
the three-dimensional-crystal problem becomes
identical to the calculation of a linear chain.

The "unperturbed" crystal is described in terms
of layer orbitals by the following secular equations:

—E,'")(a,(i1)))
~

ap, (»)')) ]c,", ,'(»)') = O,

»/ = 1
q

~ . ~ ~
@'3, P =- 1~ ~ ~ ~ p

~ ~

The solutions F~ ' and cp, '(m) are numberedby i
1 X3v. The explic it form of the one -e lee tron

Ha.miltonian H depends on the type of LCAO method
used. Taking advantage of the periodicity of the
unperturbed crystal, one can solve, instead of this
(X)v)-dimensional secular problem, a set of !V~

secular problems of dimension v over Bloch orbit-
als:

g i&f,"I ff! f,'. &
z',"(a)(n',

i ~~,".))c(o—)(u) =O,
p'=1

/) = l, . . . , v. (7)

The solutions are now labelled by j = 1, . . . , v and
0 = 2m»3~'Ã„with n3= 1, . . . , X3. The solutions of
Eq. (6) can then be expressed as

P(0) E(0)(f )

c(0)(»() ei))m~(0)(f }
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where i, j, and k run as indicated above. The ei-
genvectors are orthogonal and are assumed to be
normalized:

V V

g P c",. )(k)*(b~~ b~. )c~"t.(k') = 5». 5,,',
p=s p'=i (9)

with E&" and cI" given l)y (8).
For the real system of interest, i.e. , a crystal

with two surfaces, the energy F. and the wave func-
tion c (in terms of layer orbitals) are to be deter-
mined from the equation

(H —ES)c = 0.
The matrices H and S are changed with respect to
H' ' and S' ' only in a few parts. In order to ex-
press these changes in mathematical form, it is
convenient to distinguish some subsystems in the
original crystal of N0 layers (see Fig. 1).

The subsystem (R contains the layers which are
removed from the periodic crystal by the Shockley
perturbation V in order to create a crystal with
two surfaces. The remaining crystal is denoted
by 6. In this crystal a set of outer layers 6 is
directly affected by this removal (because they
were interacting with 8) and/or by the Tamm per-
turbation V . Projection matrices for these sys-
tems (P, P, P, P O) are defined as follows":
Let P be a (&&(0v) x (N~v) dimensional matrix with
a v&&v unit matrix on the diagonal for layer n~ and
zero otherwise. Then, for a given subsystem X'

p Pfg p

Cp 1H *
Qp Bl Qp 0$ Cp - 'PPl

m=1 &=1 m'=1 P'=1

From now on, we shall work only in terms of layer
orbitals and introduce a compact matrix notation
(matrices are denoted by capitals, column vectors
by small letters). The indices run both over lay-
ers (tt& = 1, . . . , )V0) and over atomic orbitals (p
= 1, . . . , v). The unperturbed equations (6) read

(H(0) E (0&8(0&)c(0& 0
p

g3v

G(E ) =Q c(0)(E —E (0)) (c(0)t
f~l

(16)

with F,'" and c,'" being the solutions of the unper-
turbed problem (10). Both V(E) and G(E) depend
on the energy E of the perturbed system, which
must still be determined. Writing the perturbed
equations (11}as

V(E)c = —(H"' —ES"))c,

multiplying this by G(E), and using the relation

—G(E)(H"' —ES"&) = 1, (18)

which is proved by substituting (16}, (10), and the
normalization condition (9), we obtain the Koster-
Slater equations

G(E)V(E)c =c . (19}

Although this Koster-Slater problem still has the
same dimension as the secular problem (11), this

potential V which are localized in the outer lay-
ers 6. If the structure of these outer layers
would be changed with respect to the bulk struc-
ture, the overlap matrix AS would be nonzero as
well. The fact that H and S are only locally modi-
fied (see Fig. 2) is now expressed by means of
projection matrices, Because of this fact, it is
advantageous, instead of solving the new secular
problem (11), to use the resolvent technique. '0'&4

Define the perturbation matrix

V(E) = V'(E)+ V',
= AH —EM,

pR(H(0) E8&0&)PO

PO(H(0) E6&0)}PR POTPO

and the resolvent matrix

PX I«,'}ryig......~y ygziy~ gyiygyz'~yy~gyy~

These projection matrices are idempotent, mutu-
ally exclusive, and form the following resolution
of the (&V0v) x(cV0v) identity matrix:

I =P +P =P"+P +P

The changes in H and S can now be written as

by V ' AH =-P H''P -P O''P

&& s pzS(o)pa paS(o)pz .
by V AH =P TP

AS =0.
The matrix T describes the effects of the surface

I'IG. 1. Schematic drawing of the crystal with ad-
sorbed layers. Layers (R are not shown because they
are nonphysical; they were only added to make the un-
perturbed crystal periodic.
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Pl)(H(0& ES(0))Pn (28)

V"(E) = ~H" —Em",
=P"(H —ES)P +P (H —ES)P"+P"(H —ES)P"

%e have assumed that the direct interactions with
the adsorbed atoms are restricted to the outer
crystal layers 6. If necessary, the set 6 is ex-
tended with respect to the previous section. The
resolvent matrix derived from the unperturbed
problem (27) reads

Nsv N

G(E) = (p +p )[Z c l(g g( )) cl )t (p* p ) P p [I ). ( )( )(E () )( )) c( )()))))p
t~l n=l /=1

G(E )8+c y G(E )A

This resolvent must be substituted into the Easter-Slater equations (19), together with the perturbation
matrix

V(E ) = V (E ) + V + V"(E )

(29)

(30)
given by (15) and (28). Again taking into account the zeroes in this perturbation matrix (see Fig. 2) and the
fact that the solutions c are now localized on 6+8, we obtain, after multiplication by (P" +Po)V(E):
(P +P")W(E)(P"+P )c=([P V (E)P +P V P +P"V"(E)P ]G(E) ' [P V"(E)P"+P V P +P V (E)P ]

+ [P V"(E)P"+ P"V"(E)P"]G(E)"[P"V"(E)P"+P"V (E)P ]
—[P V P +P"V"(E)P +P V"(E)P"+P"V"(E)P"])c=0. (31)

Defining W(E)o'" as the nonzero submatrix of
(P +P")W(E)(P"+P ) over the layers 6+8 we
can solve a smaller problem-namely the one over
those layers only:

W(E)o+Aco+A 0

Since the matrix W(E) '" is Hermitian, these
equations are of the type that can be solved by the
algorithm described in the next section.

(32}

W (E)c = [V(E)G(E)V(E) —V(E)]c = 0. (33)

In the earlier applications of the resolvent method
to this problem, '8 ~ one solved Eq. (19) for the
energy by searching for the roots of the equation

det[G(E )V(E ) —I ] = 0 . (34)

Instead, we will search for the zeroes in the (real)
eigenvalues of the Hermitian matrix W(E), which,
of course, are also the zeroes of det[W(E)] and the
solutions of Eq. (34) if V(E) is nonsingular in the
subspace considered. These zeroes can be calcu-
lated by an elegant algorithm because the matrix
W(E) and its eigenvalues X~(E) have some special
properties (the same kind of properties were
proved for the expectation value of a general re-
solvent by I owdin"):

(i) When an eigenvalue X&(E) passes through

V. NUMERICAL SOLUTION OF THE KOSTER-SLATER
EQUATIONS

The Koster-Slater equations for a crystal with
two surfaces and adsorption have been brought into
a standard form which can be generalized as

zero as a function of E, it always goes from posi-
tive to negative value with increasing E. In other
words, if'&(EO) =0, it follows that

dX~ E
(35)

This is proved in the Appendix.
(ii) The eigenvalues of W(E) have poles, as do

the matrix elements of W(E) and those of G(E), at
E=E& ', the eigenvalues of the unperturbed prob-
lem. One can prove (see the Appendix) that the
number of eigenvalues X&(E) which have a pole at
a certain E&

' equals the degeneracy d&
' of this un-

perturbed energy. Moreover, it can be shown that
at the poles the eigenvalues X~(E ) always pass from
—~ to +~ with increasing E.

These properties easily lead to the following
theorem: The number of zeroes Ep of all eigen-
values X&(E) of W(E) in a given energy interval E&

&E& is equal to

&0(E&, Ea) =n, (Eq) —n, (E2)+ P dg ',

z, &~~p&&g (36)
when n, (E&) and n, (E2) are the number of positive
eigenvalues of W(E&) and W(E, ), respectively.

Using this theorem, the values of the energy
roots Ep can be determined by repeated bisection
of the interval, until the required accuracy is
reached. As the positions of the poles E& ', and
their degeneracies d&

' are known from the unper-
turbed equations, the only problem that remains is
to calculate the number of positive eigenvalues
n, (E}of the matrix W(E) at given points E. Sever-
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al procedures are possible: (i} complete diagonal-
ization of the matrix% and counting the number of
positive eigenvalues; (ii) tri-diagonalization of W
and using the Sturm sequence property ' for the
parameter p. = 0; and (iii) bringing W into upper-
triangular form by the Gauss elimination process'8
and counting the number of positive diagonal ele-
ments. This number can be proved to equal the
number of positive eigenvalues of W (see the Ap-
pendix).

Applying standard techniques to perform these
manipulations on the complex Hermitian matrix %,
it appears that the third procedure is about three
times faster than the second and about twenty times
as rapid as the first. (They all increase in time
with the third power of the dimension of W. )

An advantage of the algorithm based on formula
(36) for calculating the energy solutions of (33) is
that it also calculates those energies of the per-
turbed system which coincide with an unperturbed
energy and, thus, with a pole in the resolvent. In
this case, one or more eigenvalues X&(&} of W(&)
go to zero, which corresponds to a solution of Eq.
(33), whereas some other eigenvalues go to infin-
ity. Such solutions cannot be found by the usual
methods, which look for the zeroes of the determi-
nant in (34). As pointed out in the Introduction,
this advantage is of practical importance, since we
wish to calculate also those one-electron energies
lying within the crystal-bulk bands.

VI. DISCUSSION

In the previous sections we worked out a method
for the quantitative calculation of one-electron
states in finite crystals, with or without adsorp-
tion. %e can now compare this method in more
detail with the more traditional methods men-
tioned in the Introduction.

In comparison with the resolvent method for
semi-infinite crystals, this method is more suit-
able for quantitative calculations on real crystals„
such as semiconductors or transition metals. It
does not neglect overlap effects between atomic or-
bitals and calculates all interaction matrix ele-
ments explicitly, up to a given distance. More-
over, it calculates, not merely the strictly local-
ized surface or adsorption states lying outside the
crystal-energy bands, but all one-electron states.

One can object to the finite-crystal model on the
grounds that it does not take into account really
long-range effects. %'e do not think that this omis-
sion is very serious, however, because: (i}one
can treat crystals up to about 10x10&&10atoms;
(ii) one can test the model by comparing crystals
of different sizes; and (iii) the effects of the sur-
face and, particularly, of chemisorption seem to
be rather localized. Moreover, it could well be
argued that crystals of this size are already of

physical interest themselves.
Compared with quantitative MO calculations on

finite clusters, we have a great reduction in com-
putation time, which enables us to treat much
larger clusters and to take into account interac-
tions over a more extended range. This is illus-
trated by the following arguments for crystals with-
out adsorption: If we have a. cluster of N, & N~ x N,
= N atoms and perform a traditional MO calcula-
tion, the number of matrix elements over atomic
orbitals that must be evaluated is proportional to
N N ] Np N3 y

the time for so lving the secular prob-
lem is proportional to N' = N', N&N3. If we impose
periodic boundary conditions in two directions and
use two-dimensional Bloch orbitals, as we do in
our method, we have to calculate a number of ma-
trix elements over atomic orbitals which is propor-
tional to N&X~%3. Transformation to Bloch orbitals
takes only a negligible time. The time for solution
of the secular problem then becomes proportional
to N, NzNS. By using the resolvent method, as de-
scribed in this paper, the latter time can be even
further reduced. The time for solution of the un-
perturbed periodic-crystal problem is proportional
to N, NzX~. The dimension of the Koster-Slater
equations is smaller than the dimension of the sec-
ular problem by a factor N, )N„where N, is the
number of outer crystal layers directly interacting
with the surface. The time for solving the Koster-
Slater equations is hard to estimate, as the algo-
rithm contains some steps which are proportional
to N, and other steps proportional to N"„with x
approximately equal to 1.5. At any rate, it follows
that the Koster-Slater problem increases less rap-
idly with the crystal size than the secular problem,
but since the Koster-Slater equations are more
complex, the proportionality constant is larger.
Therefore we conclude that the application of the
resolvent method becomes advantageous when the
ratio N, /N, surpasses a certain limit. If this is
not the case, we rather solve the secular problem
over layer orbitals, which is still much better than
the traditional cluster calculations both in time
saved and in the avoidance of undesirable boundary
effects.

Besides the general resolvent method for surface
states and adsorption, we have developed efficient
special methods for the case where the effects of
the surface potential (the Tamm perturbation) on
the one-electron states become negligible. The
perturbed wave functions themselves may give rise
to a surface potential, however. These methods
will be described in a future paper.

The complete procedure for calculating the one-
electron states of a crystal with two surfaces and,
possibly, some adsorbed layers, as derived in this
paper, has been programmed in voRTaAx for an
IBM 370 computer. The structure of the program
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is shown schematically in Fig. 3. Calculations
for hydrogen adsorption on nickel and copper sur-
faces are underway.
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(
dX t= —coVG(Eo}G(E0)Vc0 = —coc0 = —1.

gp
(A 9)

In our problem, with a nonorthonormal basis and
V(E) dependent on E, we obtain some extra terms
in the derivative of Kq. (A6):

=co 6 V cp+co VG cp

do dV
+c, V V c, -c0 c0. (A10)

so Eo

Two of these terms cancel after using (A2), so that

=cp V
d

V cp+cp cp. A11

Using the fact that V(E) is linear in E, and that
[according to Eqs. (15) and (28)] d V/dE equals a
submatrix of the overlap matrix, and substituting
the expression (16) or (29) for G(E), we have
proved, similarly to the proof just given, that

becomes an identity:

G(E0)V(E0)co = co ~ (A2)

These solutions are obtained by looking at the ei-
genvalue problem

W(E)c(E) = [V(E)G(E)V(E) —V(E)Lc(E) = &(E)c(E)
(A3)

and searching for those energies Eo for which
X(E0) = 0. The first property that we invoke reads

(f&((E )
dE E0

(A4}

Williams' has proved this as follows for orthonor-
mal bases and V not depending on E:

—=—c(E) W(E)c(E),dA. d
dE dE-

dc dc dW
Wc+ctW +c' c .

For E = E„we can substitute the identity (A2) to
obtain

(A6)

(A6).

On the same orthonormal basis the resolvent ma-
trix G(F. ) reads

G(E) Q c(0&(E E(0&)-ic(0)&

and its derivative becomes

(A7)

do =-GG .dE (A8}

Substituting this result into (A6) and using the iden-
tity (A2) again, we find that

„(o)

G(E) ~-1 Q c(0)c(0)( (A12)

This matrix projects the total space onto a sub-
space of dimension d,' '; so it has the rank d,' '.
Also the matrix W(E) must have this rank, because
the term linear in V(E) is small with respect to e '

and the transformation V(E)G(E)V(E) with non-
singular V(E) does not change the rank. Conse-
quently, only d(" eigenvalues )((E) behave as e ',
while the other remain small. Since the matrix
G(E) given by Eq. (A12) is positive definite for
& 0 0 and negative definite for E 0 0, we conclude
that at each pole E,' ' just d,'0' eigenvalues X(E)
pass from —~ to +~.

These two properties are sufficient to calculate
the number of zeroes in the eigenvalues &((E) of
W(E) in a given interval (E1, E2 ), when the number
of positive )((E} is known in the end points E„E..

The second important property of the eigenvalues
)((E) of W(E) =V(E}G(E)V(E) V(E} is their b—e-
havior at the poles E,' ' of G(E}. In the neighbor-
hood of a pole E& ', we write E = E,' '+ a, with e
very small. For e-0 all matrix elements of G(E),
and also those of W(E), go to infinity. In each ma-
trix element of G(E), given by Eq. (A I), only d,' '

terms in the sum behave as & ', whereas the rest
remains finite. (Remember that d,'." is the degen-
eracy of E,' '. ) In the limit of e —0 we can write
G(E) effectively as



1238 VAN DER AVOIRD, LIEBMANN, AND FASSAERT

Input:
atomic orbital data
crystal data
adsorbed layer data

calculate H ) and S
for the periodic crystal over
BIoch orbitals
for isolated adsorbed layers
~&ver layer orbitals

solve secular equations by
matrix diagonalization

save eigenvalues and eigenvectors for
construction of resolvent matrix G(E)

lg

calculate tHS LSS 5HT AHA LSA
over layer orbitals for construction
of V(E) = z H-EaS

this process is performed for all

energy roots at once, so that no

intermediate information is lost.
choose interv". I

E), E2

calculate G(E) and

W(E) = V{E)G(E)V(E)-V(E)
for E=E), E2

FIG. 3. Flow chart of
~ the FORTRAN program for

computing the one-electron
energies in finite crystals,
with or without adsorption.

calculate n+{E) for E = E~, E2 after
Gauss elimination on W(E)

calculate no(E], E2)

choose new interval
E'1 E2

no

yes

bisect interval
E'), E2

no

yes

solution Eo = {E) + E2)/2
degeneracy no(E ) E2)



10 RESOLVENT METHOD FOR QUANTITATIVE CALCULATIONS. . .

[Eq (36)]
The fastest method to calculate the number of

positive eigenvalues of a given complex Hermitian
matrix W (dimension n) is by the Gauss elimination
process, which brings W into an upper-triangular
form. The number of positive diagonal elements
of the triangular matrix equals the number of posi-
tive eigenvalues of %. This is shown most easily
for tri-diagonal Hermitian matrices Vf'. For such
a matrix one can calculate the Sturm sequence for
any parameter p, , which is the sequence of deter-
minants D, (p) of the principal minors of W' —p, I
with increasing size, i=0, 1, . . . , n; D, (p, )=1. It
has been proved' that the number of agreements
in sign between the consecutive elements D, (p)
equals the number of eigenvalues of %' which are
strictly greater than Itt. . So the number of positive
eigenvalues of %' is directly calculated by putting

p, = 0. Actually, this property can be used if we
bring % into tri-diagonal form-for instance, by
the Householder method. This method is slower,
however, than the Gauss elimination process.

Instead of using the Sturm sequence for p, =0
(i.e. , the elements D, ), and counting the agree-
ments in sign, one can count the number of positive

quotients D, /D, ., Now, these quotients are ex-
actly the elements which we obtain on the diagonal
after Gauss elimination on a general matrix. '
Thus we have only to prove that the Sturm-sequence
property also holds for the determinants D, of the
principal minors of a general Hermitian matrix W.
The proof for tri-diagonal matrices 7 is based on
the separation theorem6' for the eigenvalues of a
Hermitian matrix and those of its principal minors,
which for such matrices is valid in the strict
sense. For general Hermitian matrices it holds
only in the non-strict sense, ' i.e. , with ~ signs
instead of & signs. If none of the determinants D,
of the principal minors would be equal to zero,
however, none of the principal minors can have a
zero eigenvalues either, and we effectively have
strict separation around zero. On that condition,
the Gauss elimination method can be used to cal-
culate the number of positive eigenvalues of %.
If any of the elements D& does equal zero, the
elimination process would fail anyway. In this sit-
uation, we can invoke the technique of pivoting, '
which for our purpose is only permitted if we in-
terchange rows and columns simultaneously, i.e. ,
keep the same elements on the diagonal.
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