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Correlations and interactions in disordered binary alloys with atomic-radius disparity
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A theoretical method is developed for calculating the various correlations on which the diffracted

intensity in an x-ray or elastic-thermal-neutron scattering experiment depends. The starting point is a
Hamiltonian in which the atoms interact by pairwise "hard-core" potentials with difterent core radii.

The hard-core condition, which should apply to transition and noble metals, simplifies the analysis by

allowing the radius disparity to be used as a parameter of smallness for arbitrary composition. Classical

statistical mechanics is used so that atomic-mass disparity has no effect on the correlations of interest.

The Hamiltonian is analyzed in the quasiharmonic approximation, and some often-ignored terms are

included because they may be important for short-wavelength fluctuations. Rigorous relations which

express correlations involving atomic displacements and site occupancies in terms of correlations

involving only site occupancies are derived, and they will hold even if diA'usion is too slow for
site-occupancy equilibrium to be established. These relations may be useful in the analysis of diffraction

data. If the alloy can come to equilibrium with respect to site occupancy, then equilibrium statistical

mechanics can predict the site-occupancy correlations, and an approximate mean-field theory is

presented. The equations are not solved, but it is shown that in the disordered phase, away from the

critical region, the site-occupancy correlations are those appropriate to a disordered binary alloy with

no atomic-size disparity but with pair, triplet, and higher-order interactions, Expressions for the effective

pair and triplet interactions are given.

I. INTRODUCTION AND SUMMARY

A disordered substitutional binary alloy with

atoms of different size may be visualized as a
regular array of pairwise-interacting atoms which

has become distorted because of differences in the

three types of interatomic potential. If these dif-
ferences are not great enough to disrupt the crys-
talline nature of the alloy, an "average lattice"
with a one-to-one correspondence between atoms .

and lattice sites may be defined. In such an alloy
the configuration may be specified by the average
lattice structure and lattice parameter, by the set

(u,) of displacements of atoms from average lat-
tice sites, by the set (o,) of two-valued variables
which specifies the site occupancies, and by the
atomi. c momenta. These variables are defined in

Sec. II, where a Hamiltonian which depends on

them is derived in the quasiharmonic approxima-
tion. In the present work the lattice parameter is
taken as constant at the empirical value for the

entire ensemble used. Attention will be focused
on the statistical mechanical evaluation of spatial
correlations among the occupancy and displace-
ment configuration variables, e. g. , (ooo, ), (aou, ),
etc. , where the angular brackets denote an en-
semble average. This is because the orientation
of the present work is toward the interpretation of

x-ray or elastic-thermal-neutron scattering data.
Relations between the intensity of kinematically
scattered radiation and the spatial correlation
functions are given in Appendix A.

In Sec. IV, a theorem derived in Sec. III is used

to facilitate the derivation of relations which ex-

press displacement correlations (containing one
or two atomic displacements) entirely in terms of
concentration correlations (containing only site-
occupancy variables). These relations a.re infinite
series in ascending powers of "defect strength"
and concentration. Physically, the defects are due

to both force-constant and mass variations. Al-
though the latter may be large, the present paper
deals only with ensemble averages of momentum-
independent quantities in the classical regime, so
that mass variations have no effect. It will be
shown that defect strength due to force-constant
variation is "small" if the atoms are hard spheres
(interacting by Born-Mayer repulsion) with small
radius disparity. Consequently, it is possible to
truncate the various series at a chosen order in

defect strength for arbitrary composition. There
is no restriction to dilute alloys or necessity to
sum the concentration series as in the case of
mass defects. ' Aside from the necessary trunca-
tion, the relations derived in Sec. IV are exact
within the harmonic approximation, and are valid
even if the system is not in thermodynamic equi-
librium with respect to the concentration variables

(cr&). This may occur if diffusion rates are slow.
It should be noted that if the series are truncated
at the lowest order in defect strength and terms
due to thermal vibration are dropped, then one re-
covers results derived by Krivoglaz and by Cook
and de Fontaine. 3

A different application of theorem of Sec. III is
made in Sec. V to obtain a set of linear equations
in the various correlation functions. Displacement
correlations may be eliminated in favor of concen-
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tration correlations using the relations derived in
Sec. IV, yielding a set of linear equations which in
principle may be analyzed and solved in the dis-
ordered phase in the manner of Shirley and%il-
kins. In practice, however, this is too difficult,
and a mean-field approximation following Clapp
and Moss is made. This approximation will be
valid in the disordered phase away from the criti-
cal region. If the first two orders of defect
strength are retained, one obtains a manageable
set of equations which may be solved to obtain the
pair, triplet, and quadruplet concentration corre-
lations necessary to compute the scattered intensi-
ty correct to the first two orders in defect
strength. The equations are not solved, but it is
shown that in the disordered phase, away from the
critical region, the concentration correlations are
those appropriate to a conventional undistorted-lat-
tice Ising-type model with long-range pair interac-
tions. If the first three orders in defect strength
are retained, then effective triplet interactions
appear. The triplet interactions are one order
higher in the defect strength than the pair interac-
tions. Expressions for the effective pair and
triplet interactions are given, The net effect of
the analysis is to transform the distorted-lattice
pairw ise-interaction model into an undistorted-lat-
tice multisite- interaction model.

II. MODEL HAMILTON IAN

If the dependence. of the electronic energy on the
spatial configuration of the ion cores is taken into
account to second order in perturbation theory,
the system Hamiltonian may be written

ff
' = Q(2m, .) 'p';+E (v)

+ g [VAR(r ) 4o(+» )oA(&~ )

+ Vss(r, ,)os(r,.)os(r,.)+ V" (rs„).
x [o"(r,)o (r~)+o"(r~)o (r,)]),

where r, , p, , and m, are the position, momentum,
and mass of the ith nucleus, where o"(r, ) = (1, 0)
for an (A, B) atom at r, and o"(r,)+o (r,) =1, a.nd

where r,, = r& —r;. The structure-independent part
of the electronic energy is contained in E, which
depends only on the specific volume v. The inter-
atomic potentials V'"~, etc. , have a part which is
induced by the electron-ion interactions as well as
a Born-Mayer exchange-repulsion component that
is particularly important i.n the noble and transi-
tion metals where the ion cores come into con-
tact." It is quite possible that anisotropies in the
electronic structure will give rise to anisotropic
pair potentials (noncentral forces) with the "orien-

0' ~ = mg + p 0'~A

B0'~ = mg —
p 0';,

(4a)

(4b)

where a, = (2ms, —2m„) for an (A, B) atom on site
and where (m„, ms) is the mole fraction of (A, B)

atoms. Note that

cr,. =0 .
Now if we use Eq. (3), substitute Eqs. (4) into Eq.
(1), and ignore the kinetic term and the purely
volume-dependent electronic term (since we shall
be considering only isochoric changes at the em-
pirical specific volume), we obtain the following
effective Hamiltonian:

H = —P [U(r„.)+ V(r,, )(o; +o;)i'
+ W(r,~)o;o, ],

V(r) = m2 V""(r)+m~s Vss(r)+2m„ms V"s(r),
('7a)

V(r) =-', [m„y""(r)—m, V"(r)

+ (m, —m„)V"'(r)],

iy(r) =1[V""(r) + Vss(r) —2V"s(r)]

(7b)

(7c)

~hen Eq. (6) is expanded to second order in the
small displacements, it may be written (see Ref.

tation" of the potentials defined by the average lat-
tice. The theory developed below can accommo-
date this type of potential.

In the classical statistical mechanics of the
Hamiltonian P, the momenta are statistically in-
dependent of the other configuration variables.
Consequently, the kinetic part of Eq. (1) ma. y be
ignored for the purpose of calculating ensemble
averages of momentum-independent quantities,
such as the correlation functions of interest in this
paper. The Hamiltonian may be simplified further
by assuming that each atom suffers only a small
displacement from a site in the average lattice,
and that there is a one-to-one correspondence be-
tween atoms and lattice sites. If the position of an
atom is r,. and its associated average lattice site
is (r, )„, then

r, =(r,. ),„+u, ,

where u, is a small displacement. In the present
paper, [(r,),„J defines a lattice of cubic symme-
try. The one-to-one correspondence is written

oA(r ) oA((r ) )
—oA

and sj,milarly for cT; . Since 0; +0~=1, it js pos-
sible to express cr,". and cr,. in terms of a single
variable 0, Thus,
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+ ~W@ 0'&0'zu + —~u
& 4&& uz + A~ o'&

Q
(8)

where

O e = C' s + @s (a ( + ay ) + 4s a (ag

—B„Q(@»a, +e»~a,a,.), (9)

and where the purely volume-dependent term

has been ignored. The last term in Eq. (8) has
been added because it will be convenient to satisfy
the constraint of Eq. (5) in a grand canonical en-
semble in which ~ is determined by the condition

(a, ) =0. (10)

In Eqs. (8) and (9) the following abbreviation has
been made (F is an arbitrary function):

&((ro)„)=-&e .
In Eq. (8), u,, is a column three vector with ele-
ments BV/Bxl(r,.~)„, etc. , and 1i,~ is its trans-
pose, where x, y, and z are Cartesian coordi-
nates referred to the three fourfold axes of the
cubic lattice. A similar definition holds for

with W replacing V. For (r,&)„40, C~&

is a real-symmetric 3&3 matrix with elements
—B U/Bx l(r, &)„, —B U/Bx By!(r,&)„, etc. , andfor

(r;, ),„=0 it is I g; B'U/Bx~l(ro, )„, where I is the
unit matrix. It has the property

@U 0Oi

The definitions of 4 and 4 have P replaced by
V or 8' in the above. Note that 4, defined by
Eq. (9), has the property

. =0

as it must.
The present analysis will be restricted to

changes involving no homogeneous deformations of
the crystal. This means that as well as requiring
that there be no translation of the crystal as a
whole, that is,

u(=0
y

9 for details of the straightforward but tedious al-
gebra)

1
H =—~ 8'+a;0&+~'U;~a, uj

iy

(&)=Z&({c})p({c}) Z p({c}).
{c}{C}

(12)

%e also define the following special average:

be invariant under translations by vectors of the
average lattice, i.e. , (a,uz) =(a„„uz,„), etc. ,
and that they will transform as basis functions of
various representations of the point group of the
average lattice. The system will be implicitly
constrained to have no homogeneous deformation
in the following analysis by assuming that (u, ) = 0
and that the correlation functions have symme-
tries appropriate to the average lattice.

It is worth pointing out that some workers~ 3

have studied a Hamiltonian (or free-energy expan-
sion) similar to Eq. (8) but with % =0, C»= C~=0,
and with {a, }as continuous concentration variables.
Such a Hamiltonian will adequately describe dis-
placement waves with wavelengths considerably
longer than the interatomic spa. cing (such as occur
in spinodal decomposition) because little error will
be introduced by replacing a, with the average
composition of the region surrounding site i of
linear dimension less than the wavelength [actually
a, -2 (c, —m„), where c, is the concentration of
A atoms ]. The variables {a,}may then be thought
of as continuous and small so that terms of third
or higher order in both displacements and corre-
lations may be dropped. However, for the inter-
pretation of x-ray diffraction experiments which
can resolve fluctuations with wavelengths com-
parable to interatomic spacings, it is necessary
to study displacement waves with these wave-
lengths. Consequently, the two-valued nature of
a, should not be ignored, and, because a, = O(1),
all the terms displayed in Eqs. (8) and (9) should
be included.

III. THEOREM

I.et g„denote summation (or integration) over
the space of the configuration variable c, , and de-
fine

E=ZZ". Z,
where there are 4N configuration variables. There
are N sites in the crystal. One may also define

p({c}) &
BH(ici&

where P '=vT. The absolute temperature i.s 7,
and z is Boltzmann's constant. The ensemble
average of a function P of configuration is there-
fore written

we also require that (u, ) be independent of f. Com-
bined with Eq. (11), this implies that (u, ) =0.
This statistical equivalence of average lattice sites
further implies that the correlation functions will

Cg

The average is taken over c, , so that ( P),, is a
function of possibly all the c's except c;. Vfith
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these definitions the following theorem may be
proved.

Theorem. For two functions of configuration
P([c)) and Q((c))

&PQ&= &(P&.(Q&,
provided Q does not have c

&
as one of its arguments.

Proof. From the definition [Eq. (12)] of an en-
semble average,

Z'(». , 2Z~= Z (Z~p Z~)((ZP

= Z (Z&c)Q= Z &Qa

=(PQ&Z p,
[c)

«P&„~&Z p=Z'Z &»., ~p,
[c) (c) c;

where

(14)
thus proving the theorem.

IV. RELATIONS BETWEEN DISPLACEMENT
CORRELATIONS AND CONCENTRATION CORRELATIONS

A. Displacement correlations with one displacement

Since neither (P ),, nor Q depend on ci, the right-
hand side of Eq. (14) may be written

First it will be convenient to calculate (uo)„
the average of uo for fixed values of the other con-
figuration variables. A special case of Eq. (13)
is written

3 -gg 3 ~/d uouoe =~ d uoexp —p ~Q o«+M'N, 'oo. &o

1

+Z(1 6(0)u( 4'(0 uo+ 2uo@oouo
l

d uouoe'"'
j

where Eq. (8) was substituted and parts not con-
taining uo have canceled from the exponentials.
Both exponentials have the same argument. 5;o is
the Kr5necker 6. Since 4;;, and in particular 4M,
is real symmetric, the three-dimensional Gaussian
integrals presented in Appendix B may be used,
and one finds

( u0 ) 2 ( 2 {}@00) 6Z [ 0 i 0 oi + ((V i 0 (Ti oo"0

+ (1 —50()40( u, ]

or

4'00(uo&~+K(1 —60()@0 u

'U io«+ ~~o«&o

When Eq. (15}is multiplied by a function J of [o}
only, an ensemble average is taken, and the the-
orem of Sec. III is applied, one obtains

g [40; (Ji)+ 4~(2((J'Oi)+ (Ji i))

I

respondences u&-i, u,'-i', and cr;-i .
The Green's function for the average lattice is

defined by

f&0(i'i(J2&+6 4; (JZf &

i1

+Go( 4„((Jii)+ (Jl i) —(Ji 1))

+ G or 4'
r a ((Jli i ) —(Ji l 1 ) )] . (18)

This equation may be iterated to generate a series
in ascending orders of the Green's function relat-
ing (JO) to concentration correlations only. The
criterion for truncating the series is considered
in Sec. IVC.

U
&o~ @i~ = I &os .

F

This Green's function is appropriate to a perfect
crystal with interatomic potentials V(r), i. e. , the
average interatomic potential. It may be com-
puted using, for example, the procedure of Flinn
and Maradudin. " Replacing 0 by / in Eq. (16),
multiplying by Gz, and summing on /, one finds

+4„(JOii)]-P(4,', &Ju5&+ 4,;(J&05&)

= —Q(g (0(Ji)+ ((v(0&Ji 0) ) . (16}

B. Displacement correlations with two displacements

Using the Gaussian integrals of Appendix B,
one may write

where Eq. (9) was used. The notation adopted in
Eq. (16}is related to that used so far by the cor-

( 0 0&up 2 (2 0 @00) + (uo) ( 0&uo

Also, for I &0 one has
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(ui uo)+= ug (uo)ao= (ug )~(uo)~ i

so, for arbitrary t,
(ug uo)&o, = ~gog&T@oo+ ("o)&&o(ug )ao

or

400(ug uo)&gp= I bgp + op( p)u ( g)&)p ~

Using Eq. (15) this becomes

4)pp(ug up)„= It)gpggT

'Uio«+ ~io«0'0

—( Ji 1 k )) + G pa &b
g a (

(haik

1 i ) —(Zgk 1 k ))] .
(19)

This equation may be iterated with Eq. (18) to give
a series in ascending orders of the Green's func-
tion relating (810) to concentration correlations
only.

C. Hard-core truncation criterion

The series generated by iterating Eqs. (18) and
(19) must be truncated at a given order of some
parameter of smallness, or they must be summed
completely. In the present work the atomic-radi-
us disparity is a natural parameter of smallness.
The pair potentials in an alloy which is essentially
hard core in nature with small atomic-radius dis-
parity may be written:

V""(r)=Dexp[-r(b+ e) '],
Vss(r)=Dexp[-r(b —e) '],
V"s(r ) = D exp(- rb '),

(20a.)

(20b)

(20c)

where b is the nominal core radius and e/b is
small. Small differences in D may be incorpo-
rated into e. Using Eqs. (7) to compute U, V,
and W to leading order in e/2b, one finds

U=ae ""
V = De '"(r/b)(e/2b),

W=De 'ga(rob o 2rb g)(e/2b)—
For nearest-neighbor interactions, which are the
most important in a hard-core alloy, it is ap-
parent that V is smaller than Ig by a factor of e/2b,
and that W is yet another factor of e/2b smaller.

+ (1-b o)4'og u ] (ui ).- ~

If one multiplies this by J, an arbitrary function of
{&gj, substitutes Eq. (9), applies the theorem of the
previous section, and operates with the Green's
function, one obtains

(~10) = Goi (~) gg~ + [Goa'Uga(~i I)
ik

+ Goyeia (Zik 1)+Goa 4'ia ((Zi 1 i )+ (Zk 1 i )

This also holds for higher derivatives of U, V,
and S'. The parameter of smallness we shall use
to truncate the series obtained by iteration of Eqg.
(18) and (19) is e/2b. It will be convenient to
multiply V and its derivatives by a dimensionless
parameter y which will eventually be set to unity,
and to multiply 8' and its derivatives by y . In the
equations below, the power of y which multiplies a
term is a label which indicates the order in e/2b
of that term.

If the following replacements are made in Eq.
(18):

y 2~~ @V @,V C,
S' 2@ g

and if Eq. (18) is iterated retaining terms only up
to O(y ), then one obtains

(~0&= —yZ&o; («) y'Z— r. o;, (~gi ), (21)

where

~ 0! ~60k~ ik
k

hogg
= Gog%'gg+ M[ Goa@ag(hag —h(i)

—Goi 4'a«ag] . (23)

Iteration of Eq. (19) retaining terms to O(y )

yields

~ &' I &g„;,&zij)) ~'Z&„&;&zg ),
(24)

Pogg = Z (Goa 4'iaGga- Goa 4'la Gg g
—Gog 4'i'aGga) (25)

and

Q ipgg Gpi @ii (Gli Ggi)+ M (G pa@i a Palg

V V
Gpa @&a Pg gg Gpj@ai Pagi) (28)

The correlation functions appearing in the diffrac-
tion theory are [see Eqs. (All)] (On), (On), (Onn),
( 0 n ), (0 n n ), (0 0 n ), ( 0 n n n ), and (0n 5 gg ). Conse-
quently, only the special cases of Eqs. (21) and
(24) given by J= 1, oo, or &go&g„, and I-n or 0, and
0- n are needed. Thus the diffracted intensity
correct to O(y ) depends on pair, triplet, and

quadruplet concentration correlations. Many of
these correlations will have site coincidences.
Such correlations may be expressed entirely in
terms of lower-order correlations with no coin-
cidences by the identity

a";=A„+8„«,
where
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A„= 2 "[m„m&&+ (- 1)"m„"mi& ]

8„=2" '[ms —(- m„)"] .
It is not difficult to evaluate the above expres-

sions for a particular model with the aid of a com-
puter once the average-lattice Green's function G
has been computed. This is especially true if one
considers special cases such as no short-range
order, nearest-neighbor interactions, equiatomic
composition, etc. A great simplification obtains
if, as in Hef. 3, &1&"= C"=0, for then Eqs. (18) and

(19) do not need to be iterated. However, as indi-
cated in Sec. II, there is no a Priori justification
for ignoring C and 4 . The main problem is in

choosing an appropriate microscopic model. '
There are no good theoretical estimates of V"",
V, and V, so one must choose reasonable
phenomenological forms with a few parameters
fitted to macroscopic data. A possible procedure
is to use the elastic shear moduli C44 and C» —C&,
measured at several compositions to determine
the parameters in the interatomic potentials. 9 This
is possible because the speed of the long-wave-
length transverse waves in the alloy depends on the
first and second derivatives of U(r). Thus Born-
Mayer potentials of the form of Eqs. (20) may be
determined to within an additive constant. The
additive constants have no effect on the theory pre-
sented except in a way to be shown in Sec. V.

The atomic displacements in alloys are often
visualized as consisting of a rapidly time-varying
component due to thermal agitation superimposed
on a static distortion field. No such assumption
has been made in the above analysis, but Eq. (21)
and the explicitly temperature- independent part
of Eq. (24) may be regarded as due to the static
distortions, while the explicitly temperature-de-
pendent part of Eq. (24) may be regarded as a
thermal contribution.

When the Hamiltonian in the form of Fq. (8) is
substituted (with the additional term involving the
chemical potential added) and the sums are evalu-
ated, one finds

(a, )., = t~h[r3(E, + &)]+(m, —m„),
~here

Eo= -2 [P (ro&)+ W(ro ) a ] .
i&0

(29)

(30)

The restriction i c0 may be removed if V00=0 and
8"«= 0. In principle it may be possible to use
Eqs. (29) and (31}as well as the relations derived
in Sec. IV to derive and analyze an infinite linear
set of equations in the concentration correlations
in the manner of Shirley and Nilkins. However,
this would be very difficult, and it is simpler to
employ a mean-field approximate theory. Such a
theory is expected to be valid except in the critical
region.

The derivation of the mean-field theory closely
follows the derivation by Clapp and Moss of Cow-
ley's' theory for binary alloys with no size dis-
parity. The mean-field approximation is conve-
niently expressed in terms of "subensemble"
averages. The subensemble average of a function
I' is the average over configurations for which an
A atom occupies site i, i.e. ,

(F) Q ai&Fp
{eou) (ty, u]

(a"F) 1=»&» (m (F)+ (Fa;))

Ep may be regarded as the field acting on site 0
due to the neighboring atoms. The next step is to
expand Eo to quadratic terms in {u]:

Eo= —Q [ Vo&+ 00& (ui —uo) —k(Uf - uo)
imp

x 4&o& (u —uo)+Wo& ai + '07o (ui —uo} (a;

2 (ui uQ)C o& (ui uo) ai ]

V. CALCULATION OF CONCENTRATION CORRELATIONS

Equations (21) and (24) will hold even if the sys-
tem is not in equilibrium with respect to the {a)
configuration variables, as when the short-range
order is quenched in. However, if the tempera-
ture is high enough, the system can equilibrate
completely, and the concentration correlations can
be calculated from equilibrium statistical mechan-
ics. An approximate theory for computing the
equilibrium- concentration correlations in the dis-
ordered phase away from the critical region is de-
veloped in the present section.

A special case of Eq. (13) is

where Eq. (4a) was used. Thus

m„(F), , =»i„(F)+ z(Fa;)
and

ms (F)„=me (F ) ——,
' (Fa;)

These may be combined to give

(F ) = »&~ (F).. .+»&s (F),

(a;F)=2m„ms((F).. .—(F),, ) .

Ne also have the identities

(32b)

(33a)

(33b)

(ao), =P aoe'" Pe'
(yp= + 0= k

(28)
and

»&~- »&&& = (tanh[P(Eo+ &i)]) (34a)
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(ooo»)=(o, tanh[P(Eo+ X))) (zoo), (34b)

which were obtained via Eq. (29) and the theorem
of Sec. III. Condition (10) was employed in Eqs.
(34). Using Eqs. (33), Eqs. (34) may be written

m ~ —m»» = m„(tanh[P(Eo+ X)]), -,
+ nz, (tanh[P(E, + ~)]).

If Eq. (3V) is substituted into Eq. (38), the set of
linear equations due to Clapp and Moss' results.
Equation (38) may also be regarded as a high-tem-
perature (small-P) approximation.

When microscopic strains and thermal vibra-
tions are present, one must evaluate (Eoo;) with

Eo given by Eq. (31). Thus

and

(oo o» ) = 2m~ m»» [(tanh[ p(Eo+ X)])..
—(tanh[P(Eo+ X)]), .j (iso) .

(Eoo;) = —+{V o(i n) —
& Tr (4o„(i nn))

n

+ Tr(4 o(i n 0))+ Wo„(in)+ 'v»zo„((in n) —(in 0))

and

m~ —mz —m„ tanhj P(( Eo),, —,+ &)]

+»z, tant [P ((E,)., -+ &)] (35a)

(oo o;) = 2m„m»» [tanh[P((Eo), , =, + &)]

—tanh[P((E, )„.=-+ &)]) (i &0) .
From Eq. (32a) we have

(EQ) ~ =+ (Eo)+ (2»z„) '&Eoo )

(35b)

and similarly for (Eo)~, -. When these expres-
sions are substituted into Eqs. (35) and (Eo)+ & is
eliminated between Eqs. (35), one obtains

(zn„+ms o»o )(ms+»z~ no»)(I —oo»)
'

=»n„msexP[(m„»zz) 'P(Eoo;)] (z &0), (36)

where (coo;)=4m„»zz c»o;. The term uo; is the
Cowley- Warren short-range-order parameter. '

When the atoms are of identical size and ther-
mal motion is ignored, u;= 0 for all i, and Eq. (31)
reduces to Eo= —g» Wo» o», where the irrelevant
constant g» Vo» has been dropped; and when

(E,o») = —Q Wo, (cr, o») = —4»»„&no 2 Wo, »z, »

(3'I)
is substituted into Eq. (36) and the index i is al-
lowed to range over all sites except i= 0, the set
of nonlinear equations due to Cowley' results. In

the disordered phase, further simplification is
possible because

o»o; &O(1/z), P (Eoo;) & O(1/z),

where z is the number of sites interacting with a
given site (z = 12 in an fcc crystal with nearest-
neighbor interactions). It is therefore not a bad
approximation to replace Eq. (36) by its leading
order expansion in 1/z:

(coo;)=4m„ms P(Eoo;) (i e0) . (38)

The mean-field approximation consists in replac-
ing E0 by its average value in the appropriate sub-
ensemble, i. e. , Eo-(Eo)„. , or (E,),, There-
fore, one writes

+ Tr f4 o„((in n 0) ——,
'

(in 00 ) ——,
'

(in nn ))] J

(i+0), (39)

where the following identity was used:

u' A v = Tr[ A (uv)],

where A is real symmetric and the right-hand
expression is the trace of the matrix product of
A and uv. If the x-ray scattering to O(y ) is re-
quired, it is only necessary to expand (E, o;) to
O(y ) in order to derive the set of equations which
will yield concentration correlations which may be
substituted into Eqs. (21) and (24). Here (Eoo, ) is
expanded to O(y') because it is in this order that
the triplet potentials appear, and these triplet po-
tentials are of interest. ' Substituting Eqs. (21) and

(24) into Eq. (39) and retaining terms to O(y'), one
finds

(Eoo») = —~ r~(mi) ——~ D~„(»nni ), (40)
3 ~

m m, n

where I"p„and dp„„will be defined below, and
where the sums are unrestricted. To cast the the-
ory into a familiar form it is necessary to restrict
the sums. Consequently, we write

3
)

mt 0 2 &mlngp

where

—r„&O ) —3+ d.„.&O»»z),
m40

(41)

r~= r,' + 3(»z, —»z„) r o

where Eq. (27) was used. Now because (Oi)
gO(1/z) and (Omi) &O(1/z ) for Ot m iso z»in the

disordered phase (see Ref. 4) and because a sum-

mation contributes a factor of z, the last two

terms in Eq. (41) are an order in 1/z higher

than the rest of the expression. The final term
is always the smallest because it has the high-

est order in both 1/z and y, and we shall ig-
nore it. The second-to-last term will be neg-
ligible if z»(e/25) '. A good deal of manipu-

lation yields the following expressions for I'0

(eekpmn y
an d
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~e

I'o =~o —y Z'Uok&k +]fT» 4'o (Go —Goo)+Z(24'okoof@ fGkf-4'okGof4' flak

F 1 F
@OkGom @fm Gkl 2@okGkf @mf Oaf ) (42)

&O n= O (Mn+ W~+ &'nmO+ WnO+ &~+ &mO ) ~

where

(43a)

where

F F F 1 F F F V V V V F
A Omn 2 (Y @OkGkn @el Gmf @ml Gol O @Ok Gal @mf Glf @nfGkl @Okokn @nf Gf f @fmG lo+ @Ok Gkf @JnGmn @ml Gol

/k'

F F F & V V F I F V V
+4'okGkf 4'nfGff 4'mfOof —l 4'okGkf @fnGln4'mlGlo- k 4'okGkf 4'fnGff 4'fmGo ), (44)

and finally

~ =ay Ko~ o+Z(&o 4'o &k +&ok4' k&k + &k' k4o&kk)

I

M. = ~' 2~on@ n+ 2 on@'Ok~kn+ nk~okkk„+&7 Tr @'omGaa@na 2Gon 2Gmn+Gmk Gok + 2 A~„
(43b)

(45)

Although these expressions are complicated, it is
not difficult to evaluate them by computer once
the Qreen's function is known. As explained in

Sec. IP, if the interatomic potentials are deter-
mined from elastic shear-modulus data, an arbi-
trary constant may be added to each of the inter-
atomic potentials V"", etc. The only physically
significant place in the theory where these con-
stants show up is in the first term of Efl. (42).
Therefore, R0 is to be considered arbitrary,
rather than O(y'). In a nearest-neighbor-interac-
tion model, %&„can be determined from the criti-
cal-disordering temperature.

To find a linear set of equations in the concen-
tration correlations, one substitutes Efl. (41),
without the final term, into Efl. (38). This gives

(Oi)= —4mAmff p(1+ 4mAmff p I'Oo) '

I 0 mi + —~ Ao~„mni i 40,3

(46)
~here it is understood that in the sums, I'0 and

40 „vanish if subscripts coincide. It is not possi-
ble to solve the set of Elis. (46) as it stands be-
cause there are too many unknowns. However, if
the term involving 60 „, which is an order in y
higher than the rest of the expression, is regarded
as a perturbation, then Clapp's" relation between
pair and triplet correlations may be used. This
relation is based on the assumption that triplet or
higher-order interaction potentials (i.e. , ho „)
vanish. Thus triplet correlations obtained in this
way will be correct to O(y ), and they may be sub-
stituted properly into Efl. (46) to yield pair corre-
lations correct to O(y ). The short-range-order

component of the x-ray scattering may be com-
puted to O(y') using these pair correlations. To
compute the other components to this order, it is
necessary to take Eqs. (21) and (24) to another
order in y, and to determine fourth and higher-
order concentration correlations, possibly by
Clapp's procedure. " If we were to study the sta-
tistical mechanics of a disordered binary alloy
with no atomic size disparity but with "effective"
Hamiltonian

1 ~ 1 ~
fftn pffft &n+

2 +trna +l +m +n
m, n

where the last term is regarded as a perturbation
and where I' „and 6, „vanish for coincident sub-
scripts, then we would obtain exactly Efl. (46),
except that I"00= 0. The equations could be solved
in the same manner as above. Thus I'„„and b, , „
may be regarded as effective pair and triplet inter-
action potentials. ' There is also a rescaling of
the temperature between the effective alloy and the
"real" alloy given by

Preal Peff (I 4mAmo Peff I I)
It is simpler if one needs the x-ray scattering

correct to O(y ), for then one needs to solve just

(0 f' ) = —4 m „m ff p(1+ 4 m o m „p I"
Ol] )

'

x+1'o (mf')+O6O;,

where the last term removes the i t 0 restriction.
This has the Clapp-Moss form, and their method
may be used to solve for the pair correlations.
The effective pair potential I'o given by Efl. (42)
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has three parts. The term Wo is present even
without atomic size disparity. There is another
temperature-independent term given by

Fo' = -Z'Uog&g~ = —Z 'UogOg('tin(
k, l

4 q 'W —q cos q ~ ro„
(47)

where

'Uo)p= I7~ 'U(q) exp( ' q ' rog)

etc. , and where Eq. (17), written as G(q)
= [4 (q)] ', was used. Equation (47) has exactly
the same form as the interaction between point de-
fects derived by Hardy and Bullough, "which makes
the physical interpretation of this term clear. The
third part of I'0 is a temperature-dependent part
which is probably less important than the other two
for temperatures below the melting point, but it
gives rise to the interesting result that the corre-
lations become asymptotic to nonzero values as
T- ~. To compute the x-ray scattering other than
the short-range-order scattering, one needs to
substitute the pair, triplet, and quadruplet concen-
tration correlations into Eqs. (21) and (24). The
triplets and quadruplets may be found by Clapp's
relations, ' or the quadruplets may be found by the
following relation:

(ijkl ) =(ij ) (kl ) + (ik ) &jl ) + (il & (jk ) + 0 (1/z ) .
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((e)= (Ef; f, eep('t) ~ p;, )), (Al)

where f; is the atomic scattering factor (x rays)
or the nuclear scattering length (neutrons) of the
atom at site i. Ignoring possible isotopic varia-
tions in the case of neutrons, one may write

f; = a;"f„+a;fs=f + afo;, (A2)

where f = m„f„+ms fs and r).f= —,'( f„fJ3),—where
Eqs. (4) were used, and where (f„,fo) is the
atomic scattering factor oI an atom of type (A, B)
From Eq. (2}one obtains

r(y = (r(g) gp + ug —ue ~ (A3)

Substitution of Eqs. (A2) and (A3) into Eq. (Al)
and expansion to second order in displacements
yields

I (q) = Q [f ' + f rg f (cr; + cr~) + (rp. f ) o; o, ]

x(1+ iq'(u, . —u, ) - —,'[q'(u, —u, )]')

xe p[ t( (,,)., I) .

The expansion is valid for

IqI(&u'&)'" «1,

(A4)

(A5}

47c (sine)lc ' ((u'&)'~' «1 . (A6)

N I (q) = Is gg +ingrr

where

Isragg f (1 g I & "o) g'9 0 &oouo&)

x g exp(i q ro; )

(A7)

(A8)

Equation (A5) gives meaning to the term "small-
momentum transfers, " and Eq. (A6) shows that
this is equivalent to small scattering angles 8,
and/or small displacements compared to the wave-
length of the radiation lc. Separating Eq. (A4)
into the Bragg and diffuse components, one finds

APPENDIX A

An up-to-date account of the experimental analy-
sis of small momentum-transfer kinematical-dif-
fraction data and the associated diffraction theory
has been given by Gragg and Cohen. ' The results
of this type of experiment may be compared quite
directly with the predictions of the theory in this
paper, and this appendix derives the relationship
between the experimentally measured quantities
and the various correlation functions.

The intensity distribution in reciprocal space of
x rays or of elastic thermal neutrons scattered by
a substitutional binary alloy is given in the kine-
matical approximation by

and

I„„-[4m„m, (r f )')

X[A (h)+ he/(h)+ h' C (h)h+ h' D (h)h], (Ag)

where q= 2wha ' (a is the lattice parameter) and
q= f/d f. The term in the first parentheses in

Eq. (A8) is the Debye-Wailer factor ln Eq. .(Ag)
the diffuse scattering has been separated into com-
ponents which Boric and Sparks' have shown can
be isolated by processing the diffraction data in a
way which exploits the different symmetry of each
component. The component A(h) is known as the
short-range-order scattering and is perfectly
periodic in reciprocal space. The component
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h'5(h) is the size-effect scattering, and h'[ C (h)
+ D(h)] h contains both the thermal-diffuse scat-
tering and the Huang scattering. The thermal-
diffuse scattering and the Huang scattering have
the same symmetry in reciprocal space, but in the
classical harmonic theory the thermal-diffuse
scattering is proportional to the absolute tempera-
ture whereas the Huang scattering is independent
of temperature provided lattice-site occupancy is
frozen. Thus thermal-diffuse scattering and
Huang scattering may be separated by measure-
ment of lr'[ C (h)+ D(h)] h at two temperatures and
extrapolation to the absolute zero of temperature.
Fourier coefficients for each component of the
diffuse scattering are defined as follows (see Ref.
18):

A(h) = Q rrr „cos(rr lr„l ) cos(rr )r m ) cos(rrlr rr),
(A10a)

B„(h)= P y", „sin(rrh, l }cos(rrk, m} cos(rrh, n),
(A10b)

C*.(h) = 0, (A10c)

C„(h) =—g er" „sin(rrh„l) sin(rrh, m) cos(rr)r, n},
2 l fftn

(A10d)

D„„(h)= P 5r „cos(rrh„l)cos(rrh, m) cos(rrh, rr),
(A10e)

D„,(h)= 0 . (A10f)

The other elements of 5, C, and D are found by
permutation of x, y, and z. The summations in
Eqs. (A10) are over all triplets of integers (l,m, rr)
which obey one of the following conditions: (i) for
an fcc crystal l+m+n is even, or (ii) for a bcc
crystal L, m, and n are either all even or all odd.
The precise nature of the symmetry of each of the
components of the diffuse scattering is evident in
Eqs. (A10). The sets of Fourier coefficients {n},
{y},{7}, and {5}are the experimentally deter-
mined quantities in a diffraction study of an alloy.

It is clear from Eq. (A4) that each component of
the diffuse scattering may be written explicitly in
terms of the correlation functions (e. g. , (ij ), (i j ),
(i j ), etc. ), and when these expressions are com-
pared with Eqs. (A10), relations between the ex-

perimentally determined Fourier coefficients and

the correlation functions studied in this paper may
be written down. These relations are the follow-
ing:

or .= (&Qrrr &/4m~ms (Alla)

&rmn=[V'/(m~mou')1 (rl'(XOXrm0& q(OQ-Xrm. &

2+ q (OQXQXrmn& (OocrmnXrmn)

+ (oo or mnxoxrmn& ) ~ (Alld)

where x, „(y, „)is the x (y) component of u at
site (l, m, n). These expressions show that the
Cowley-Warren short- range- order parameters
{err „}are the only true Fourier coefficients be-
cause y, e, and 5 all depend on position in recip-
rocal space through g. However, g is often quite
slowly varying, and this dependence is weak. For
neutrons, q is constant because the scattering
lengths are constant and all of the Fourier coeffi-
cients are "true. "

APPENDIX B

vector,
is a real-symmetric matrix and X is a
the three Gaussian integrals

f exp(- A'x —x' B x)d ox,

f x exp(- A'x —x' B x)d x,
f xxexp(- A'x —x' B x)d x

are given by

Sr= «'"(A„„A,„A„)"'exp(C'„A„„'

S~= —
~ B A&q,

So= Sr(0 B '+rroaorrr ),
where 8 is diagonalized by an orthogonal matrix,
so B= S' A S, where O' S = I and A is diagonal
with elements A„„, etc. The vector 0 is given by
C= pSA.

(rrmwmrrrr)(r} (rroxr „)+(oorrr xr )), (Allb)

er'„= —[2rr /(m„ms a')] (r} (xrry, „)
}( oo x r mn y l mn ) + 2 r} ( rro x0 y lm0 )

(oo ormnximrr y rmn& + (co ormnxo y rmn ) ) ~ (A11C)
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