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An expression for the cyclotron-resonance power absorption is derived with the help of a projection

operator. It is shown that the correct evaluation of this formula requires the summation of aa infinite

number of terms in order to describe the effects of the scattering interaction to second order. These

results are in contradiction with those obtained from some recently proposed theories of this

phenomenon. It is then demonstrated that the correct expression for the cyclotron-resonance power

absorption is identical to the one obtained through the use of the quantum kinetic equation.

I. INTRODUCTION

The study of the cyclotron-resonance absorption
line shape has been very user/ in obtaining infor-
mation about the scattering mechanisms for the
charge carriers in Solids. A great many theoreti-
cal studies ' have appeared recently on this topic,
dealing in particular with the linewidth and the line
shift of the absorption line and its dependence on the
magnetic field.

Among these, the theories of Kawabata' and of
Lodder and Fujita appear to be quite general and

rigorous. They provide a criticism of other the-
ories ' and they yield explicit expressions for the
linewidth and the line shift, which have been evalu-
ated in the second order of the scattering interac-
tion X. These expressions have been used in a
number of specific applications.

In this paper we derive a general expression for
the cyclotron-resonance power absorption, which
provides the basis for a critique of these recent
theories. ' In particular, we consider in detail
the theory of Kawabata, which we derive in a much
more direct and simple way by a, new technique we
have introduced recently. %e point out that his
expressions for the linewidth and the line shift
evaluated to order X cannot be correct in general.
Since Lodder and Fujita claim that their theory leads
to expressions for the linewidth and the lineshift to or-
der X identical to those of Kawabata, it is sub-
ject to the same criticism (although their general
theory is sufficiently different to warrant a sepa-
rate study). Without any detailed investigation,
however, one may ask the following question,
which immediately raises doubts about the general
validity of these theories: Since these theories '~

are valid for arbitrary strengths of the magnetic
field including the value zero, why do they always
yield an explicit expression for the (complex) re-
laxation time for the current (of order & ) while it
is well known that for zero magnetic field such a
relaxation time does not exist in general? In fact,
for any magnetic field the appropriate distribution

functions for the calculation of the current have
been shown' ' to satisfy integral kinetic equa-
tions, which in genemL do lot possess simple solu-
tions that describe the effects of the scattering in-
teraction to second order in terms of a (complex)
relaxation time. This discrepancy among the
existing theories has provided the motivation of this
inves tigati on.

In Sec, II we derive a general expression for the
cyclotron-resonance power absorption of free
charge carriers in random impurities, subject to
the same approximations that Kawabata has made.
The method of derivation is not only a great deal
simpler and more direct than that of Kawabata,
but it is also of such a form that allows us to con-
sider and sum infinite subsets of terms of higher
order in X. This is of importance in Sec. IG,
where we point out that Kawabata's treatment of
the effects of the scattering mechanism to order

is in error, especially for the case he con-
siders, namely, for frequencies near resonance.
In fact, it is shown that the explicit formula ' for
the power absorption with the relaxation time to
order X is nothing more than a perturbation ex-
pansion in powers of X of the current followed by an
inversion of this series to order X . The error
lies in the fact that in the general formal expres-
sion for the relaxation time there are terms of or-
der X and higher that diverge at the resonant fre-
quency. Thus, Kawabata's expression for the
power absorption should be valid in general only
at the wings of the absorption line. However, an-
other approximation made by Kawabata invalidates
this expression even in this region. In Sec. IV we
sum the dominant divergent terms mentioned above
to all orders in X. %e obtain a different expres-
sion for the power absorption, which, although of
the same order in X, requires the solution of an
integral equation, in accord with the quantum
transport theories. ' In Sec. V we treat the
general problem of cyclotron-resonance absorption
by free charge carriers in random impurities with-
out the approximations of Sec. II on the basis of
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a generalization of the technique introduced in that
section. %e obtain a formal expression for the
power absorption, correct to all orders in X, which
is shown to be equivalent to the one that can be
obtained more simply by the method of kinetic equa-
tions

II. AN EXPRESSION FOR THE CYCLOTRON-RESONANCE
POKER ABSORPTION

%e present in this section an expression for
the conductivity tensor of dynamically independent
electrons in a uniform magnetic field that will pro-
vide the basis for our discussion of Kawabata's
theory for the cyclotron-resonance power absorp-
tion. This expression is obtained by a new method
that the authors have introduced recently in a
discussion of a different problem.

For dynamically independent electrons it suf-
fices to consider from the very start the motion
of a single electron. The energy of the electron
in the magnetic field 8, taken in the z direction,
is given by the unperturbed Hamiltonian

Here & =-& —iq with g a positive infinitesimal
(r}-0'), f(H) stands for the Fermi-Dirac distri-
bution function, and I. denotes the Liouville opera-
tor corresponding to H=-Hp+ V, i. e. ,

f,X=- [H, X] {2.8)

for any operator X. The formal solution of (2. 7)
1S

(2 9)

where we have introduced the propagator G cor-
responding to the I.iouville operator I., namely,

G {z)= (z —f.) ', (2. 10)

if we take for convenience the volume of the sam-
ple equal to unity. Here J'; = ei [Ho, x;] is the ith
component of the current operator, a.nd p(~) is the
steady-state density operator for the electron,
linear in the electric field. This satisfies the
equation of motion 14

(2. 'I)

IIO= p - —A (2 1)
for any complex number z. Thus, the conductivity
tensor o;&(v), as obtained from (2. 6) and (2. 9), is
given by

where A = (0, Bx, 0) is a convenient vector potential.
The eigenstates l&z)= ink) and eigenvalues «of
Ho are then specified by n = 0, 1, 2, . . . and k = (k, ,

k, ), a two-dimensional wave vector, so that

(rin)= (r ink)oc q„(x+0, /moo, ) e'"'",

&, =«„„-=(n+ —,')u, +k, /2m .

(2. 2)

(2 3}

Here y„(x+0, /mi~, ) are the eigenfunctions of a
simple harmonic oscillator of frequency &u,

-=le lB/
mc =-the cyclotron frequency, centered at —k, /
m(d, , and I is taken equal to 1. In the following
we shall adopt the notation l @+1) to indicate the
state in+1, %) if lo. )= ln%). The scattering mech-
anism is taken to be a set of identical impurities
located at the random positions {r,}. Thus, the
scattering potential is

(2. 11)

o (~)= Tr {ex [f{H), G((g )J']}, (2. 14)

In order to be able to make a direct comparison
with Kawabata's expression, we note that due to
the invariance property of the trace under cyclic
permutation this can also be written

(2. 12)

since Gf(H) J= f(H)G J and G Jf(H) = {GJ)f{H).
The average power absorbed by the electrons

when driven by an electric field circularly polar-
ized in the plane perpendicular to B is proportional
to

Reo, 4u) = Re[a„{(u)+ioz,(~}+ozz((u) —to,z(~)].
(2. 13)

From (2. 12) we have then

V(r) =Q v(r —r, ), (2. 4) where we have put

where v(r) is the potential of a single impurity
located at the origin. Finally, the system is driven
by an oscillating electric field of frequency ~, so
that, in a scalar gauge, the interaction Hamiltonian
is

F(t}= —ex; E;4u) e' '+ H. c. , (2. 5)

where the summation convention for the Cartesian
components x;, E; is adopted.

The induced steady-state current density is then
j(t) = j (u)) e'"'+ c. c. with

(2. 6)

o, (~}=—Tr {ex [ f(Ho) G(up ) J ]}. (2. 15)

Evaluating the trace in the la) representation as
given by (2. 2), and making use of the selection rule

«I =—«J1 +Z«JP, X =—X1 +'EXP .

This is an exact expression for o, (w), if we take
its average over the random distribution of the
impurities.

If we now adopt the approximation that Kawabata
makes (which he considers valid for (d =~,}, we
may replace f(H) =f(Ho+ V) by f(Ho) and thus ob-
tain instead of {2.14)
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(«).. = (f/~, )(~:)*6...,&,

we find for (2. 15)

{2.16) L,X=-[H„X], L,X-=[V,X]. (2. 29)

We then note that LOJ'=fd, J', P LOJ''=0, and
(LoP'X) = 0, as it follows from the definitions of

Lo and P . We thus can write (2. 28) in the form
x{J~)~R((o)~. (2. 17)

Here we have introduced the convenient notation
R(~) = .

iJ'
f((u —(g, ) + I', (a)

(2. 30)

X.= &a+ I ~X ~~)

for any operator X, and the operator

R(ro) —=G((u )8' .

(2. 18)

(2. 19)

where

I' (ur)-=——,([Ig+L)G'(w )P'L, ]8'), . (2. 31)
J~

We must now evaluate the quantity R(~) . Our
method of evaluation proceeds as follows. From
the definition (2. 19) and Eq. (2. 10) we note that
the operator R(~) obeys the equation

Using (2. 30) in (2. 17), in conjunction with (2. 19),
we have

p [f{+e)-/{+++~a)]~~a ~'

47 f((0 co ) + F {cap)

((g —L)R((u) =J'. (2. 20) {2.32)

We introduce the projection operator P defined by

PX =- J'{X„/j '), (2. 21)

where X„Z' are defined by (2. 18). We note that

PZ'=Z', P'Z'—= (1 —P)Z'=0,
while

{2.22)

PR(u)) = 8' [R{w)~/Z~] . (2. 23)

In (2. 20) we introduce the splitting R(&u) =PR{ig)
+P'R(+) and then operate with P and P, separate-
ly, to obtain, with the use of (2. 22),

Equations (2. 80) and (2. 31) are exact formal ex-
pressions for {o.+ I I G(&u ) J'~ a), valid for arbi-
tary sca.ttering potential V. Thus (2. 32) gives an
expression for Reo, (w), which is exact except for
two considerations: (i) in (2. 17) use was made of
the approximation f(H) =—f(Ho), which was intro-
duced in (2. 15), and (ii) no averaging over the dis-
tribution of the impurities has been carried out.

Expression (2. 32) will provide the basis for our
discussion of Kawabata's theory for the cyclotron-
resonance power absorption in Sec. III. La,ter, in
Sec. V, we shall return and discuss the points (i)
and (ii) we just mentioned.

(~ —PL) PR PLP'R =J '-,

{~ —P'L)P R -P'LPR = 0 .

{2.24a)

(2.24b)
III. CRITIQUE OF OTHER THEORIES

Solving (2. 24b) for P'R in terms of PR, we get

P 'R (w ) = G '(a )P 'L PR (&u ), (2. 25)

where we have introduced the new propagator

G '(z) =—(z —P'L) (2. 26)

We now substitute (2.25) into (2. 24a) and obtain for
PR{&u) the equation

In this section we derive on the basis of (2. 31)
and (2. 32) Kawabata's expression for the power
absorption and discuss its shortcomings.

We are interested in obtaining an explicit ex-
pression for I', (~) of (2. 31) for a weak scattering
potential V. If we denote the strength of this in-
teraction by X, we can generate a power series in
X for I" (~) by expanding the propagator G'(& ) in
powers of V. From (2. 26) we have

{(~ -PL[l+G'{a )P'L] fPR((g) = J'' . (2. 27)
G'((u )P'= (w —Lo —P'L, )

'P'

We note that all terms on the left-hand side of
(2. 27) a.re, according to (2. 21), simple scalar
multiples of the operator J'. Thus, with the help
of (2. 23), we find for the quantity of interest
R(m), the expression

R(~) =&'{a —(I/O')([L+LG'((a )P'L]J') ]
' .
(2. 28)

Since we shall be interested in a weak scattering
potential V, it is convenient to introduce the Liou-
ville operators Lo and L& corresponding to Bo and

V, respectively, i. e. , L = Lo+L, , with

Go(~ )-=(~ -Lo) '. (3. 2)

The first equality in (3. 1) follows from (2. 26) and

the fact that PLOP' = 0, as can easily be verified.
Substituting (3. I) in (2. 31) we have the formal ex-
pans ion in power s of X:

= [Go(~ )+Go(&-)P'L, Go(&d-)+ ]P',
(3.1)

where we have introduced the unperturbed propa-
gator
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r.(~) = ——,([I., +I.,G,P'I, , +I.,G,P'I, , G, P'f.,+ . ]d'). . (3. 3)

More explicitly, we have, if we evaluate the first two terms in the ~o, ) representation

) (V V ) p [ aB a+1, 8v1( 8 / a)] VBa

i((g -~. , +eB)+3)

Va+1.8 [VB.a+1 VB-l.a{~8 1/~a)] (y3)
8 1 ((0 —f 8 + e a) + Q

5d =4) (3. 5)

where we recall that 3l -0', and the prime on $8
denotes the deletion of the terms associated with
the diagonal matrix elements of V, i. e. , in the
first sum P c~ and in the second sum P c~ + 1.
%e point out that these exclusions arise from the
fact that (P I.,J'), = 0, and that for the excluded
states the respective denominators are equal to

C '

Expression (2. 32) is identical to Kawabata's'
expression (3.9) for Beg, (a1), if in our Et{. {3.4)
for I' (tu) we ignore the terms of first order in V,
as Kawabata does, and consider the terms denoted
by 6(X ) as negligible. [There is a minor differ-
ence between the exclusions in the second sum 7 ~

in our expression (3.4) for I' (~) and the corre-
sponding sum in Kawabata's expression (3. 6) for
the same quantity, but this is apparently an over-
sight on the part of Kawabata. ] Furthermore,
Kawabata takes the average of the expression for
I', (a1) over the random distribution of the impuri-
ties, which also justifies the neglect of the first
order in V terms in I', (1u). This is, as Kawabata
correctly points out, an ad Izoc procedure, since
Rea, (tu) is proportional to the impurity average
of R(tu), rather than that of I' (u1). Kawabata, iden-
tifies ReI'„(&8) and —ImI' (tu) with the inverse
"transport relaxation time*' 1/3.,(n, &), or the
linewidth, and the line shift b(o. , ~), respectively.
He finally approximates these by their values for

%e now show that such a procedure is in error.
More specifically, we show that the expansion' of
I', {tu) in powers of X, as in (3.3) and (3. 4), breaks
down for {d =~, , i. e. , higher-order terms become
infinite for ~ =-~„and thus this expansion is only
valid for sufficiently large ~ —f&, , i. e. , most
probably it is valid only in the wings of the absorp-
tion line. In brief, the approximation of 1 (~) by
terms of order up to X in (3.4), which Kawabata
has adopted, cannot describe correctly the shape
of the cyclotron-resonance absorption line, espe-
cially near the center of the line.

In order to emphasize this point, namely, that
Kawabata's expression for I' (~) is valid only for
(6a1)3» 1, where

V,i, e.~ —V
X,n) =

5'd

1 ~ V ~- V,q ~q(J'~//O' V~
X n2 ——~ )+68

v. ..jv„...—v. . .I v;, , v „Il)
-& g+~ I„

(3. 7a)

(3. 7b)
%e note that there are no exclusions in the sums

$8 in (3. 7b), i. e. , some of the terms there diverge
for 6a1 =0. We may now rewrite (3. 7) in the form

g+
R(a1) = —(I+Ad, +X d3+ ) (3. 8)

By comparison we find that

dy = —)Zg

CE2 = P'Zy
—H2

2

(3. 8a)

(3. 8b)

Introducing (3. 7a) and (3. 7b) in (3.8)-(3.8b), we
recover expression (2. 30) with I', {a1) given by the
first three terms of (3.4), i. e. , Kawabata s ex-
pression for the same quantity. The n.

&
term in

(3. 8b) serves to bring in the desired exclusions
in the sums &~ of expression (3.4). (Incidentally,
this method of derivation justifies the impurity
averaging procedure of Kawabata. )

and y is of the order of magnitude of the correct
relaxation time near resonance, we observe be-
low that Kawabata s theory can be derived in a
straightforward manner by expanding the quantity
R(~) in powers of X up to X and then rewriting
the expression-so obtained as the inverse of another
series in X up to second order. Thus, no elaborate
pr oj e ction, or diagrammatic, techniques ar e
necessary for such a theory. To show this we first
solve (2. 20) for R(18) up to second order in X by
iteration. We'obtain

R(a. ) = [GB(~ )+Go(a1 ) f.1GB(a& )

+G, (g )I,, G, (g-)I., GB(g )+ . ]Z'.
(3. 6)

More explicitly for R(&u)„we find

J+
R(( )„=~ (I+an, +X n3+ ),

2

6(u
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From this discussion it is evident that the pro-
jection technique we introduced in Sec. II gives
directly an explicit expression for the inverse of
R(la) to all orders in X, as shown by (2. 30) and
(3.3).

W'e can now demonstrate that in the expression
{3.3) of I' (la) in powers of X, the terms of order

and higher involve some terms that diverge for
51' =0 (and in the final limit 1)-0'). First, we note
that every Ga(&a ) in (3.3) is followed by P'=1 P,-
so that there are always terms that involve
Gs(ld )8'. Now, since LB/'=&d, J', we have
Ga(la ) Z'= J'/5'. Thus, these terms diverge for
5&a =0, except for the terms in (3. 3) of order ll',
which vanish, because, as we mentioned before,
( P' LJ'')~=0. More generally, however, we note
that Ga(la ) operating on the part X, of any operator
X that is defined in the )P) representation by the
matrix

(Xl)88' Xa,a-l 5 8', 8-l (3. 9)

gives rise to terms that diverge for Q~ = 0, since

(Ga(la )X,)88. —(la —&8+@8.) (X,)88,

{ 1)Boa-1 5 8'.8-1

5(d
(3.10)

By contrast, the part X&=X -X& of any operator
X gives rise to regular terms when Gs{i~ ) operates
on it, since

(G a(la )XB)88. = 4 —e 8 + e Be)
'
Xaae (p 0 g —1)

{3.11)
in the summation over the intermediate states be-
comes (after the thermodynamic limit is taken)

[ill 5(la —a 8+ e 8.) —(la —a 8+ e 8.)a' ]Xaa. ,

in the limit 1) O'. Thu-s, in the expansion (3. 3) of
I' {la) in powers of ll, every factor Ga(la )P', ex-
cept the last one that operatres on L, ,J ', brings in
terms o- X//g(d, which clearly diverge for (d = ~,
{and 1}-0'). Therefore, in (3.3) thel'e are terms
~ll (ll/ha)" with n ~1. It follows that the proce-
dure of keeping terms of order X and ignoring the
others in the expansion (3. 3) of I' (la) is not valid
for frequencies (d close to ~„ the very frequencies
for which I', (la) is evaluated.

The theory of Lodder and Fujita is quite differ-
ent from that of Kawabata in its genera1. formula-
tion, and we shall not discuss it here in any de-
tail. When, however, they-treat the effects of the
scattering interaction in the lowest order {Xa), they
arrive at an expression for g, (~~) that is identical
to the one obtained by Kawabata and discussed
above. Thus the criticism mentioned above is ap-
plicable to their theory too, although a more de-
tailed study is necessary in order to find out its
relation to the general theory presented here and
especially in Sec. V.

It must be pointed out, however, that it may
prove possible for Kawabata's expression for
I' (la) to be valid for a special scattering inter-
action. Such a case can arise when the coeffi-
cients of all the divergent terms of order X or
higher vanish for the particular type of impurity
interaction.

IV. CORRECTION OF OTHER THEORIES

In this section we show how the problems in-
herent in the earlier theories we discussed in
Sec. III can be eliminated within the theoretical
framework we have introduced. We shall then
show that the same correct results can be obtained
by a different method in a more direct manner.

In order to remedy the earlier theories, we
must sum the infinite subset of terms in the ex-
pansion (3.3) of I'a(~) that are of the form ll (ll/
5a)" (n ~ 1). These are the dominant terms for
sufficiently small X, and mill yield an expression
for R(la) ' correct to order X

The isolation of the desired terms is facilitated
by the introduction of the operator 6 that projects
the part X& of any operator X that was defined in
{3.9), i. e. ,

)aa' -=B,s-l 8', a-1- a-1 58', 8-» (4. 1)

where the last equality follows from the notation
introduced in (2. 18). The operator that projects
the part X~=X —X, of X is then b, =-1 —4, with the
obvious proper ties 6 = b, 6 6 = hh = 0. The
divergent terms now arise whenever Gp(M )
operates on ~, since, as we saw in (3.10),

1
Ga((u )b = —6 .

Ru
(4. 2)

By contrast Gs{la )6' yields regular terms. Thus,
it is convenient not to use the expansion of G'(~ )
in powers of P'L, =L, —PL1, as we did in (3. 1) to
obtain (3. 3) for I', {la), but rather to expand
G (la ) in (2. 31) for I', (la) in powers of 5L1 and
PI, This is accomplished simply by writing the
first equality of (3. 1) as

G '(~ ) = (~ —L, —a 'L, —c,L, +aS, ) ', .(4. 3)

since then it follows that

G (~~ ) =G (d )+G "(~ )(~L1-PL1)G"(~ )+ .

G "(~-)-={~ —La —~'L, )-'

=Gs(rd )+Ga(la )5 L, (gGa)+ . . (4. 5)

=G '(~ )+G "(~ )CP'L, G "(~-)+ . (4. 4)

The second equality follows from the fact that P
since 6 J'=0. In (4.4) we have introduced

the propagator
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From the structure (4. 5) of G '(~ ) and the fact
that Go(~ )6' yields regular terms, we note that
G (&u )b' brings in no divergent terms, whereas in
G (u& )6 there are divergent terms with a single
I/6w factor. By a simple rearrangement these
divergent terms can be made manifest, by noting
that

pansion {4.4) into (2. 31), we must separa, te the 6
and 6 parts of any operator that is acted upon by
G' (~ ). We thus write P in (2. 31) for I' (~) as~ +6'P and obs erve that 6'P = P —hP = D, so
that P'= b2" + b, '. We now can use (4. 4) to write

L~G'P'L~ = LgG (~'+ 6 ') L~

G "(~ )~ = —[6.+G "(&-)~'L,r ] .lf
5v

(4. 8)

Thus, in order to isolate the divergent terms in
I' (&o) as they appear upon introduction of the ex-

+ Ly G
"AP'L, G "(bP'+ 6') L, + ~

(4. 7)
If we add I.l to both sides, operate with 6 from
the left, and rearrange the series, we find

6[L~+L~G'P Lq]='b[L, +L~G "6'L~]+ALONG dd 'b[L, +L~G '6 L~]

+6LgG 'dd rhLgG bP h[Lg+L)G 5 I g]+ (4. 8)

since dd' =Ed' b.. According to (4. 8}, the domi-
nant divergent terms in (4. 8) arise from the
"factors"

&LgG 4) )&= —h[L, +L~G "((u )6'L~]b,rI

{4.9)
while the last "factor" n [L,+L,G "(~ )6 L,] can
be approximated by n[L, +L,Go(w )6 I,]. Thus,
we find

S((u) = 4[Lg+L, G—o(~ )b.'L,]. (4. 11)

Recalling the definition of P'=1-P, we can write
this as

n[Lg+LgG P L,]=—S+ —P S+ —P —P S+p p S, S, S
Geo 54)

(4. 10)
where

S S J' S
&[Lg+LgG P Lg]&'= (6(d) ——+ —I ——.»la/) {n+

l

I—+
Q(d

(4. 12)

The series (4. 12) can be rearranged to read
I

termined by the equation

16[L,+ L~ G 'P 'L, ]J ' —= 6~ (SZ ') 1 ——.
I

where

(SZ'), +

(SZ')

{4.13)

{~-(g, —n[I g+LgGo((u )4 Lg] }n.R(u)) = Z'.
(4. 17)

This is clearly a matrix-integral equation for the
set of the desired matrix elements

((&+I klR(~)ln»}={R:~}=Q }

S S ' SS—= —+ —+ = 1 —— —1. (4 14)
Ru 6w

Thus, from (2. 31), {4.13), and (4. 14}we find

namely:

(~ —~,—V„,s ~,t+ V~~)R„+(W[R])~=8~,
(4. 18)

where

= —i (hu -&„'[((6(u -S) ' J'),]
' }. {4.15)

Finally, from (2. 30) and (4. 15) we obtain for the
quantity of interest

R((o) =—([(u —(u, —S((u)] J') (4. 18)

where S(u) is given by (4. 11). The meaning of this
equation is that the quantity of interest &R(~) is de-

(W[R]) =Q R~ ' ' +
+ ~ e (L) 6 a+1+ ~ 8

0(+1v 8+1 ~Be e+1~ S+1~Ba—BB +
& &+1+ Cg ~ & g+1+ &&

{4.19)
and the prime on g denotes the deletion of the
diagonal matrix elements of V.

In fact, Eq. (4. 17) for hR(&u) can be obtained
much more directly from its defining equation
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(2. 20). If we introduce there the splitting R(m)
= hR(~)+6'R(~) and then operate on it with & and
6, separately, we find

(~ —I'LL) AR —bLb R = hZ'= J',
{(o —&~L) &'R —6'Ledi' , = 6'7"= 0 .

(4. 20)

(4. 21)

V. GENERAL THEORY

The theories we examined in the previous sec-
tions are restricted by the two considerations we
mentioned in Sec. II, namely, the neglect of the
effects of the scattering potential V arising from
the approximation f(H) =—f (Ho) and the ad hoc man-
ner in which the impurity average was taken, and,
in addition, by the fact that all other effects of the
scattering potential were calculated up to second
order in g. In this section we show how all these
limitations can be lifted, by deriving a formal ex-
pression for the cyclotron-resonance power ab-
sorption within the appropriately modified tech-
nique introduced in Sec. II. Vfe then demonstrate
that this expression is equivalent to that obtained
by the method of kinetic equations. '

We first specify the averaging operation over
the random distribution of the impurity positions

From (4. 21) we find 6, 'R(~) =G "(~ )h'-LaR{~),
which when substituted in (4. 20) gives

[(u —~ —bLG ((u ) a, 'L]bR((u) = j'. (4. 22)

If we now make use of AI,o = I,oh = ~,4, 6 I,04 = 0
and approximate G "(w ) by Go(&u ), we obtain an
equation for hR(~) with coefficients correct up to
order X, which is exactly Eq. (4. 17). This
method of derivation is the same as that which
has been used for the magnetoresistance of the
same system. Actually, (4. 22) is an exact equa-
tion for dR{&u), from which approximations of
higher order in X, or of a different type, than
(4. 17) can be obtained.

The integral equation (4. 18) for R(&u), we just
obtained, should be contrasted with the explicit
expression for it, Eqs. (2. 30) and (3.4), we ob-
tained before from Kawabata's theory. Thus, if
Kawabata's theory were correct, it would have
been of extreme practical importance, because it
does not require the solution of a complicated in-
tegral equation. Unfortunately, however, as we
have seen, such an expression for R(~), is cor-
rect only for (6~)o.» 1 and thus cannot be trusted
to give the correct shape of the cyclotron-resonance
absorption line.

With regard to the last comment of Sec. DI, we
note that if for a special scattering potential
Kawabata's expression for I', (~) is correct, then
for the same potential the integral transport equa-
tion (4. 18) admits of a simple solution and a relax-
ation time exists.

= —Q (dr)'Q(~),
(d~ e

where we have introduced the operator

(5. 2)

Q(~) =-G(~ )D,

D= [f(H), 7'],
(5. 3)

(5. 4)

and made use of (2. 16) and the notation {2.18).
From (5. 3) it is clear that the operator Q(o;) satis-
fies the equation

(~ —L) Q(~) =D (5. 5)

The quantity of interest Q(&u) = (P;Q(&u)) can be
found, as in Sec. II, with the help of a projection
operator P defined now by

PX = D —(P;X)—1
(5. 6)

d=—(P;D) (5. 7)

We note that this P includes the impurity averaging
operation P; and it projects a11 operators onto D,
rather than O'. It is clear that PD=D and P'D
—= (1 —P)D=O, while PQ(a)=DQ(&u) /d. Thus, a
formal expression for Q(~) can be obtained ex-
actly as in Sec. ii, by treating (5. 5) as in (2. 20)-
(2. 27). We find

dQ().= () (5. 8)

where

Z~((u) —= —(P;[L+LG'(~ )P'L] D)~, (5. 9)

and

G'(up )
-=(~ P'L) '- (5. 10)

as before, but with P'= 1-P defined by (5. 6).
Equations (5.8)-(5. 10) in conjunction with (5. 2)
constitute a formally exact expression for a, (oo)
for the system under consideration.

One may attempt to evaluate Z (~) in powers of
by the standard expansion of f(H) = f(Ho+ V), and

thus of D, in powers of V, and by the expansion

G'(& )P'= [Go(& )+Go(& )P'LiGo(& )+ ' ']P'
of the propagator 6 ((d ). As we saw in Sec. ID,
however, such an expansion is not valid for

(r, ] (s = 1, . . . , N, ) by the introduction of the oper-
ator P, , defined by

P, 4(r, , . . . , r, )

=f d rg Jd o„4(r~, . . . , r„)=4 . (5. 1)

Thus, an exact expression for o, (u) for a system
of dynamically independent electrons can be ob-
tained from {2.14) after operating on it with P, , if
the distribution of the impurities is random. Thus,

o, ((o) =P; Tr jex G((g )[f(H), 8'])
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~ = &u, , because whenever Go(m } operates on ddC

a factor I/(a —~,) appears. Thus an evaluation of
Z (~) up to 6(X ) from such an expansion would not
give a correct description of the shape of the cyclo-
tron-resonance absorption line. As before, a
summation of an infinite set of terms of the form
& [X /(& —m, )]"has to be ca,rried out in order to
obtain a value for Z (~) that would be valid for
arbitrary values of (~ —m, )r, with I/v evaluated
to order X . This can be carried through as in
Sec. IV.

In the following we show how Z (&u) and Q{ur),
can be calculated formally to all orders in X., thus
generalizing the treatment of the previous section.
We shall also show that the result is identical to the
one obtained more directly by the method of kinetic
equations.

In (5. 8) the propagator G'(&u ) is given by (5. 10)
and can be written in the form

G '(~ ) = (~ —A L —AL + PL ) (5. 11)

where we have introduced another projection opera-
tor

A =—rhP;,

6 being the operator used before and defined by
(4. 1). From (5. 11) we see that G'(rz ) satisfies
the identity

G'(47 )=G(M )+G(ro )(AL -PL)G'(M ), (5 13)

where G(~ ) is defined by

G((u ) =-(~d —A'L) ' . {5.14)

From the definitions it follows that I' =PA and,
the ref are, PA' = 0. Thus, the identity (5. 13) can
be written in the form

6 =6+GP ALG (5. 15)

—ALGD(l/d)(A(L + LG 'P'L)D), .

(5. 16)
From the definition (5. 14) of G(Id ) it follows that
1+GA'L = &a G, and thus the first term of (5. 16) can
be written as ~ ALGD. We can then solve (5. 16)
for the quantity of interest to find

A(L+LG P'L)D= [u) —Z (ur)](1 —ALG) ALGD
(5. 17)

If in the right-hand side of (5. 17) we split D into
AD+ A D, we can express it in terms of the quanti-
ties

S(&u)=-AL[I+G(ro )A'L]A=(u ALGA )A, (5. 18)

We now perform on both sides of (5. 15) the opera-
tion AL. . .I"LD and then add ALD. After a small
rearrangement and the use of I"h = A, we obtain
an identity for A(L+LG'P'L)D, namely,

A(L+LG P'L)D = A(L+LGA'L)D+ ALGA(L+LG'P'L)D

and

C(~)=-ALG (iz )A'D . (5. 19)

x[~ —Z ((d)] . (5. 21)

Solving this equation for Z, (~) and substituting it
in {5.8) we finally obtain for the quantity of in-
terest

Q(&u ) =([~ —S(~)] '(AD+ C)). , (5. 22)

where S(+) is given by (5. 18) and C by (5. 19). This
formal expression gives the set of the desired
matrix elements

[Q4&) )= AQ(~) = AP;Q(~) = &Q(~)

through the matrix-integral equation

[(g) —S(u:)]AQ{&z)= AD+ C4)), (5. 23}

with S(~) and C(~) given by (5. 18) and (5. 19), re-
spectively. The coefficients of this equation,
i. e. , S(& ), AD, and C(w), can be obtained in power
series in X from their definitions. In these ex-
pansions there are no divergent {for &u = v, ) terms,
in the thermodynamic limit, in contra, distinction
to the formal series expansion of Z {~).The dif-
ference between Z,{&u) and these new quantities
S{&u) and C(&u) lies in the fact that the propagator
in Z (&u) is

G'{(u )=((u -P'L) ',
which upon expansion is powers of X presents di-
vergent terms (for ~ =~,), while in S(&u) and C(rd)
the propagator is

G((~ ) =((u —A'L) ',
which by construction does not give rise to diver-
gent terms upon expansion in powers of ~, in the
thermodynamic limit. (For D there is no such
difficulty in its power series expansion. )

With regard to the two approximations of the
earlier theories we mentioned in Sec. II, we note
firstly that the ad hoc manner in which the impuri-
ty averaging was taken is justified by this method,
and secondly that the approximation f(H) —= f(Hp)
amounts to approximating the right-hand side of
(5. 23) by its lowest order term in X, i. e. , by

AD'=D =[f{Ho) ~'l.

We thus find that (5. 17) can be written as

A(L+LG'P'L)D = (- AD+ g [~z —S{(u)] (AD+ C))

x[(u —Z (~)] . (5. 20)

Taking the {n+1I (n) matrix element of the
operator equation (5. 20) and dividing by d, we get
the numerical equation for Z, (&u)

Z (u))=j-I+(~ /&)(4& -S(~)] '(AD+C)) j
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This latter approximation amounts to ignoring,
apart from the effects of the electron energy shifts
due to V, also the effects of the electric field on

the collisions, which are described by the inter-
ference term C(~). The errors produced by this
approximation can be quite serious. Firstly, it
can easily be checked that such an approximation
(C=O} gives gauge-dependent results; e. g. , if
the interaction with the electric field is described
in a vector gauge, then the expression for Res, ((d)

corresponding to (2. 17) after this approximation is
made differs from it in that the first factor 1((&u,

is replaced by I/(d. Secondly, and more impor-
tantly, the effects of the interference term are of

the same order of magnitude as the ones kept in

the earlier theories, in the region {(d —~,)v» 1
in which those results are valid. This situation is
quite similar to that of dc magnetoresistance for
large Hall angles, as has been discussed else-
where.

Thus, the results of the earlier theories are
not strictly valid for ((d (d)~—S 1 for the reasons
we explained in Secs. DI and IV, and are also
invalid for ((d —(d,)v» 1 due to the neglect of the
effects of the electric field on the collisions.

We now show that the final result (5. 23) for
AQ(~) = AQ((d) can be obtained more easily and
directly with the method of transport equations.
In Eq. (5. 5) for Q(( ), we write Q =hQ+ h'Q, and
then operate, separately, with 5 and A to obtain

[(d —S((d)]Q((d) =D+ C{(~),

where

(5. 27)

S{(z)=P; L[1+(((( P; L) —P;L]P;, (5. 28)

C((g) =P;L{(g -P'(L) P('D (5. 29)

This equation has been considered elsewhere,
where an evaluation of the coefficients S((~) and

C{(d) up to order X has been carried out. It is
pointed out there that to this order the structure
of the operator S((((), for a large class of scatter-
ing potentials u(r), is such that in AS(&u}Q((d) only

AQ(~) is involved, i. e. ,

AS{(~)Q(~) = bS((d) b,Q{(d ) .

sions do not bring in divergent terms in the thermo-
dynamic limit, for the same reason we explained
in the previous section. A formal expansion in
powers of g is known to be valid for both low con-
centration of impurities and small scattering cross
section of each impurity. Other approximations for
for the evaluation of S(&u), C(&u), and &D can, how-
ever, be introduced' which are valid for low con-
centrations but for arbitrary scattering cross sec-
tions of the impurities. '

Finally, it is interesting to note that one can
construct a kinetic equation for Q(~) = P; Q(w) in
a way identical to the one just used in the deriva-
tion of the kinetic equation for AQ{&u) = &Q((~).
One finds

((d —AL) hQ —ALA Q = AD,

((d —A L)A Q —A~LAQ = A D .

(5. 24)

(5. 25)

In such a case an equation for the set of the matrix
elements

We solve (5. 25) for A'Q to obtain

A Q = G ((d ) [A LQ + h 'D] .

Upon substitution in (5. 24) we obtain

[(u —S((o )]4Q (&}= h D+ C ((d }, (5. 26)

with S{~)and C(a) given by (5. 18) and (5. 19), re-
spectively. This is exactly Eq. (5. 23). Thus a
consistent application of the method of Sec. II
yields results identical to those obtained much
more directly by the method of kinetic equations.

In the kinetic equation (5. 23) for hQ((~), the co-
efficients S(&u), C{(d) can be evaluated in powers of
X, by use of the expansion

G(~ ) =Go@ )+Go(~ ) A L&Go('s )+' ''
in (5. 18) and {5.19), respectively, and the standard
expansion of f(HO+ V) for AD= AD. These expan-

{Q((d) )= &Q(v) = AQ{(u),

necessary for the calculation of the conductivity
o, ((d), can be obtained directly by considering the

{o +1
~ (c() matrix elements of (5. 27). In other

words, for these potentials up to second order, Eq.
(5. 26) for hQ((g) can be obtained from Eq. (5. 27)
for Q{(z) by operating with 6 on it. In fact, for
all scattering potentials and to all orders in ~, the
impurity average operator P; in S(&u) has the effect
of bringing in only the diagonal in k matrix ele-
ments of Q((d)„„-„.& which is part of the operator
6, defined in (4. 1). The additional selection rule
for (AQ)„„,((-5„.„~ is not always automatic in ASQ.
Thus, the procedure of using the operator A = ~;
in deriving quantum kinetic equations, although it
is superfluous in some cases, is advantageous
from a general point of view as it is sure to avoid
any divergences in S((d) and C(~).
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