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Magnetic susceptibility in the antiferromagnetic and the paramagnetic phase is calculated
by using a molecular-field model, wherein the molecular field is calculated self-consis-
tently. When applied to the hexachloroiridates, it is shown that the observed and the cal-
culated susceptibility in the antiferromagnetic phase agree well. As in the case of rare-
earth compounds, this model is adequate to treat the crystal-field effects in the compounds

of the transition-metal ions.

I. INTRODUCTION

The concentrated and dilute hexachloroiridates
[K,({Ir, Pt)C1,, (NH,),(Ir, Pt)C1,] have attracted
considerable attention!~!® because of their unusual
magnetic properties. These complexes undergo
antiferromagnetic transitions at the Néel tem-
peratures 3.08 and 2.16 K, respectively. These
show an unusually large 6/Ty ratio, ~10. (6 is the
paramagnetic Curie-Weiss temperature). Ex-
perimentally, magnetic susceptibility,! EPR*"7
Nuclear-quadrupole-resonance®® (NQR), anti-
ferromagnetic-resonance!®* (AFMR), neutron-
diffraction!!*!2? and specific-heat!® studies have
been made on these complexes. All the studies
confirm the above-mentioned phase transitions and
the magnetic ordering in the antiferromagnetic
phase is found to be of the type I A.'"*!> Among
the theoretical works in these salts, we may
mention the study of superexchange interaction
between the magnetic ions,!* covalency effects,'s
and the application of molecular-field theory and
the spin-wave theory.!®"!® In Ref. 18 an attempt
was made to explain the observed large 6/Ty ratio,
but the molecular-field theory was shown to be
unable to explain this. Although the spin-wave
theory indicated a large 6/Ty ratio, the results
are not very reliable, since in this case S=% and
the spin-wave theory gives large zero-point de-
viations.?6~18

Our interest is in the magnetic susceptibility of
these compounds. We have calculated the mag-
netic susceptibility by assuming an internal mag-
netic field due to antiferromagnetic coupling be-
tween the ions and also have calculated the internal
field self-consistently. In our model it is not
possible to compare 6/7), ratio, but we have com-
pared the susceptibility data.

In Sec. IT we have given a brief potpourri of the
known facts about these compounds. In Sec. ITI
the theory is given and in Sec. IV the results are
compared with the experimental data.
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II. REVIEW OF FACTS

The hexachloroiridates have an antifluorite type
of lattice. The IrCl, octahedra are in a closed-
packed (fcc) arrangement with K atoms (NH,
groups) occupying all the tetrahedral sites.!’® Un-
like the analogous compounds of Re, the ground
state of Ir** ion is Jahn-Teller insensitive (the
ground state is a I, Kramers doublet) and the IrC1,
octahedra are perfect. The lattice constants a,
and the parameter u (ayu is Ir-C1 separation)
from x-ray measurements are 9.7189 A and
0.2374 for K,IrC1,® and 9.87 A and 0.25 for
(NH,),IrC1,.** The position of the atoms on a face
of the unit cell is shown in Fig. 1, where the paths
of the superexchange interaction between an Ir-Ir
pair are also shown. An order-of-magnitude cal-
culation of the exchange interaction®'!* supports
the antiferromagnetic coupling in these compounds.
Values of exchange integral derived from the EPR
pair spectrum of semidilute crystals also con-
firm this coupling. The orbital reduction factor
k estimated from the g-value measurements?® is
0.76. In our model, the covalency is treated semi-
empirically via the orbital reduction factor in the
magnetic moment operator. Table I summarizes
the different experimental observations on the
compounds of our interest.

III. YHEORY

The Hamiltonian for the problem can be written
H=8+V, "‘Z [£,Ti8- s Hy, (K Lj+257)
—“BHapp'(Kfi+2§{)], (1)

where the summation is over all the d-shell elec-
trons and 3¢, is the free-ion Hamiltonian, V, is

the crystal-field operator for cubic symmetry,
 is the spin-orbit interaction constant, H,,, is

the Zeeman field, and H;,, is the internal magnetic
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AND
field in the molecular-tield approximation. The
ground term of the Ir** ion ?T,, comes from the
strong-field configuration £3,. Due to the spin-

orbit coupling, this term is split, resulting in the
Kramers doublet I, as the ground state. This
coupling is sufficiently strong to mix other terms
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from the first-excited configuration ¢3,e,. Apart
from the spin-orbit interaction, the electrostatic
interaction also leads to configuration mixing.
Taking into account these admixtures, the wave
function for one component of I, can be written as'®

1 6B 2B
ITa) =V 1T =5 1) = 7 "1 5,00 + - 175 =5, 1) = 5= 785 -5, 1)
_ %28 \/_B 1
328 or 3,00+ 2B 14,00+ £ Pati e+ g5 (P2 -h 1) =5 P8 4,0))

(b 1 - A 115 )= (1745 - 2,00 PTE -k 0= 7 T2 D)
+ ¢ [4Tl.l 0) __1__ I4T/. 1 1> \/—3_|4 1. 3 1) 2)

3E, 232 0~ 75 23— 1) =V3 I"Ty; 2,-1) ), (

where we have used Griffith’s complex orbital where k& is the orbital reduction factor. Taking'

bases.?’ The primes denote the states from the
excited configuration tj,e,. E,, E,, E,, etc. can be
shown to be'®

E,=A-3B-C,

E,=A+12B-C,
E,=A+2B-C,
E,=A-5B-4C,
E,=A +3B-4C, (3)

where B and C are Racah parameters. Applying
the time-reversal operator, one gets the other
component of the wave function. Using these wave
functions, we obtain

4k +2 —B (8§

8=~ 73 3E, E,
(o4 //
/
Ve
X A £ z

FIG. 1. Section in (100) plane of lattice showing dis-
position of atoms on the face of an unit cell. Broken
lines show paths of superexchange.

(eB+3:)-—<zB+c)) ,

(4)

o Ct

k=0.76, B=300 cm™!, C/B=4.0, A=28000 cm™?,
£=2000 cm™!, g comes out to be 1.795 which
agrees with the experiment. In the rest of our
calculations we have, therefore, made use of these
values.

As usual, in the molecular-field theory the
internal field can be written as

H,, =)x{(M), (5)

where X is the molecular-field parameter. (M)

denotes the magnetization given by
S -(2E, /aH) e Fv/T
Z e—m/kT

where E; are the eigenvalues of the Hamiltonian
(Eq. 1). Solving Eqgs. (1), (5), and (6) self-consis-
tently for a given value of A and temperature T,
H i, is obtained. In Eq. (6), the summation is
over all the Zeeman levels of the ion. In our case
the separation between the lowest I, and the first-
excited T, state is 3 £ (£=2000 cm™!). This state
(T,) and other excited states are omitted from the
summation, as their contribution to the magnetic
moment is insignificant. However, the Iy con-
tribution to the susceptibility is included, which
is nothing but Van Vleck temperature-independent
susceptibility,
2 2
_ Ng+2Fus (1)
6¢

The susceptibility calculated by the usual meth-

ods can be written as?®!

(M) = , (6)

Xyy

X9

1-Xx%

Xy =

(8)
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TABLE I. A summary of the experimental results.

Experiments Complexes Dilution g values J/k 0 Ty Refs.
(Ir : Pt) (°K) (°K) (°K)
EPR (NHy),@r,Pt)Cl; 1:200 1.82 5
1.775+0,01 6
1.786 :0.004 15
1:20 1.79 +0.01 7.5+x1.0 2,7
K, (Ir. Pt)Clg 1:200 1.82 6
1.79 +£0.005 15
1:20 1.79 £0.01 11.5+1.0 2
Susceptibility (NH;),IrCl, 20+3 2.16 1
K,IrCl, 32+4 3.08 1
Specific heat  (NH,),IrCl, 2.15 13
KyIrClg 3.05 13
NQR K,IrCl, 3.05 8
3.08 9
AFMR KyIrClg 3.0 10
Neutron 3.05=0.04 12
diffraction K,IrCl, 3.05 11
where W, is the energy of the state without applying
ng g~WOIRT Z W e-WoaT \ 2 Zeeman perturbation, and the summation is over
o Nuj ! ' x the components of the I', ground state.
Xy = - ~Wo/kT vv i
kT - e Similarly,
Tevonr \ 2 y
9 x9
® X, = 1 {x , (11)
and *
W,=(T,|(k L, +2S,)|T,) . (10) where
K, 1rClg
7.5
(NH4)2 Ir Cl-s
5.0 A= 15
~
b3 FIG. 2. Variation of
< molecular field with tem-
3 Al
< perature.
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The total susceptibility is given by

X=F Xy 5 X, . (13)

In Egs. (8) and (11), X is the paramagnetic mo-
lecular-field constant. For a fcc lattice,

X=12%, +6X%,, (14)

where X, and X, are the molecular-field coeffi-
cients?? giving the effective field exerted on a spin
by each of its nearest neighbors and next-nearest
neighbors, respectively. X is related to the
paramagnetic Curie-Weiss temperature (A=6/C,)
and this can be used in the ordered phase if there
is no distortion on ordering.

IV. RESULTS AND DISCUSSION

The variation of the molecular field with tem-
perature is shown in Fig. 2. The magnetic suscep-
tibilities were measured by Cooke ef al.! and are
shown by black circles in Fig. 3. They attempted
to explain the susceptibilities by the high-tem-
perature expansion method (Heisenberg-Kramers-
Opechowski) and the simple molecular-field mod-
el. But neither explained the very sharp variation
of susceptibility below the antiferromagnetic
transition point. Since, the anisotropy measure-
ments are not available, we have calculated the
total susceptibilities from Eqs. (8), (11), and (13)

12.0
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(L] (K L, +2S) L0 g 1 r/z BT

(12)

r

and are shown in Fig. 3 by continuous lines for a
few suitable choice of the parameters A and X.
For a single set of the parameters (A, X) the
variations of x, and x, with temperature are
shown in Fig. 4. It is evident from Fig. 3 that the
susceptibility below the transition point agrees
quite well with the experiment. However, in our
model, the susceptibilities in the paramagnetic
phase do not agree for the same set of param-
eters. This may be attributed to two possible
causes. It is quite possible that the antiferro-
magnetic transition can be accompanied by a dis-
tortion. If this is so, then X cannot remain the
same below and above the transition. Indeed,
Armstrong and Van Driel, by comparing the
temperature variation of *C1 NQR-frequency data
in K,IrC1,, show that the rotary lattice mode
softens, which may lead to such a distortion.?® It
is also quite possible that some short-range order
persists above the transition point. As in the
molecular-field theory, in our model too, the
magnetic order completely vanishes at the tran-
sition temperature. Analysis of NQR data by
Lindop indicates that some short-range order
persists above the transition®, as a result of which
the susceptibilities get enhanced.

In conclusion it may be pointed out that this
model is useful to treat the influence of crystal
field on the susceptibility of antiferromagnetic

10.0-

(NH), IrCl

8.0

X (10~ emu/mole)

KpIrClg
6.0

4.0

FIG. 3. Variation of sus-
ceptibility with temper-
ature.
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FIG. 4. Variation of lon-
gitudinal and transverse
susceptibilities with tem-
perature.
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phase in the compounds of the transition-metal
ions, as in the case of the rare-earth compounds ?!
In the particular compounds discussed in this
paper, however, because of the large spin-orbit
coupling and strong crystal field, the problem is
simplified to a great extent. These interactions
lifted all but the Kramers degeneracy, resulting
in a ground state which can be considered as an
effective spin-3 doublet. All the other states of
importance were far removed from the ground

20

state taking kT as a yardstick and therefore the
mixing due to the internal field was insignificant.
In the case of analogous compounds, where such
fortuity does not exist, this model is likely to
show the effect of crystal field on the susceptibili-
ity.
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