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~e use a functional-integral approach to study spin fluctuations in strongly paramagnetic systems. Our
basic approximation is to replace the exact free energy functional by a variationally chosen quadratic
form in the fluctuating (paramagnon) fields. This leads to a susceptibility g of the form

+1—Up ', where p is an averaged electron-hole bubble in the presence of a space- and time-varying
random external potential. The random potential has Gaussian statistics, and its covariance matrix is deter-
mined self-consistently. In another language, y is a polarization bubble dressed with paramagnons in a11

orders of perturbation theory. %hen the fluctuations are small and effectively only one paramagnon dresses
the bubble at a time, we recover the results of Murata and Doniach and of Moriya and Kawabata. For
intermediate coupling and at temperatures well above the spin-fluctuation temperature, we find that y
is given approximately by an average of the corresponding random-phase-approximation (RPA) bubble
over a distribution of Fermi levels of width =(UkT)' ', producing approximate Curie-%eiss behavior
in X. These conclusions are supported by calculations of x for two model systems —one, for simplicity, with a
Gaussian density of states, and the other with the density of states of paramagnetic Ni.

I. INTRODUCTION

The phenomenological Stoner theory of itinerant-
electron magnetism has provided a useful and gen-
erally very successful basis for understanding the
electronic and magnetic properties of many metals
and alloys since it was first proposed. It seeks to
explain these properties in terms of a self-consis-
tent theoretical account of the interactions between
up- and down-spin electronic quasiparticles. In
the simplest interpretation, these quasiparticles
are the bare Bloch electrons, and hence one may
use Stoner theory to predict magnetic properties
on the basis of a knowledge of the one-electron
band structure.

Less naively, however, the Stoner quasiparticles
are complicated many-body excitations like those
of Landau-Fermi-liquid theory, having no direct
relation to single-particle Bloch states. A central
problem, then, is this connection between quasi-
particle and bare-particle states. This relation-
ship has been thoroughly investigated for normal
Fermi liquids at very low temperatures, but its
general structure, particularly in magnetic sys-
tems, remains only partly understood. The impor-
tance of this problem is underlined by several re-
cent photoemission experiments, in both ferromag-
netic and paramagnetic states of transition-metal
ferromagnets. ' It has proved difficult to reconcile
the observed structure of the photoelectron spectra
with a Stoner-theoretical picture of band magne-
tism if the Stoner quasiparticles are identified di-
rectly with the Bloch states of the band structure.

The most obvious shortcoming of Stoner theory
is its neglect of correlation, which renders it in-
capable of describing the incipient local-moment
formation which is so characteristic of actual tran-
sition-metal ferromagnets. Nickel is commonly
held to have the least-localized spins of the pure
transition-metal ferromagnetic series, yet we know
of no Stoner-theoretical account, based on an even
remotely realistic band structural model, of the
temperature dependence of its susceptibility. Even
the very weak itinerant ferromagnets Sc3In and
ZrZnm have Curie-Weiss susceptibilities which
cannot be explained in Stoner theory. 2

These, then, are the sorts of problems we want
to study here-the collective spin fluctuations, the
structure of the single-particle excitations, and
the interactions between them. We will develop a
quite general approach to these problems, focusing
particularly on the spin fluctuations. As a starting
point we use the Hubbard Hamiltonian. ' For a sin-
gle nondegenerate band the interaction takes the
simple local form

&'= UZ np n(,

in Wannier representation. Although interatomic
exchange is no doubt present in real transition met-
als, and d-band degeneracy, together with inter-
band interactions, may be essential to a quantita-
tive understanding of their magnetic properties,
we ignore these complications. The simple one-
band Hubbard model contains sufficient physics to
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give a qualitative account of the properties we want

to understand.
A random-phase-approximation (RPA) theory of

the Hubbard Hamiltonian predicts a ferromagnetic
instability when UN(Ez) &1, but correlation effects
of the sort mentioned above make the ferromagnetic
state more difficult to realize. In this paper we
want to focus our attention on the intermediate-
coupling region where Uf(i(EF ) & 1, but the system
is still paramagnetic.

At finite temperature, the RPA criterion for fer-
romagnetism is the same as that above, except that
A'(Er) is replaced by an average of f(i(E) over an

energy region of approximate width kT around Ez.
The principal qualitative result of the theory we
describe below is that incipient local-moment for-
mation leads to a fluctuating local Zeeman energy
whose rms value is, in the intermediate coupling
region, of the order of (UkT) ia. Consequently,
the effective density of states in the criterion for
ferromagnetism, or for determining the suscepti-
bility in general, is an average of N(E) over an en-
ergy range of this much larger width. The temper-
ature dependence of physical quantities will be qual-
itatively affected by this fact.

Some progress in the many-body theory of me-
tallic magnetism has been gained through functional
integral techniques, Bnd we adopt this approach
here. ' %'e use the so-called two-variable linear-

ization scheme, and since we believe that for sys-
tems of interest here, density fluctuations are un-
important, we approximate the functional integral
over the spin-independent field by its stationary
value. '6 The remaining functional integral, over
the spin-dependent external field, may be written
in the form

r B
Z = II B$,.(v) exp —Z — g;(7) d7.P.',

ET 1 (1 —v'G~)), (2(

where the matrix V', with elements V;&(v, 7')
= oc(;(7 ) 5,, 5(r —v ), represents the fictitious po-
tential in which electrons of spin-0 propagate, and
G is the Bloch propagator in the absence of this
potential. In momentum space

6 (k, k'; i(d„, i(d„.) = G (k, i(d„) 5~ 5„„

the ice„are the fermion Matsubara frequencies
2a i(n+ 1)/P

It is also possible to express the single-particle
Green's function for the interacting system in
terms of a functional integral. If we dispose of the
spin-independent field in the same way that we did
above, we have

1
G,. (f, i') = —(7(c;(i)c~&'(f'))) = ——

l II~);(v) exp -2 — ];(v) d~ Tr T c;(t)c;(i') exp -5 cod;(7)
40 jiy

II~ k;(~) lV«}

where

I rB
g, (f, f', «)) = Tr T c,(f) (ic') exp -Z cog;(~) n;, (~) dT

4Q

B

Tr T exp — co (; 7 n;, & d~
i'

0

is the Green's function in the presence of the fluc-
tuating field vcr, (r), the distribution of whose val-
ues is described by a probability density function

W«], which is the integrand of Eq. (2). ] Here and

henceforth the notation y(~) indicates that y is a
functional of a set of functions x;(v). ] That is, the
full Green's function is the averaged propagator
for an electron propagating in the random external
potential whose distribution is WI g].

A similar expression applies for other response
functions, including the spin susceptibility, but we
can also write g in terms of the mean square fluc-
tuations of the auxiliary field t (Ref. 4):

X(q, i( )=(2/U)(&
~ &, ~') —-'),

where

and ],„are the Fourier components of $, (v). De-
tails of all the above algebra can be found in Refs.
4 and 5.

Equation (2) is our starting point in this paper.
For the Anderson model, where the interaction
acts at only one site (and hence there are no site
or momentum indices on any quantities), Wang et
al. were able to show how the local moment (Curie
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susceptibility) emerged as a consequence of the
form of Eq. (2). By restricting themselves to tem-
peratures above any characteristic spin fluctuation
energy, they could ignore all but the time-averaged
(m =0) fluctuations of the $ field. They could then
obtain an explicit expression for the Tr ln term as
a function of ]3. Writing the exponent in Eq. (2) as
—1jI($3), the function 1jI develops two separated mini-
ma when U exceeds the value that produces the
RPA instability. It is this two-well structure which
gives rise to the Curie susceptibility. Numerical
evaluations are easy because the remaining inte-
gral is one dimensional.

In the full N-center Hubbard problem, g is a
function of N variables $,, j=1,2, ..., N, even in
the static approximation, and its structure is diffi-
cult to ascertain precisely. Its projection onto any

(,. axis is likely to have a form similar to that of
the 1j(]3) in the Anderson model, although the de-
tails of the structure may be washed out somewhat
by interaction between sites. In general, there are
of the order of 2N local minima of g in the N-di-
mensional space. But unless we decouple com-
pletely the spin-fluctuation fields on different sites
(which reduces the problem to an ensemble of iden-
tical one-site problems such as the one considered
by Wang et al. ), we cannot hope even to evaluate

1'($„... , $z) explicitly, much less carry out the
N-dimensional integration. We have to resort to
finding approximations to g [or of the entire expo-
nent of Eq. (2), if nonzero frequency fluctuations
are retained], for which the IV'-fold integration is
not prohibitively difficult.

In order to proceed in this direction, it is useful
to look at the problem from a somewhat different
physical viewpoint. We review the interacting pa-
ramagnon field theoretical picture of this system,
which has been discussed in the context of the An-
derson model and localized spin fluctuations by
Schrieffer et al.

We study the structure of the Tr ln term by ex-
panding it in a power series in V. In the paramag-
netic state, all odd order terms vanish because of
the spin sum, since V' includes a factor 0. The
second-order term is

——g Tr(V'G )
2 ~

= —c 4
~
(, ZG (k, i&v„)G (I3+q, f& „, )

where rp2 is just the zero-order polarization bubble
[Fig. 1(a,)], the generalized i, indhard function ap-
propriate to the band structure of the system. To
this order, the spin susceptibility is just

y3(af, 3V )
X(4f)3Vm)= I ~ ( )

[using Eqs. (6) and (I)], which is just the RPA re-
sult. Now consider the next nonvanishing term in
the expansion:

~ Cy g ~ y ~~ @3fft3~ -ey-y-a3 3-fftl "fft2-ftt3
ff Cg 3ffa 303

fftg 3 ~ 3 fftQ

X+G (~~ 14Vn) G (~+ 1I1~ 14Vn+m1)G (~+ 4fi + 1I3~ 34Vn+m1+m3) G (~+ Q1+ 4I3+ 03~ 11Vn+m1+m3+m3)

a 4 Y f- f- S.
3 V4 ~ 541m1ta3m3&a3m3(-a1-43-43, -m1-m3-m3%'4(91~ q2~ 6' rZV3m1, 2Vm3, 1Vm3)

cg 0203
Std fft2 Sts

(10)

The vertex ya is pictured in Fig. 1(b). If we think
of the functional integration in Eq. (2) as a trace
operation for the scalar field ],.(3.), then the quad-
ratic terms in the exponent can be identified as a
kind of zero-order Hamiltonian describing the free
propagation of this field, and the quartic terms can
be interpreted as describing an interaction between
modes of different q. Since y4 depends in general
on all the q,. and p ., this interaction is nonlocal in
space and time. Because we can identify the non-
interacting limit of this theory with RPA spin-fluc-

I

tuation (paramagnon) theory, we have here the ba-
sis of a field theory of interacting paramagnons.

In this language, the pgth-order term in the ex-
pansion of the Tr ln in Eq. (2),

1 0 2 tl
——Z Tr(V'G )"= —Pc" Z II )a.

a 'P2 Q' Itt' t=l
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"+q~ '"n+e

FIG. 1. (a) second- and (b) fourth-order terms in the
expansion of Tr ln Q-VG ). Solid lines represent elec-
tron propagators; wavy ones, the random field V.

where y„, an electron loop with yg vertices, de-
scribes an pgth-order anharmonic interaction be-
tween paramagnons. The functional-integration
representation has converted an interacting fermion
problem into an interacting boson one. The inter-
action of the bosons, involving anharmonic, nonlo-
cal vertices y„of all orders, is intrinsically more
complex than that of the fermions (I), which is lo-
cal and only quartic in the field operators, but as
compensation the zero-order bosons already in-
clude an infinite series of perturbation-theoretical
corrections to the zero-order fermion problem.
This interacting-paramagnon picture may often be
valid and useful even when the simple Hubbard
model from which we derived it here is not valid.
Of course we do need to know the correct underly-
ing electronic model in order properly to evaluate
the paramagnon-paramagnon vertices, but the gen-
eral structure of the theory should apply to any sys-
tem where spin fluctuations of some sort are im-
portant excitations.

A physically sensible simplification of the theory
consists in making a local approximation to all the
anharmonic vertices, that is, approximating the
functions y„(q;, fv )by cons. tants independent of
any of the q,. and v . For illustrative purposes,
consider the first y, pz(q, fv ). For simplicity we
restrict ourselves to p =0 and examine the analy-
tic form of rpz(q, 0) at zero temperature. In a. free-
electron model, yz falls off slowly with q until the
neighborhood of q = 2k~, where it has an infinite
negative derivative. It then falls off more slowly
toward zero for q & 2k+. Any system whose RPA
instability is ferromagnetic rather than antiferro-
magnetic must have this general sort of q depen-
dence. Its maximum must occur at q=0, and it
must have the (q —2k+) ln ( q —2k+ ( singularity at

2k~. It is then not a bad approximation to take
qz(q) =pz(0) for q &2k', and y~(q) =0 otherwise.
The analytic form of the higher order q„ is much
more difficult to calculate, but we do know that they
also vary with momenta on a scale = 2k~, so we can
take y„(q„... , q„) = y „(0,. . . , 0) for all q,. & 2k+, and
y„=0 when any q,. &2k~. This form of q dependence
can be put into the functional integral expression
for Z by writing it in the Fourier-analyzed form
and cutting all momentum space sums off at q= 2jpz.
Back in real space, this means that the parama-
gnon-paramagnon interactions have a finite effective
r-nge I/2k+. Similar arguments can be made in
frequency as well as wave vector; the reasonable
cutoff is of the order of E~. Of course we do not
want to make this approximation for the quadratic
term y~; if we did so for every p„ the effective
free-energy functional [the exponent of Eq. (2)]
would be completely local and there would be no
correlation of spins at different sites. Further-
more, in the intermediate coupling region, Uq&(0)
= 1, so even though y~ varies slowly with q, the
total quadratic coefficient 1 —Uqz has significant
q dependence because the q =0 part is very small.
%e therefore retain the true q and p dependence
of y~, which allows the free paramagnons to propa-
gate from site to site. The resulting approximate
theory describes local (but nonpolynomial) self-in-
teractions of the paramagnon field.

The simplest sort of model effective free-energy
functional which contains the physics of this mode-
mode coupling picture is obtained by ignoring all
interaction vertices of higher order than quartic,
and making the local approximation as above for
the quartic vertex. If we also make the static ap-
proximation of neglecting all but the pyg =0 compo-
nents of the g field, we have the most basic kind of
interacting classical field theory. Murata and
Doniach took this picture as the starting point of
their analysis of spin fluctuations in itinerant pa-
ramagnets. This sort of free-energy functional is
also the starting point for the V)('ilson theory of crit-
ical fluctuations.

In what follows we develop a generalized Hartree
picture of paramagnon-paramagnon coupling, in-
cluding vertices of all orders and nonlocal effects,
which reduces to the Murata-Doniach theory in the
quartic, local limit. Another way of describing it
is as a very general kind of paramagnetic-polaron
theory.

IL PARAMAGNETIC-POLARON THEORY

Vfe follow Murata and Doniach and the earlier
work of Muhlschlegel and Zittartz on the Ising
model in taking a variational approach to the prob-
lem of approximating the exact free-energy func-
tional by one for which the functional integration
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can easily be performed. Let g be the exact func-
tional, that is

d~ Z g', (p-) -Z Tr ln(l —V'GP) (12)
p

in the present problem, and (I)p (t'} be the approxi-
mate functional, whose parameters we want to de-
termine. To lowest order in g

—go, the true free
energy is

E = Ep+ kT & g —
(()p &p,

where

just (self-consistently) averaged second derivatives
of the true functional. This result should be con-
trasted with the RPA (steepest descents), in which
the second derivatives are evaluated at the origin:

As. PA I ~ 4(h} (21)
2 8$ 8$ o

Applying Eq. (20) to the free energy functional
of our model Eq. (12) is most easily accomplished
by working in the representation where the matrix
K'= V'6 is diagonal:

—PE= InZ= in gX) g;(7') e "««»,
Z Tr ln(1 —E') =Z ln(1 —E;) . (22)

—PEp =in l IImt-,.(~) e-'o'",

and (A)p for some quantity A means

The index n labels the eigenvalues of E. Then

Trln 1 —E'

&A ),=
I

II ug;(7) Ae "p"' lI &g;(~) e 'p"' . 8$ 8(
(23)

The higher-order corrections are positive, so Eq.
(13) is an upper bound on the true free energy, and
the optimal choice of go is obtained by varying its
parameters to minimize PEp+ &(()

—())p&p.

Like the above authors we use a quadratic go;
because of translational invariance it is diagonal
in q.

A'= 5 & n
~

u& IC;„&u'
i
n)

= o c Z & n
~

0& t. .. G',. & Y n) . (24)

In this section we use q to stand for the four-yeetor
(q, i») ). Now define (n «k& as the matrix elements
of the transformation that diagonalizes K,

Therefore,

We can now evaluate
1

PEp+(q —yp)()= ——Z (1 —lnA, )
qm and

8K =ecZ &n 0+q&G', &u
I

n& (25)

+Ij(I (~ )
e p( —E )*,„)')

x (t)fxA
'~ }, (18)

where we have made the change of variable x,
=A, ', $, . The notation ~ ' means that for each
Fourier component, (xA '~ ),„=x, A, ~ . Station-
arity with respect to variation of A, requires

80=, (PEp+ &q —yp&p)

8

8$ 8$
—ET ) () —K'))

=c' Z G„'&k
i
n)(l —K;) '&n

~

k'&
0««yak'

G',...&k'+q
~

n)(1 —A";) '&n
~

u+q& . (26)

In Eq. (26) we have rearranged the factors to make
it clear that

�

8) 8$
—ET ) () —K'))

Integrating by parts and reverting to the original
variables (,„, we find

2 8~, 8~,
which might almost have been guessed in advance-
the optimal quadratic functional coefficients are

where G'(g}= Gp(1 —V'G )
' is the propagator of an

electron subject to the potential ac(;(r). This ex-
pression is then just an electron-hole bubble in the
presence of this random Gaussian potential.

Alternatively, we can derive Eq. (27) diagram-
matically, as follows. The expansion of the Trln
in Eq. (12) generates a set of closed-loop diagrams
such as Fig. 2(a). The nth-order diagram contains
n random fields ],., n factors of c, an electron

q&P
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A, = I —UP(q, iv ), (28)

where Uy is half the average (over the distribu-
tion e o) of Eq. (27),

q&(q, iv ) = ——Z (G'(k, k', Ao„, i~„. ; {())

xG'(k+q, k'+q, ia&„, , i&u„., ; {)j)&,
(29)

that is, y is the averaged electron-hole bubble (of
either spin) in the presence of the random fields.
(To lowest order in U, we ignore the random

1—X
A

(c)

+ ~ ~ ~

I"IG. 2. (a) Diagrammatic form of the nth order term
in Tr ln (1-VG ). (b) Result of one differentiation with
respect to V. {c) Series of diagrams resulting from a
second differentiation with respect to V.

loop with n Green's functions, a factor 1/n because
we are expanding a, log, and a sum on &r .(Only
even-order terms survive the spin sum, but we
leave all terms in for the moment. ) Differentiating
with respect to $, gives a factor of c and removes
any one of the $ (wiggly) lines of momentum q.
We indicate this by replacing the wiggly line by a
dotted one, as shown in Fig. 2(b). Because of
cyclic invariance, there are & ways to do this in
the youth-order diagram, cancelling the factor of
I/z. Then differentiating again removes any of the
remaining wiggly lines of momentum —q and gives
another factor of c [Fig. 2(c)]. This time, how-
ever, there is no cyclic symmetry, and the n —1
different ways to do this have to be counted sepa-
rately. So we have the sum of all electron loops
having two dotted line vertices with four-momen-
tum transfers +q, and arbitrary numbers of wiggly
lines dressing the electron lines between these
vertices. But an electron line dressed in this man-
ner is just the propagator in the external field
eel, (r), so what we have is a diagrammatic repre-
sentation of Eq. (27).

Either way, when we add in the derivative of the
first term in tt), we are led to an expression for
A, of the form

fields, y reduces to the bare bubble cp~, and we re-
cover the RPA result. )

Equation (29) allows us to exploit our knowledge
of the properties of response functions of disor-
dered systems. We can also use the Gaussian na-
ture of the distribution of the random fields to for-
mally carry out the averaging procedure in any of
the diagrams of Fig. 2(c). These contain products
of Fourier components of 'tt", whose average

P (q»qa ~ ~ ~ )

V'q~ V'qa V'q„p ~- q„,.
t=1

(so)

is simple to compute for a Gaussian distribution.
First, all P„ for odd n vanish. Then, for even g,
because there are no cumulants of order higher
than two, we have simply

P„(q,q, ~ - ) = & (F'(qy )&'(qy, )& (&'(qy, )&'(qy, )&
P

x ~ (V'(q, )&'(q, )), (31)

where the sum is over all permutations (1, . .. , n)- (j„.. . , j„). Because of translational invariance,
the averaged pair products vanish unless in each
pair one four-momentum argument is the negative
of the other.

Pn(qs~ qa~ ~ ~ ~ )

=E( ~I '(q, ,) ~'»(q„+q, ,)(~ F'(q, ,) ~'&

x5(q~ +q&4). .. (
~

y'(q& ~) ~
&5(q& ~+q& ) .

(»)
In diagrammatic terms, this means that we con-
nect all possible pairs of wiggly lines and conserve
the four momenta carried by these lines, as shown
in Fig. 3. The natural physical interpretation is
of an electron-hole pair dressed by the emission
and reabsorption of paramagnons in all pairs of
perturbation theory, hence the name paramagnetic-
polaron theory. We may take each of the wiggly
lines here to represent the dimensionless parama-
gnon propagator ( i ], ) &, and give each electron-
pa, ra.magnon vertex a value e. All intermediate
momentum and energy indices are summed over,
without the factor 1/P which accompanies a Matsu-
bara sum in the usual many-body formalism. "
Here the 1/P comes from the vertex factors of c
= (U/P)'".

A similar analysis applies to the Green's func-
tion of the interacting system, with the functional
integral representation (4). If we replace the exact
distribution of random fields W{g}=e "~t' by the
optimal variational one 8 "Oi and cancel the de-
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+ --+ --~--+ ~ ~ ~

FIG. 3. Diagrammatic expansion of g. Wavy lines
represent the paramagnon propagators.

FIG. 5. Some diagrams present in the exact p, but
not included in the approximation of this paper.

nominator with all the unlinked graphs in the ex-
pansion of the numerator, we have the series for
G given in Fig. 4.

There are a few more important points to note
about this polaronic-model theory and its relation
to the exact theory. First, as far as the fermion
propagators are concerned, evaluating Q is a one-
electron problem, and evaluating y is a one-elec-
tron and one-hole problem. No diagrams involving
additional electron-hole pairs are generated in this
approximation. Therefore, some terms in the full
diagrammatic perturbation theory (derivable from
Eq. (2), for example, by a. direct expansion of the
exponential) are omitted. Some examples are
shown in Fig. 5. Note that among the omitted dia-
grams are any with interactions between the emit-
ted pa, ramagnons [such as Fig. 5(b)]. This is con-
sistent with the independence of different parama-
gnon modes implicit in the quadratic-model free-
energy functional (17). In these respects this the-
ory is analogous to conventional polaron theory,
where one studies the motion of a single electron
(or electron-hole pair, if collective or transport
properties are of interest) under the influence of a
boson field whose motion is entirely harmonic. It
differs from ordinary polaron theory in that the pa-
rameters describing the paramagnon field, the
A, , depend on the electronic properties through

Note also that p is not merely a bubble consist-
ing of dressed electron and dressed hole. This
would omit all vertex corrections, where the para-
magnon is emitted by the electron and absorbed by
the hole, or vice versa, as in the fourth diagram
of Fig. 3.

Finally, we can easily connect this picture with
a generalized Hartree approximation in the dia-
grammatic perturbation theory of the interacting
paramagnon-field theory. We define the parama-
gnon propagator

+ M'I9 4 ~ +

FIG. 4. Diagrammatic expansion for the electron prop-
agator in the presence of the paramagnons.

D(q iv )=2(I &. I
&=[I-&&(q i )]

'

and a self-energy

Il(q, iv ) = &[p(q, iv ) —p2(q, iv„)],
so that

D '(q, iv )=Do (q, iv~) —11(q, iv ),

(33)

(34)

(35)

III. FURTHER APPROXIMATIONS WITHIN
PARAMAGNETIC-POLARON THEORY

From now on we will work within the static ap-
proximation, where all Fourier components (,„
of the fluctuation field with nonzero p are ignored.
Physically, this approximation makes sense when-
ever the temperature is high enough for thermal
fluctuations to wash out the details of the dynamics
of the spin fluctuations, that is, whenever kT is
much larger than the characteristic spin-fluctua-
tion relaxation rate kT„. In the elemental transi-
tion metal ferromagnets, where most of the mag-
netic spectral weight is concentrated in the collec-
tive modes, a simple estimate for T„ is just T~,
the local energy required to destroy the magnetic
order, so the static approximation should be valid
for T» T~. In fact, as T is lowered toward Tc
and the spin fluctuations exhibit critical slowing
down, the validity of the static approximation
should be preserved for all T & Tc. (Current the-
ories of critical fluctuations make this hypothesis
near Tc. ) In systems which are only weakly fer-
romagnetic or almost ferromagnetic, there is still
a characteristic T„=Tv(y/yv~„). Most of the
spectral weight in g lies at energies ~ T,&, so what
follows should be meaningful for T & T„ in these
systems.

We are now faced with a problem in the theory
of disordered systems —the evaluation of the aver-
age susceptibility (P) in the presence of static ran-

where Do is the free- (RPA) paramagnon propaga-
tor. We can then look at the diagrams of Fig. 3
as paramagnon self -energy diagrams. The con-
straints placed on the diagrams by the exclusion of
extra electron-hole pairs and interactions between
paramagnons naturally restricts the series to those
which can be described as self-consistent Hartree
terms.
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dom potentials. The statistics of these potentials
are described by the covariance matrix

(v,.v, ) = vkr (t, „,~, , )

= zvkTZ e' ' i i (1 —Uq)(q, o)) . (36)

If the dimensionless field (,. has an rms size of or-
der unity (and we shall argue that this is reason-
able in the intermediate coupling region), we have

( V;) = UkT, implying a strong incoherent mixing
of electron states whose energies lie within rough-
ly this range of each other.

Such a picture emerges naturally if we make the
local interaction approximation in the paramagnon-
field theory picture described in Sec. I, and sum
all the Hartree diagrams for the self-energy II(q).
The lowest-order diagrams (fourth order in c) are
the second, third, and fourth in Fig. 3, and each
of them has the value

c'Pq)&(0, 0, 0, 0)g~ . .
where

(38)

That is, q)„ is proportional to the (n —2)nd deriva-
tive of the density of states near the Fermi ener-
gy, averaged over an energy range whose width is
of order kT through the factor (- Bf/BE). As T-o,
we have simply

~ (.~)
qn ( 1)( 0 (44)

We can now sum the entire series of Hartree
self-energy terms as follows. From Eqs. (39) and

(43) we have

11(q) =Z Pc'" 1

n~

n ~ 2 1 tt~ n (45)

Since the local field (; is a sum of independent
Gaussian random variables (N ' e"'"(g,), its dis-
tribution is also Gaussian, and hence (for even n)

($";)= (n- I) l! ((';) = (n —I)!!g', . :

(From now on we leave out the subscript f, in (t'",.),
since it does not depend on i )Th.en

Similarly, in nth order, each of the (n —1)!!
=(n 1)(n 3). .. 3xl distinct diagrams is equal to

c"P q) „(0, ~ ~ ~ )(", , (39)

The vertices q)„=q)„(0, . . . ) are loops of n elec-
tron Green's functions, all of the same four mo-
mentum:

2. 1
11(q)=Z Pc"

(2 2),

x dg N (2))&&(e) f ( $2))& )0 8E

= Pc' dk Z
]

N(P"'(e) c'" &t'") .
Ba „, (2n)!

1
G (k, 1())„~) (4o)

We use the Poisson summation formula to convert
Eq. (40) into a contour integra. l

dE f(E) (41)2s; (E-g, )
C

where C encloses the fermion Matsubara frequen-
cies in a counterclockwise direction, and f (E) is
the Fermi function. C may be continuously de-
formed into a path which encircles the pgth-order
pole at e„clockwise. We then expand f(E) in a
power series around e~. Only the (n —1)st-order
term survives the contour integral, so we obtain

1

( I)] ~ f (~))

II(q)= Pc dE ' 2 —
]

No")(c) c"($"), (48)0

which sums up to

)I(q)= r] dc )( )[(nr, (c ~ ())-)),(c)]

= V(N, (E, +c~)) Vq, (0) . - (49)

The average is over the distribution of the local $
field. The zeroth-order term of the series in Eq.
(48), which is added in and subtracted in Eq. (49),
just cancels the RPA part of the inverse parama-
gnon propagator at q =0.

Since the odd moments vanish, we may equally well
write this as

,
I dcNO(~) f("-"(c), (42) D(q)=[1 —U(N (& +ct'))+U(q) (0) —cp (q))]

' . (50)

1 (n-2)

( 1) ]
dc No" (c) (n-2 )

( 1)!Nr (EF) .
(43)

where N, (E) is the band density of states. q)„can
also be expressed in a slightly different way by in-
tegrating Eq. (42) by parts, n —2 times:

That is, in this local interaction approximation,
the q-dependent part of D ' is given by RPA, and
the constant part is like the corresponding RPA
expression 1 —UNr(EF), except that Nr(E) is av-
eraged over an energy region of width t.-g, „ in
agreement with the qualitative picture we suggested
earlier. The averaging in Eq. (49) is, explicitly,
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2N, 1 —U(Nr)+ U(p2(0) -ym(q))
'. (52)

The reason the q dependence of the paramagnon
propagator is the same as in RPA is that the local
approximation imposes a momentum-independent
self-energy (within the Hartree approximation).
We can improve on this approximation somewhat
by allowing the external paramagnon lines (dotted
lines in Fig. 3) to have general values of q and
evaluating the bubble as if only the internal (wiggly)
paramagnons had zero momentum. To see where
this leads, it is simplest to go back to the expres-
sion for the electron-hole bubble before averaging
over the distribution of the random fields [Fig.
2(e)]. Evaluating the bubble as if all the internal
momentum transfers were zero means evaluating
the propagators in a uniform field, or, in other
words, with a shifted Fermi surface. This expres-
sion is then averaged over the distribution of local
fields, as in Eq. (51):

q'(q)=&y2(q;Er+c$))=
l~ 2 &2, &z qm(q;EJ;+c()

d$

TSLS

xexp(- (2/2]~, ) (53)

or just (y~(q)) for short, and the propagator has
the simple form

D(q) = [1 —U(q. (q))]-' .
The self-consistency condition is now

(54)

(N, )=&N, (E,+c~))=, „,N, (E,+c~)d$

1'IS

x exp(- (2/2(2, ) . (51)

and it must be solved simultaneously with the ".elf-
consistency condition (38), which we write here as

Hence $, , is always of order unity, so (V~)'l
= (UkT)'~ (, , is of order (UkT)' + and is only weak-
ly dependent on the degree of enhancement. The
latter feature occurs because of the assumed q de-
pendence of Eq. (56) and the fact that large q fluc-
tuations make the most important contribution to

Our calculation thus supports the qualitative
picture we suggested earlier of an effective density
of states (or better, effective Lindhard function)
obtained by averaging the corresponding RPA quan-
tity over an energy range of width = (UkT) ~ .

Any finite order approximation to H(q) effectively
approximates Nr(E) by a finifc power series ex-
pansion around Ez /as an examination of the struc-
ture of the vertices p„[Eq. (43)] makes clear).
For example, the Murata-Doniach approximation,
which stops at fourth order in c, approximates
Nr(E) by its quadratic expansion around Ez. It
therefore must break down whenever ( V, ) ~

= (UkT) i gets much larger than the distance from
E~ where this expansion becomes inaccurate. This
may explain the breakdown of the Murata-Doniach
theory in ScsIn above about 15 'K, and in ZrZ~ in
the entire paramagnetic region (T, = 25 'K). In
general, if the Fermi level lies in a peak of width
5 in the density of states„higher-order interactions
will be important whenever kT ~ 5 /U. The Fermi
level is generally believed to lie near peaks in
No(E) in most itinerant ferromagnets and nearly
ferromagnetic metals, as well as in the A15-struc-
ture transition-metal compounds, important be-
cause of the relatively large superconducting tran-
sition temperatures which many of them have.
This theory should be relevant to all these sys-
tems.

The susceptibility follows directly from Eq. (6)
with the definition of y in Eq. (29). In the approxi-
mation (55), we have

2N, I-U(9, (q))
'

X(q) = (q 2(q))/[I —U &q 2(q)&] . (59)
so the entire Lindhard function is averaged over a
distribution of Fermi levels in the same way that
its constant part was in the strictly local approxi-
mation.

We can get a reasonable idea of the size of the
$~, as follows. q&(q) = (qtz(q)) should vary with q
on the scale of inverse interatomic distances, or
of the Fermi momentum. So let us make a Debye
cutoff q, = (6v2N)~~~ in the sum in Eq. (55) and ap-
proximate (p2(q)) by

q'(q) = q (0)(I —q'/q', ) . (56)

Now if the enhancement of g is weak, i.e. , Uy(0)
«1, we have

(5V)

while in the opposite limit 1 —UP(0) « I, we find

4'...). =-:. (58)

Again, the result is analogous to RPA, with q~ re-
placed by its average over the local-field distribu-
tion.

The Fermi energy E~ referred to in all the fore-
going is the temperature-dependent chemical po-
tential, not the zero-temperature Fermi level. It
is determined by fixing the total number of elec-
trons:

n = Jf(c)N(e) dk,
where the many-body density of states

(60)

N(g) = —g
~

Im G(k, g)
~

= —
~

Im G$((E)
~

(61)
1 1

depends on a knowledge of the Green's function,
Eq. (4), or the diagrammatic series, Fig. 4.

There is a wealth of approximate techniques for
both evaluating fermion propagators in the presence
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of a boson field, and evaluating the average propa-
gator in the presence of a disordered potential.
Many of these may be of use here, but for qualita-
tive purposes we will only discuss a particularly
simple one. It is the analog in the evaluation of G
of the local interaction approximation in the evalua-
tion of the paramagnon propagator, and shares with
it the f eature of coggtjrg all diagrams properly,
while making r ather crude estimates of the value
of individual diagrams .

As in the arguments leading to Eqs. (53) and
(54), we evaluate all the electron propagators in
the diagrams as if the momentum transfer to the
paramagnon lines we re ze ro, or, equivalently, as
if the ] field were uniform. The result is an aver-
age over the distribution of the local field (,. of

G(k, i~„;Ez+ c$) = (i&a„—a~+ cg) ' (62)

and, after summing on k and taking the imaginary
part, an averaging of the band structural No(E)
over this Gaussian distribution, exactly as in Eq.
(51), to give the many-body density of states.
[This result can also be obtained by explicitly sum-
ming the series of diagrams of Fig. 4, letting
every internal G line have the same four-momen-
tum as the external ones. Then each term with pg

paramagnon lines is just pg factors of c ], , and
2pg+1 factors of G(k, f~„), and each of the (2n —1)!!
distinct nth-order diagrams has an identical value.
The summation is then expressible as a power se-
ries expansion of the average of Eq. (62), in the
same way that the series for ll(q) led to an average
of Nr(E). Notice incidentally that this convenient
summation was possible because we made gg sepa-
ration of reducible and irreducible diagrams for
G, nor attempted to proceed via calculating a self-
energy. ]

Certainly more powerful and less crude approxi-
mations should be brought to bear on the calcula-
tions of both D and 6, but we feel that the foregoing
discussion at least contains the elements of the
problem, and has the virtue of a transparent physi-
cal interpretation in the local fluctuating Zeeman
field of size c(, ,

IV. CALCULATIONS

A. Gaussian density of states

To illustrate the above ideas, we have calculated
the temperature dependence of the susceptibility
for a model density of states whose form allows
most of the calculations to be performed analytical-
ly. We take

(e) =(2vgr2) &r~ ~ r2

and assume that y(q) varies with q as in Eq. (56).
We should obtain y(0) = (Er(c])) by first convoluting
Pfp with the derivative of the Fermi function to ob-

tain N~, and then convoluting the result with the
Gaussian distribution of local fluctuating ] fields.
We will approximate the first stage of this process
by replacing the derivative of the Fermi function
by a Gaussian with the same second moment —,

' w~

x(kT) . This will give a qualitatively correct de-
scription of the thermal smearing effects (which
are not very important until kT & U) and now both
convolutions are analytically trivial. We obtain

X,(e) ={2v[W'+ —.'(vkT)']}-' "
x exp(- ~'/2[W'+ l(vkT)']}, (64)

= -'(1+x)(l —""tan-'x-' ")
whe re

&=(UX) '=[UV(0)]-' —1 . (67)

Eliminating two of the three unknowns in Eqs .
(65)-(67), P(0) and $',-, leads to a single equation
for g:

(U /2w)(l+ X) —W —g(rkT)

(68)= -,' Uk T(1+x)(1 - x' "ta "z ' ") .
We have solved Eq. (68) by numerical iteration,

and the resulting inverse susceptibilities are plotted
in Fig. 6, for three different values of U. For the
smallest of these, the system remains paramag-
netic down to T = 0. The second value is just at the
threshold for zero -temperature ferromagnetism,
and the third has a finite Curie temperature of
about 0. 32 W. When a solution of Eq. (68) exists
at T = 0, X is the same there as in RPA, since the
RPA result is obtained by ignoring the right-hand
side, which vanishes when T = 0. As T increases,
however, the inverse susceptibility obtained here
rises with something much more like a linear tem-
perature dependence than does the RPA g '. For
the threshold value of U, our g obeys nearly a per-
fect Curie law at all temperatures. Qf course,
these results have only a qualitative significance
at very low temperatures & T„, the spin-fluctua-
tion temperature, since the time dependence of the
fluctuations must be taken into account there. For
U larger than the threshold value, g

' starts out
like (T —T,), and then quickly straightens out to
a,pproximate Curie -W eis s behavior . The quadratic
dependence near T, derives analytically from the
fact that the right-hand side of Eq. (68) is propor-
tional to 1 —(1/2)gX'r' for small y. Such a temper-
ature dependence is characteristic of averaged-
fluctuation approximation schemes like the present
one —it occurs in the Murata-Doniach theory and in
the Berlin-Kac spherical model" as well. The T,

and, using Eq. (51),

P(0) =(2v [W'+ -,'(mkT)'+ c'~', -,]}' " . (65)
2

Now taking the form (56) for p(q) and evaluating )rm8t
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n

(0) (WX}

4

for y (q) given in Eq. (56) and write

0 0.5

I

(b)
(WX)'

0.5

FIG. 6. Inverse susceptibility as a function of temp-
erature for the model of Sec. IVA. (a) The RPA result;
(b) obtained from Eq. {68). U is in units of U~t
=(2xS"2), the largest U for which the system remains
paramagnetic at T =0.

x exp &,— N~ ~+c$ = N, ~ dc, (69)

where EJ, is the zero-temperature Fermi energy
of the noninteracting system. We assume the form

obtained here is about a third of the RPA T,.
B. Application to nickel

We turn now to numerical calculations carried
out for a system with a complex band structure,
and for whose magnetic properties an intermediate-
coupling description is probably appropriate. As
is well known, the bare zero-temperature d-band
density of states iso(E) in nickel has a rather-high
rather-narrow peak just below the band edge, and
the Fermi level lies very near its maximum. ' The
thermally averaged Nr(E) may be significantly
smeared out only when kT is greater than about the
width of the peak (about 0. 5 eV). As remarked
above, the ] fluctuations produce an averaging over
an energy range (Uj'gT)'~~. Thus, for nickel (T,
= 631 'K, U= 4 eV) we expect the averaging over the

( distribution to be important and to dominate the
thermal smearing in determining the susceptibility
as a function of temperature above T, .

Our procedure is to seek (~, from the conditions
on P given in Sec. III [Eqs. (53) and (55)], and at
the same time to adjust the Fermi energy so that

~8@ d$
(2xg~, )' ~~

In Sec. I we argued that the natural choice for q,
was 2k~, and in nickel a typical 0& for the d band
holes is perhaps a quiarter or a third of the Debye
wave vector. The solutions of the set of self -con-
sistent equations are then used to calculate the sus-
ceptibility (6).

Figure 7 shows the results of numerical calcula-
tions of g

' carried out using the density of states
given in Ref. 13 for values of U between 4. 0 and
6.4 eP, for two values of q, . For comparison, we
also display the inverse of the RPA susceptibility
(9). The larger q, is, the more we expect the cal-
culated curves to differ from the RPA ones.

First we remark that, as in the case of the
Gaussian N~(E), we still have the RPA criterion
for the existence of zero-temperature ferromag-
netism [No(E~) U~ 1], but the T, obtained here for
a. given U is lower than the RPA value —that is, the
averaging effect introduced by the fluctuating ( field
suppresses the tendency toward magnetic order at
finite T. The values of T, obtained here for given
values of U are obviously not to be taken quantita-
tively seriously, given the crudeness of the approx-
imations made in evaluating y(q) and in neglecting
effects which arise from detailed consideration of
the multiple band structure. However, it seems
clear that this shift in T, will occur in general for
a, peaked density of states.

Secondly, for large enough q„X ' curves down-
ward at high T from the straight line which one
would obtain by extrapolating the Curie-Weiss law
at lower temperatures. The strength of this effect
depends strongly on the size of the region of q
space in which fluctuations contribute to ], „so it
is difficult to make a quantitative estimate of g
here. However, the tendency to curve over at high
T is observed in experimental data, '~ and this ef-
fect is not very pronounced in the RPA susceptibili-
ty [Fig. 7(c)].

The effective magnetic moments obtained from
these curves vary somewhat with U and q„but they
are all around one Bohr magneton. For the curves
shown for q, =0.77qo the effective moment varies
from 0.9 pa (U=4 eV) to 1.3 p, e (U=6. 4 eV). The
experimentally observed moment (between = T, and
1000'K) is somewhat larger, 1.61 ge. "

We have not attempted to calculate X very close
to T„where our iteration procedure for solving
the self-consistent equations (53)-(55) does not
converge very quickly. If we were to do so, we
would find the quadratic dependence of p

' on
(T —T,) discussed above for the ease of the Gauss-
ian Nz(E). As in that case, however, this behavior
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FIG. 7. Inverse susceptibility using the density of
states of Ni, for two different values of the cutoff

q~. {a) q~
= 0.77 qD (b} q~.=]./2 qD (c) the HPA results

{with smaller values of U).

is unphysical and results because our approxima-
tion is insufficient to describe critical fluctuations.

V. CONCLUSIONS

We have presented a, framework for an interme-
diate coupling theory of fluctuations in metallic
paramagnets or ferromagnets above T, . It gives
a physical picture of how the RPA paramagnon
propagator is renormalized by the fluctuations,
and, for temperatures above the spin fluctuation
temperature, a very simple interpretation in terms
of a dynamically smeared effective density of

states emerges if we make a, local approximation
to the paramagnon-paramagnon interaction ver-
tices. This effective density of states allows us to
begin to answer the question of the relationship be-
tween the Bloch states and the quasiparticle states
of the phenomenological Stoner theory by giving us

an explicit approximation to the latter as a func-
tional of the former.

In the past, it has been suggested'6 that a rea-
sonable Stoner theory could be obtained from Har-
tree-Fock band theory by simply replacing the in-
teraction U by a smaller P,«, to account for elec-
tron correlation effects of the sort discussed by
Kanamori. '7 The validity of such an approach,
however, depends on bare electrons being dressed
by interactions with relatively few electron-hole
pair excitations out of the Fermi sea, a condition
grossly violated when there are many spin fluctua-
tions excited either thermally (T & T„) or virtually
(T«1'„). Under these conditions, the present ap-
proach, leading to a temperature-dependent effec-
tive N(E) instead of an effective U, makes more
sense.

Our calculations of this effective density of states
or of the effective Lindhard function P(q) are only
qualitatively correct because we made the local ap-
proximation for the mode-mode coupling vertices.
It would be of interest to apply techniques used in
other sorts of polaron problems to improve on
these estimates.

Another aspect of this problem on which we have
not concentrated here is the effect of the time de-
pendence of the fluctuating fields on P(q) and the
paramagnon propagator. It is formally included
in the discussion of Sec. II, but we have not tried
to calculate y except at sufficiently high tempera, —

tures that only the time-averaged components mat-
ter. An extension of the theory of Sec. III to tem-
peratures below the spin fluctuation temperature is
potentially important. It might permit us to under-
stand why current pa.ramagnon theory is only par-
tially successful in explaining the effective mass
enhancement in low-temperature nearly ferromag-
netic Fermi systems. [Murata and Doniach ' at-
tempt to account for the dynamical part of the fluc-
tuations by integrating out the ), fields with char-
acteristic frequencies greater than T, leaving re-
normalized coefficients of the remaining modes,
which can then be treated in a static approxima-
tion. Their theory therefore contains a. tempera-
ture-dependent cutoff wave vector which will in

general be less than our q, . 1VIoriya and Kawabata
have taken a different approach to the dynamical
effects, based on a sum rule relating the suscepti-
bility and the free energy. Their theory contains
no explicit cutoff, although an effective cutoff like
that in the Murata-Doniach theory can occur via
the Bose factor in frequency integrals. However,
in both of these theories, the density of states is
effectively approximated by its quadratic expansion
around EJ;. We stress that whenever E~ lies in a
narrow peak in iVO(E), or, more generally when

X~(E) changes very rapidly near Ez, it is prohamy
essential to take higher-order terms into account,
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as we do here in Sec. III for the high-temperature
ease. ]

Another important generalization of this work is
to the ferromagnetic temperature region. We
leave this, as well as the extensions suggested
above, to future papers.
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