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We present a useful new approximate calculation of ferromagnetic resonance in isotropic metal plates.
The key step in this calculation is a transformation, previously applied to magnetoelastic insulators,
which permits the separation of the resonant and nonresonant senses of polarization. As a result, we

are able to reduce the dispersion relation resulting from simultaneous solution of the Landau-Lifshitz

equation and of Maxwell's equations from a quartic, for arbitrary directions of the magnetization, to a
quadratic. Assuming a simple (but arbitrary) spin-pinning boundary condition on the surface rf
magnetization, the surface impedance Z can then be obtained from a linear equation. Near resonance,
at X or K band, we find that Z agrees with values from the exact calculation to within a fraction of
1% for all magnetization directions. The resonant frequency and linewidth both agree with the exact
calculation to better than 1 Oe.

I. INTRODUCTION

The problem of ferromagnetic resonance (FMR)
in metals has been studied extensively, both theo-
retically and experimentally since the pioneering
work of Ament and Rado in 1955. However, the
complexity of calculations for general cases has
meant that theoretical studies have largely been
confined to parallel' or perpendicular' reso-
nance, or have involved approximations which are
not necessarily justified. R is only relatively re-
centlythatametiiodhadbeen presented for the gen-
eral solution of the problem of resonance in an in-
finite isotropic metallic plate, in which the dc
magnetic field is at an arbitrary direction with re-
spect to the plate normal. 6 The anisotropic plate
has been discussed even more recently. ' While
this method has been used with success for some
problems, ~ it has not been widely applied, owing
to the fact that the dispersion relation is quartic in

k, and that the boundary conditions involve a
quadratic whose coefficients are determinants.
This has meant that a given problem involves a
fair ly lengthy computer calculation. Very recently,
Kobayashi et c/. have reported an approximate
method for a related problem, the magnetoelastic
insulating plate. For this problem, even in the
magnetostatic limit, the dispersion relation is
quintic in k . It was found that by a simple trans-
formation one can reduce the solution of the part
with physical interest to a quadratic, or at worse,
a cubic. This approximation has been applied both
to resonance and to phonon generation. ~ We
shall demonstrate here that by the same transfor-
mation the problem of FMH in metals can be con-
siderably simplified, making it easily applicable.

We treat only the isotropic case here, although the
extension to the anisotropic problem is not very
difficult, and will be reported elsewhere. '

II. DISPERSION RELATIONS

Macroscopic analysis of FMR in metals
consists of the simultaneous solution of Maxwell's
equations and the I,andau-Lifshitz equation. As-
suming that the dielectric terms in the electric
field are negligible compared to the conduction
terms, the former may be written

Q
v x E = ———(H+ 4mM),c et

v x H = (4 ''/c) E,
v (H+ 4w M) = O,

while the latter is written

(2)

(2)

I. 8M 2A=Mx H+ V M — -~ (MxH) . (4)
y et lml' ylMl

Equations (1) and (2) may be combined to elim-
inate E:

4no 8v«xH= —,—(H+4wM).c et (5)

(6a)

(6b)

j(ut-Ay)
0+

M=MO+me' "' @

The form of Eq. (4) assures that m is normal to

We now assume that the sample is a slab, infinite
in the x and z directions, and that the static mag-
netization MD ljes in the y-z plane. Ho, the sum of
the static applied and demagnetizing fields, lies
parallel to Mo. Then we may write
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~, so that only two components of m are indepen-
dent. We now substitute Egs. (6) into Egs. (3)-(5),
and make a small-signal approximation, so that we
may neglect terms second order and higher in h

and m. We find that we may eliminate h, by ap-
plying the relation

m~ = —Qh,

g t'm, )
(m„/

where

( csin8+bcose a+iQ)

(-(dsin e+acos 8+in) b

(10)

where

Q=(1/4w)(1 ——'H k ),

(6a)

(sb)b sinem„+(dsin 8+a coswe+in)m„=0.

In Egs. (6), 8 is the angle between Moand they
axis& and

5'=cw/2wo(u.

Neglecting the exchange field in the damping term'
we find"

—(a+in)m„+(csine+ b cose cote)m, =0,

We wish to find an approximate diagonalization of
G. In the absence of conductivity, G reduces to

(Ho+(2A/Mo)k +4wMosin 8 in
9=i

—iQ H, +(~/M, )k')

(i2)
8 can be exactly diagonalized. In fact this is done
by the same transformation

previously used by Kobayashi and co-workers'1 13

to diagonalize the uniform precession mode. That
is, U is given by

b=H +~+ —k
M

Q Mo

c=H0+4mM + —k d= —~ +4m2 A, H
M '

y M

For a solution to Eqs. (6) to exist, the determinant
of the coefficients of m must be zero. This yields
the quartic secular equation which is the starting
point of the previous work. At 8=0, this equation
factors into two quadratics, and at 8 = 90, it fac-
tors into a cubic and a linear equation. But for
other angles it does not factor exactly. However,
it is possible to find an approximate factorization
which is extremely accurate in almost all cases.
Following Kobayashi et al. 11 we define

m„=—mz sin8, m„=m„
Then

U~~=
~

n~/(2AO+4wMosin eno)

V»=i~ A~/(2n' , 4wM, sm— 'en, )"',
—f(2wMosin 8+no)

(2A,'+4wM, sin'en, )"' '

(2wMo sin~8 —no)
(2nw0-4wM, sm'en, )"' '

n =[(2wM sin8) +n j"
Now let us find

G'= 2uoG,

where

(14)

(15)

(i6)

G' = 2 H + —k2 + M 4n' sin28+ —1+cos 8 —2Q 0 +
2A 2 . 2 1 2 2w(Mosin8) iX 2HO . w 1

11 0 ~ 0 0 0 q
+ —n +4wsin 8+ —(1+cos 8),

y Mo Q

(17a)
G' = 2 H+ —k +M 4wsin8+ —(1+cos8) n+ 4w ——2w(Mosin8) +2A2A 2 . 2 1 2 1 2 2 2

22 0 ~ 0 q 0 q

i~ 2H0 . 2 10+4wsin28+ —(1+coswe)
Mo Q

i' 1 1+cos 8
G,'2= + —4'+ 4~ ——~0+2»0 4msin 8+ sin 8, (IVc)

i' X 1 ~ 2 1+cos8 . 2
G21 = — + —4'+ —-4m ao+ 2mMo 4~sin 8+

Q
sin 8. (IVd)

As before, the dispersion relations are given by det G'= 0. If G12 and G21 are negligible, the two branches
with the resonant sense of polarization, that is, the "uniform precession" and propagating spin-wave
branches are given by Gff 0, or
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s~A0~' & 2AA0
+(Ho+2&Mosin 8) —ifIO +

2
k —(Ho+41rMO) Ao+ +0 =0 .. 3 AA . 5 iA05 jA,A

0 0 y~o ym

The two branches with a nonresonant sense of polarization, that is, the branches corresponding to ordi-
nary electromagnetic propagation and to the rapidly decaying spin wave, are given by Gzz= 0, or

gAA 5 . AA . 5 2AA0 t!A05 i~A
k + (Ho+2vMOsin 8) +iQO —— + k -(Ho+4vMO) Qo — —0 =0.

0

im&p

(20)

The nonresonant spin wave and normal electro-
magnetic propagation branch, the solutions of Eq.
(19), have approximately the polarization p, z.
These two, p, , and p, 2 are approximately the char-
acteristic polarizations ' ' for which Z, the surface
impedance, is a constant. That is, '

It is obvious that for 8 =0 (perpendicular reso-
nance), Gim= G2, =-0. That is, the factorization is
exact, and we obtain the well-known results for
this case. ' For other angles the factorization is
always approximate. However, the off -diagonal
terms are typically of the order of 10 compared
to the diagonal terms, for materials such as nickel
or permalloy, so that they produce a term in the
determinant which is 10 smaller than that due to
the diagonal terms. The only case in which the
approximation fails is near antiresonance (FMAR),
at which the wave vector of the "uniform-preces-
sion" branch becomes extremely small. Thus, for
this branch, I/Q is no longer small, but approaches
4m. Even in this ca,se, the approximation works
for angles up to about 20' since sin 8 keeps the off-
diagonal terms small for these angles. At FMR,
since the k for the uniform-precession branch be-
comes relatively large, the approximation works
even better than usual. Comparing with the exact
calculation for Ni near resonance at E- and X-
band frequencies, we find that the approximate cal-
culation gives the dispersion relation for the
branches with resonant polarization to better than
l%%u~. That is, it can be applied with confidence to
such problems.

III. CHARACTERISTIC POLARIZATION AND BOUNDARY

CON DITION S

There are two pairs of roots to Eq. (18), corre-
sponding to the almost uniform precession and the
resonant spin wave. They both have approximately
the polarization p„given by

holds. The characteristic polarizations are trans-
mitted and reflected without change of polariza-
tion '" so that any arbitrary polarization, which
does change, can be studied by decomposing it into

p.g and p, a,
Following Kobayashi et al. ,

"we may assume
that p.z is negligibly excited. Then

m, = U»p, » m„=U2, p, (22)

P A,. ccs kD ~ Q B, si k,e)e'"',
i~ lv8 4~1~3

(22)

where k„kzare the solutions of Eg. (18) with posi-
tive real part, and A, and 8, are to be determined.
We lose no physical interest by assuming symme-
trical surfaces and symmetrical excitation, so that
(omitting the time dependence)

p, &=C&cosk~y+C2cosk2y . (24)

We assume that the plate surfaces are at y = + d.
Then the continuity of h is satisfied by applying Eq.
(V), to yield

~ cosk, d+ ~ cosk&d=—C C &0„
Q) QP UPI

(25)

Inside the medium, by applying Eq. (2), we find"
SCe;, = . k]h;„4 wo'

That is, the resonant polarization is determined
[see Eq. (14)j by M, 0, and 8, but is virtually in-
dependent of conductivity, damping, magnetoelastic
coupling, etc.

Now, Eqs. (21) and (22) imply that it is sufficient
to satisfy three boundary conditions at each sur-
face: continuity of h„, continuity of e„anda pinning
condition on p, Conditions on h, and e„areredun-
dant, and a condition on pz is unnecessary as p, q-=0 will automatically be satisfied. Thus, we have
half the boundary conditions necessary for the ex-
act calculation. These conditions are to be satis-
fied by

4' ~e 4gcr ~e

&O & &0~

k& sink, y+ kz sin k2y
c ~C . ~C4' q, Q2

(26)

In Eq. (21) eo and ko are the electric and mag-
netic field components at the surface. It is easy
to show ' ' that for orthogonal components at any
angle to the x and z axes, the same relationship

~ k| sin k|d + ~ k2 sin kP=—C . C . Zh(h,

Q2 Up)
(2 i)

Outside, Eq. (21) is satisfied at y=+d. Then the
continuity of e is given by
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For the condition on p. , we assume a simple

pinning condition, that is, if p, is pinned

C, eos k,d + Cz cos kzd = 0 .
If JL(, is free

C~k~ sinks+ Czkz sinkzd =0 .

For intermediate pinning

a(C, cos k,d+ Cz eos kzd)

(28)

(28)

+ b(C,k, sinks+ Czkz sin kzd) = 0 . (30)

Here, the ratio of b to a represents the effective
pinning strength. This ratio is assumed known.

It is relatively simple to extend the calculation to
more complicated boundary conditions, such as
surface anisotropy.

Simultaneous solution of Eqs. (25), (27), and one
of (28)-(30) permits us to obtain the C's, and Z.
For the spin-pinned case, we find

k~Qz sin k,d cos kzd —kzQ, sin kzd cos k,d
P 31

(Qz —Q, ) cos k,d cos kzd

For the spin-unpinned case

(Qf Qz) kgkz sin k&d sin kzd
k,Q, sin k,d cos kzd —kzQz sin kzd cos k,d

In the general case

[(Qz —Q, )b kzkz sin k~d sin kzd + a(Qzk& sin k~d cos kzd —Q ~kz sin kzd cos k ~d) ]
Z 2 1 1 2 1 2 1

[(Qz —Q, )a cos ktd cos kzd+ b(Qzkz sin kzd cos k,d —Q,k, sink, d cos k,d)]
(33)

For the situations described above, in which the
approximate dispersion relation is accurate, we
find that both Z„and Z& agree with their values
from the exact calculation to within a fraction of
1/(;, for all angles. They are, of course, exact
at 8=0.

IV. POWER ABSORBED, RESONANT FREQUENCY, AND
LINEWIDTH

We may calculate the power absorbed from'

(34)

We may also calculate the change in the Q of the
cavity'7'

&(1/Q) = —c Im J mhf dv . (35)

This requires using Eqs. (25), (27), and the pinning
condition to obtain C1 and C2. We find that for
pinned boundary conditions

1 I Uul ) z Q,Qz kzsinkzdcosk, d —kzsink, dcoskzd
Q I Uz, l / Q, —Qz k,kz eos k,d oos kzd

For the unpinned case

(36)

~

~ ~1 I U11l cos 8 Q,Qz(k, - kz) sin k,d sin kzd

Q l Uz&I k&kz(k&Q&sink&d eos kzd —kzQz sinkzd cos k~d)
(37)

Near resonance, a plot of I' vs field or frequency,
or of 4(1/Q) vs H or &u yields very similar lines,
and essentially the same resonant frequency and
line shape. 1 For the conditions mentioned above
the approximate values of resonant field and line-
width agree with that obtained from the exact cal-
culation to within less than 1 Oe out of several
thousand for the field, and out of several hundred
for the width, for both pinned and unpinned bound-
aries, for all angles. For a (100) plate, including
anisotropy, 1 the results are as good as these for
the (001) plane, and only slightly inferior (3 Oe) for
the (011) plane.

V. CONCLUSIONS

In order to perform FMR calculations for a metal
plate, one solves Eq. (18) for the resonant k's. To

find the power absorbed, the 0 values are substituted
into Eq. (31) for pinned surfaces, or into Eq. (32)
for unpinned surfaces. To find the change of Q of
the cavity, one uses Eq. (36) or (37). The results
of (31), (32), (36), or (37) as a function of H or m

yield the desired comparison with experimental re-
sults. Equation (18) is a. quadratic in k whereas
Eq. (1) of Ref. 6 is quartic in k . The others are
relatively simple, merely involving algebraic sub-
stitution, in contrast to Eq. (3) of Ref. 6, which is
a quadratic whose coefficients are 4&4 determi-
nants. Thus, the approximate method results in
a much simplified calculation, with no essential
loss in accuracy, except near FMAR, when the
"uniform-precession" root is not accurately de-
scribed by Eq. (18). For this case, it is possible
to develop new approximations, '9 but these do not
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seem to be sufficiently advantageous, and it ap-
pears that one should apply the exact method to
this case. But we believe that for all other
problems, the approximate method is advanta-

geous.
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