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Extending some recent work by Shiba, we have used the Hartree-Fock approximation for the
Anderson model of localized-impurity-electron states in a superconductor to obtain expressions for the
critical temperature in zero magnetic field and for the upper critical field. The expression for the
critical temperature reduces to Kaiser's result in the limit of no impurity magnetic moment, and Fulde
and Maki's result in the magnetic limit. Between these two limits results are found which differ
appreciably from those of either limit.

The d-electron (or f-electron) states localized
on transition-metal (or rare-earth) impurities in
simple metals are not orthogonal to the conduction-
electron states of the host metal. This leads to a
mixing, or hybridization, with conduction-electron
states to form localized resonances. ' Zucker-
mann calculated the effect of a broad resonance
(when the impurity has no magnetic moment) on the
superconducting properties of these alloys. Taka-
naka and Takano, and Hatto and BIandin extended
Zuckermann's work to include the important effects
of the Coulomb repulsion between localized elec-
trons of opposite spin. Subsequently, Kiwi and
Zuckermann, using the Hamiltonian of Ratto and
Blandin, found that the energy gap decreased with
concentration faster than the order parameter, sug-
gesting the possibility of gapless superconductivity.
However, Kaiser6 noted that the Ratto-Blandin
Hamiltonian was time-reversal invariant in con-
trast to the case for a magnetic impurity. A gen-
eral theorem' stipulates that a time-reversal in-
variant Hamiltonian cannot give rise to gapless
superconductivity.

Kaiser resolved this question by calculating the
order parameter and energy gap for a superconduc-
tor containing localized nonmagnetic impurities
in the Ratto-Blandin model. Using the fact that
the resonance half-width is much greater than the
range of energies about the Fermi surface which is
important in superconductivity, he demonstrated
that the energy gap vanishes if and only if the order
parameter vanishes. Thus, there is no gapless
behavior.

For the critical temperature in the absence of
a magnetic field, Kaiser found

T,o=l. 130,e '

where 6, is a cutoff temperature (usually on the
order of the Debye temperature) and f (nz)& is an
effective coupling constant, n~ being the impurity
concentration (in atomic fraction). The quantity

f (nz} is the ratio of the gap in the density of states

to the effective pairing potential 6:

( )
&, 1 —c(n,)d

1+c(n, )

1 [n,-(2 f+ 1) N( 0)/N(0}j [U.„N,(0)/X]
1+n (2l+1)N, (0)/N(0)

where 2l+1 is the orbital degeneracy factor for
the impurity, N, (0) is the density of localized
states admixed at the Fermi surface, and N(0) is
the conduction-electron density of states at the
Fermi surface. The effective on-site Coulomb
repul. sion is the Schrieffer-Mattis form

U

1+(u/vZ, ) arctan(Z, /r) '

E„ is the displacement of the center of the virtual
levels from the Fermi surface, and I" is the half-
width of the virtual levels. U is the bare intra-
atomic Coulomb repulsion between localized elec-
trons of opposite spin. The term c(n, ) represents
the fractional amount of localized states admixed
at the Fermi level. The denominator of the ex-
pression for f (nr) represents what Kaiser referred
to a.s a dilution effect. The density of conduction-
electron states is diluted by the presence of these
additonal virtual levels near the Fermi surface.
The quantity d is the ratio of the "strength" of op-
position to pairing to the "strength" of the pairing.
This opposition arises due to the admixture of con-
duction-electron states into opposite-spin localized
states which are separated in energy by U(n, )(n,).
This energy correlation between localized electrons
of opposite spin induces, by admixture, a similar
correlation between elements of a Cooper pair,
having a negative effect on the stability of pairs.
This is referred to as "pair weakening. " The
reflection of this weakening is in the term c(nl)d,
which is the fractional amount of admixture at the
Fermi surface multiplied by the weakening due
to admixture.

In the Ratto-Blandin Hamiltonian it is assumed
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ab initio that the impurity is nonmagnetic. In the
normal state, their Hamiltonian reduces to Har-
tree-Fock theory. %'hen the impurity is allowed
to have a moment, the Hamiltonian is no longer
time-reversal invariant. One should expect the
dilution effect to appear qualitatively the same as
in the nonmagnetic case, since it depends only on
the value of the density of up- and down- spin-
localized electrons at the Fermi level. The pair
weakening should be modified, however, by the
introduction of a pair-breaking interaction. Also,
there should be another term arising from this
pair breaking, the Abrikosov-Gorkov term. These
are in fact our results. In addition, a unified the-
ory of magnetic and nonmagnetic impurities in a
superconductor should reproduce the Kaiser results
in the limit of zero local moment, and the Abri-
kosov-Gorkov result in the magnetic limit (U» I').

The purpose of this work is to obtain a useful
expression for the critical temperature and upper
critical field for localized impurities (magnetic
or nonmagnetic) which are described by the Ander-
son model. Our expressions should reasonably
interpolate between the well-known magnetic and
nonmagnetic limit insofar as the Hartree-Fock ap-
proximation is valid.

Shiba' has calculated the superconducting prop-
erties of alloys described by the Anderson model
using the generalized Hartree-Fock approximation
for the Hamiltonian and Nambu formalism. Our
approach has been to obtain coupled linear Ginz-
burg-Landau equations microscopically, solving
these at the phase boundary to find T~ and H~. %e
find complete agreement between our expression
for T,o and that of Shiba, but we make further ap-
proximations which allow us to write a readily in-
terpretable expression for the critical temperature.

In the interpolation regime between magnetic and
nonmagnetic limits, we find (as did Shiba) results

which may differ markedly from Abrikosov-Gorkov
results for certain ranges of the parameters of our
theory. We also find that Kaiser's results may be
drastically modified by even a small amount of ex-
change scattering. By comparing our Anderson
model results with those of the exchange model, we
find a correspondence in the magnetic limit which
is the same as the correspondence of Schrieffer
and Wolff. " Outside of the magnetic limit, we find
that we cannot unambiguously relate the Anderson
model results to those of the exchange model. Our
expressions for T~ and H,z may be readily inter-
preted as an amalgam of the Kaiser and the Abri-
kosov-Gorkov results.

Section I of the paper describes the Hamiltonian
and the generalized Hartree-Fock approach as well
as outlining the perturbation theoretic treatment
employed. Feynman diagrams for the pair-cor-
relation functions are evaluated, and a set of cou-
pled linear Ginzburg-Landau equations is obtained.
In Sec. D various approximations are made in order
to develop these equations into a useful form. Sec-
tion III deals with the establishment of a corre-
spondence between the magnetic Anderson model
results and the exchange model results. In Sec.
IV graphs of the zero-field critical temperature as
a function of concentration are obtained and dis-
cussed, with particular attention paid to the regime
of small, but nonzero, exchange scattering, where
effects due to the interdependence of pair-weaken-
ing and pair-breaking may be observed. In addi-
tion, graphs of the upper critical field as a func-
tion of reduced temperature for various concen-
trations and various amounts of exchange scatter-
ing are obtained and discussed.

I. CALCULATION OF GINZBURG-LANDAU EQUATION

We begin with the Ha, miltonian

Here E, is the distance of the unperturbed localized levels from the Fermi surface. The Localized elec-
trons (assumed orbitally degenerate) have z component of angular momentum m, and spin a (we sum over
repeated Greek indices). The effective Bardeen-Cooper-Schrieffer (BCS) interaction is i@i. The local
atomic Coulomb repulsion between opposite-spin electrons is U, while J is the intra-atomic exchange en-
ergy. Ordinary impurity-potential scattering is represented by g& W(r —R&), and V (r —R;) is the transfer
integral between a conduction electron at r and a localized electron of angular momentum s component m
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at the impurity site R;.
Following Ratto and Blandin, we make a generalized Hartree-Fock approximation to obtain

Hyf f —HQ+ Hg+ Hp (1.2)

(1.4)

H, =- —, Z Z [n*, (R,)~ e. ,(5,)y..(K,).e.'.(R,)y'. ,(K,)n, (R,),"™]-
2 g g d;(5,)„"~,(K,);."

8t ~ fw
2U

——' dr [n+(~)~»I»((»r) )(.(~)+q'. (r)I»t(»r)n(qp»»N] +»fr &+(p~ Z(r)„,

«. = Z }( .»' (.) )«.(-»».)»-(.) .Z-.J«. [» ( ».() (-'(»» )»..(a. (.».(. »()-»'-(q(...(»» )].
jylfl

Here we have defined the parameters

d 8)" = U&y %)A (5)& — U

Tr [e ~"'«)()(r)(I)»»(r)] (1.7)

») =---,'[(2l+1)U-2l(U —8)] [&»», &
—&»», & ] . (1.10)

The term &n & is the thermal average of the num-
ber of localized electrons of spin e. Since the or-
bital degeneracy of the localized electrons is not
broken

n»N;):s =n»@»)-s~-.- . (1.11)

To account for the degenerate localized states we
use the approximation

Following Shiba, we have set

E& =-E, +vo, (1.8)

E, =—e, + —,
' [(2l + 1)U+ 2l(U -J)) [&»», & + &n, & ], (1.9)

»j'»»» V (1 ) jd»E'I»»f'«V (~&

= (4»»)'" Y».(n,) e'"'» (1.12)

where V is a constant and 1;„(n»») is a spherical
harmonic [using the approximation that the angular
dependence of V (r) is of the form 1'» (8, (t)) for
suitably chosen localized orbitals].

We will determine H, z and T, 0 by calculating

& () t(~)»)', (r) &„, ,

~ (g (1.13)
~(r —K»)y'. ,(Rg, (~)

ti e»f

using standard temperature-diagram techniques.
We expand these averages to lowest nonvanishing
order in the non-particle-conserving portion of

H„f, Obtm. ning

rP r I (H0+H3)'t (( r te
(1.14)

firn Q f)(r-K») ' y', (r, »»)y', (r, »»')

Tr/e '"()'"3' fod»»» T[H»(»»») g» „t)(r —5») [d»(r)/n(~)]@, (r, u)(f), (r, »»')]] (1.15)

d(r) -=—~,(r)in(~),

assuming that the limit

lim 4(r)

(1.16)

Working by analogy with Kaiser's approach, we de-
fine the ratio

exists. Because we will configuration-average
a.ll quantities, we make the ansatz that d is inde-
pendent of r.

The remaining thermal averages are then cal-
cul.ated by making a perturbation expansion in H~.

Employing the phase-integral approximation to
account for the effects of the magnetic field, con-
figuration averaging and using the dirty limit near
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H=H, z, we obtain two coupled differential equa-
tions which can be solved at H, z':

nz(2I+1)(d /U)h~(r) =lim K, (II (r2) )&*(rz) .

(1.18)

h*(r) = lim If, (II~{r,)') n*{r,),
2

(1.1&} The kernels K, and K, are given by the diagrams
in Fig. 1:

K,(II {r2) ) = —,'k~T g g g (G (k+q, iu„)

xG-a{ k~ ~~n)A8(q~i~n~ ~~n)a a) l-a2 nt(p, )2

K, (lit(r2)') = —n, (2I +1)-, keT P g (dC, (i&u„) C, (-iur„) A, (q, i~„, —i&a„), „)l, a g&&-, P .

(1.19)

(1.20)

Each A, vertex function carries implicitly a re-
striction of the summation over the integers n of
the Matsubara frequencies. The notation Q with
the prime indicates that the range of the integral
representation of the sum is twt& ~D, where co~

is the Debye frequency.
The dressed conduction-electron Green's function

is

w„=~„+r~gl~„l,

y. (~„)= —n, (2l+1)(l VI'E, ./(~'„+E',.)),
I =~At(0)

I
vl'.

(1.24)

(1.25}

(1.2s)

1
G, (k, i&u„)= .

( ), (1.21)

C (i(u„) = I/(i2„—E„),
where

l Vt'
ne = 1+nI(2l+ 1) z z (dn

Q3~+ E)~

(1.22)

I vl'r+.n,,X(0) t Wr +n (m+1 - Eu) „+E, t, (u„ t

(1.23)

and the dressed focalized electron Green's function
1s

The term in Eq. (1.23) multiplying ~„ is the
fractional admixture of conduction electrons of spin
n into the localized states. The next two terms
are the electron lifetime due to potential scatter-
ing, 1/r„and that due to scattering of electrons
of spin n by the localized impurity, respectively.
F is the half-width of the resonance while P, (u„)
is the energy contribution due to the polarization
of conduction electrons by the internal-exchange
field. The angular bracketing represents an aver-
age over impurity spin orientation (see Appendix
A}.

The vertex functions are given by the diagrams
in Fig. 1:

1 —nz(21 + 1) (I V} [/( ~+iv)'+E ])d~~

1 —{I/~, +2n, (2l+1)(}VI I'/[( ~+i )'v+E, ])j({1/l~„,l) [1 —p(v q/~ ) J] (1.27)

, (q, iw„, —i &u„},= —d + 21'(1/
I u~

I
}[1 —3 (vzq/u„„) ]A, (q, iver„, —i&u „), , (1.aS)

where

The calculation of these vertex functions is considered in Appendix B.
At the phase boundary, H, z and T„are given by the coupled equations

&.(q') = I/lgl,
If, (q') = -[n,(21+1)/U]d',

(1.29}

(1.30)

for q =2eH, z and q =0, respectively. The second equation provides an expression for d, which is con-
tained in the first equation:
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[1 —(n, (2l+1) I Via/((oa, +E', )) d ]
, B(q', I „,I) '- [1/., +(2,(2l. 1) I V I'/(-'„, .E',) r) ]

K, (q ) =-,'d n, (2l+1) Q Q .a
n= a (d n~+El

~ '~ (nz(21 + 1) I Vi a/(~a, +E,) ) [1 —(n, (2l + 1) I V I /(cu „,+Ea)) d ]
B(q', I~„,l) ' —[1/~, +(2nI(2l+1) I V I'/((o'„, +E',) 1)]

~here

(l. 31)

(1.32)

B(q i l~n~l) =
1 ~( )a/I

—
Ia

For I"» 2mk~T

1 1 1 1
+(.,r...)',z, (.,r ..P,z,)

arctan " + arctan

Define V,«so that

1 1 1 1 E„El,

(1.ss)

(1.s4)

(1.35)

U ff is the effective Coulomb repulsion expe rienced by localized electrons of opposite spin. Consider

(1.35)

%e rewrite this as

1 . 1
c(~„)— (- )

+a (. )
" . (1.37)

For v =0 (nonmagnetic limit) this is just c(cd„).
Using

{1.ss)

we find that

nz(21+1)
I VI -a Ea + -a Ea

——c(&u„) .1 1 1
n+Elt +n+Ela

(1.39)
Thus

l~„,l=[1+c(~„)]2l~„l+1/,, +2c(~„)1 ~f(l(„"„))

(1.40)
and

1
B(q, I(u„, i )

' —[1/r, +(ni(21+1) I Via/(Ida, +Ea)21") ]

Using (1.36), (l. 37), and (1.40) we define

)a

T1 Ts ~n v si~n J

P ((g „)=—1(j)„)+ „", = 2n ~(21 + 1)
l
V

l~s ~n&~ ~n+~lt+l~ j +~n~

(P(~„)) is the total polarization of conduction electrons by the internal exchange field. For randomly
oriented spins this average is zero.

In the dirty limit

1 1/&a+ [2c4.)F —&.(~.)-'+f (&„/r.(&„)v)](vrq)a
(2[1+c(&u „)]I(o„I+ 1/&t+ 2c(C)gI' ~ f(I((u „))}a

(1.42)
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Assuming that

~

~

~,(jp„) '~i(P{u)„)) (vrq)'
I/r +2c(j)fr+i(I{&d„)) [I/r +2c((u„)rti(I(&d„))] 3

(l. 43)

~,((d.) ', &P(~.)), (f(&d.)) &' I/~1+ 2c(~.)r,
this becomes

1 (v~q)'
)

(vrq)
1/7', +2c((g„)r 3 " 3

Using the above definitions we have, in the dirty limit

I —c(~„)[I- r...(- „)/r.(~„)]d.i&- „/2r, („-„)vr)d
2[1 + c((d „)]ltd„ I + r, (Co„) '+ ,'r(&v„—)(vrq) + i(P{~„)) Ig I

(l. 44)

(1.45)

(1.46)

2 kt(0)k TQ Rk( ( „) ( — („)" —i
2 (.

"
RT)

rs(&d n 2rs((dn

(1.47)

where

I/r. ..(&d.) -=2c((d.)r . (1.4S)

Using the definitions of c(&u„), I/r, (u) „), [(1.36) and (l. 37)] and P(&„) [(1.41)], it may be shown that the
first of the above equations corresponds exactly to the result of Shiba [Eq. (3. 13) in his paper] if q is set
equal to zero in (l. 46) and {l.47).

Using the fact that the sum over Matsubara frequency in (l. 46) and (1.47) is symmetric, we find the
real parts

g {I- ( .)[I- .( .)/. ( .)]dj{2[I+ ( .)]I .I+ .( .) '+l ( .)( ) i
{2[I + c((o „)]I~.I+ ~, (&d.) '+ s&((o.)(vsq)Q'+ &P ((d.))'

2 )t(0)k, TZ 0(".)(t- ~-'™")(-kt .)((- "('- ")0 'S(2 (-" T)

{2[1+c(&")„)I&d(„I+7,(&k)„) '+-,'r((d. )(v q)') " (2I+ ) d
{2[1+c(&&)„)]l&()„l+r,((d.) +3'r(&k) )(vtq) ) + (

(l. 49)

(1.50)

I' +(IE, I
—lv I)

(1.51)

(&dD=Debye energy) the u)„dependence of these
quantities is negligible.

The term 1 —c(&d„)[1 —r, (&d„)/7', ((d „)]d in Eq.
(1.49) is a pair-weakening term. In the nonmag-
netic case v = 0, so this reduces to 1 —c(&d„)d,
while in the magnetic case there arises a new term
due to exchange scattering. This will be discussed
subsequently.

In Appendix C the ~„dependences of c(~„),
[r,(6)„)] ', and P(&d„) are considered. There, it is
found that for

II. CALCULATION OF d

Assuming condition (l. 51), the sums may be per-
formed in the standard way to obtain a transcen-
dental equation involving the digamma function g:

In(2y en/xr) +(((-,') ——,'[t) (-,'+ p')+ &) (-,'+ p-)]

= (1+c)/{1—ad) X, (2. 1)

1+M' 2gkaT

2(1+c) ~„I+ Is+ m(v~q) nz(2I+ 1)d
[2(1+c)l&d„l+ ,v' +~2( vs)'1' &+»'

(2. 2)
Here @=1.VS,
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1 2 nI(2E+ 1

FIG. 1. Diagrammatic equations for the conduction-
electron vertex function (A~) and the localized-electron
vertex function (A, ) to be used in calculating the kernels
K~(q) and E&(q), represented by the "bubble diagrams. "

a -=c(1 r.../-r, ), (2. 3)

1 r, or(vrQ) . (I')
4gk T 1+c 1+c 1+c

o,. &&)

4vks T(1 + c)
(2. 4)

and X is the coupling constant Ig IN(0).
If there is no magnetic field, the averages are

(F)=2,(2f+1)lvl, . ",".. . =o, (2. 5)o {r'+&ie&i )&v)
r ES ~ 4r

This equation is easily solved to obtain d:

1
= 2ng(2f+1)l Vl I'

o 2 o o --0.2 (v)
2Tg 'p (r +Z„E„+4r v

{2.6)
If it is true that I'~~„over the entire range of the
sum in (2. 2), then as an uPPer estimate of this
summation, we may replace {ld„/r) = [(ld„/r)+1]
by a number on the order of at most 4 to find

1 4
1 d ni(2l+1d {2 7

16&v)'/r', r»v
1/r', r=v

16r'/v',

The only questionable case is t.hat of E, = 0, I' -e,
when I' is small. However, here it is obvious
{see Fig. 2) that the localized electron density of
states can not be considered slowly varying within
the width ld v of the Fermi surface; hence (1.51)
rules out this possibility. Thus, (2. 10) is consis-
tent with (l. 51).

Equation (2. 1) can be rewritten

ln
T

+
1

~' ~+ ,'[l}l(,'-+p'-)+q( ,'+p -)] q-( ,'-)=0-,

(2. 12)
where T,o is the critical temperature of the pure
host in zero magnetic field. The critical tempera-
ture of the alloy in zero field is found by setting
T =T and q =0 and solving. The upper critical
field for a bulk sample is found by setting q
= 2eH,2, and for a parallel thin film by setting q
=4 ([eA(x)] ), where A(x) is the vector potential
and the brackets indicate a spatial average.

The parameter c represents the dilution effect
discussed in the introduction. It describes the
fractional amount of admixture at the Fermi level:

P2+E2+~2
c =ni(2l+1)

I
1

I (I o E E'io 4I o o(r +Er Er +4r

—[N„{0)+Nl,{0)]= ni(2l + 1)

(2. 13)
N, (0) is the spin-averaged density of localized
states at the Fermi level. %e can rewrite Eq.
(2. 9) as

d = {1+adll —4(1/2v, v) —[(4(l/2v, v)

—(1+ado)) —4 ado]' ~')(2a) ',
where

(2. 8)
Energy

d= +U,
nz(2f + 1) Ig I

Supposing that

4 (1/2v, v) «1+ado,
we find that

(2. 9)

(2. 10)

F, 21

d=do (2. 11)

In the following work, we shall assume that Eq.
{2.10) is true. It is certainly correct if there is
no magnetic field since then (v)=0. If (v)oo, we
find (taking E, = 0)

FIG. 2. Dlustration of the appearance of the virtual
states. States are occupied up to the last horizontal
line. E is the average of the energies of the spin-up and
spin-down localized states, and 2v is the energy splitting,
giving a Ineasure of the localized moment at the impurity
site.
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N, (0) U,T, T„,
X 7's

where v, is given by Eq. (l. 48):

1/r„, 2=nz(2l +1)[N,(0)/N(0) jI'

= 2n g{2l + 1)vN, (0)
I
V

I

Using Eq. (2. 13) and

(2. 14)

{2.15)

and resonance scattering are distinguishable,
occurring at different rates, then two distinct ef-
fects on T,o (and H, 2) become distinguishable: op-
position of the pairing by U,TT (pair weakening) and

pair breaking, In a superconductor, this interde-
pendence of pair-breaking and pair-weakening
mechanisms is a basic feature of the Anderson
mode l.

Comparing (2. 17) with the requirement of (l. 51),
we see that

{2.16) r „,/v, «2v'/(un I' (2. 20)

the ratio

hence

(2. 17)

For the magnetic limit U+2lJ&: I', this is not very
restrictive.

In the magnetic limit, c and ad are negligible
since U+2l J» I' so (2. 12) becomes

(2. 18)

I/v, is the rate at which conduction electrons are
scattered by the resonance, while I/v, measure
the rate of "spin-flip scattering. Note, in (2. 17),
that in the magnetic limit, U+2/J» F, we have
{choosing J'= 0)

T ~ 2

(E, /v) +1

which has a maximum value of 2 (E, = 0) and a
minimum value of (E, /v-0)

2

(4l+1) +1

2=2

Of course, outside of the magnetic limit, the mini-
mum value of (2. 17) is obtained for v = 0. The
fact that r„,/r, is always nonzero for v 220 is a
manifestation of the interdependence of the "reso-
nant" and "spin-flip" scattering of conduction
electrons from the localized impurity states. In

fact, the spin-flip scattering occurs via the same
process as resonant scattering.

Consider the pair-weakening term

T 1 1 1 vz~q.
2 (P)ln — + — g —+ + " —q2+ j

Tcop 2 2 4gka T 7's 12gkg T 4gk~ T

1 1 v„r 2 . (P)
2 4gk~ Tw, 12gk ~ T +rk ~ T

(2. 21)

—P(-,') = 0, (2. 22)

which is (for q= 0) Kaiser s result. Note that this
equation also gives H,2 at all temperatures and
concentrations for a nonmagnetic localized im-
purity.

If

p» (P)/47(ksT(1+c) (2. 23)

(negligible exchange field polarization) then (2. 12)
may be written

T C +ado 1 Q

T,o (1 —ado) X 2 4 y (T /T, p)O

which is the Abrikosov-Gorkov result if q =0,
(P) = 0, and the Fulde-Maki result if q = 2eH, z and

(P) 220 (see Sec. III).
In the nonmagnetic limit v = 0, so (2. 12) is

T c(l + d()) 1 vr rqT„(1—cd, )1 2 12 2 T(1 ~ ))

2NT{0) U.TT
QQO = c 1—

7'
(2. 19) ~H„(T) 1

r H,2{0) 4 y(T T/, @)(l +c)

This represents the total effect of the pair weaken-
ing via conduction-electron admixture into the
localized levels which are correlated by the Cou-
lomb repulsion U~, . The pair weakening is con-
trolled by the balance between resonant and spin-
flip scattering, 1/y, and 1/v'„respectively.
When these two types of scattering are indistin-
guishable, in the sense that they occur at the same
rate, the effects of U,«on the pairing are totally
given by the pair-breaking term. When spin-flip

where

for y =1.78

H() (0) 3vkd) Tcoy
c2 2e+&2 &O

Also, v and H, 2(G) refer to the host without the
localized impurities.
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III. COMPARISON VfITH EXCHANGE MODEL

The Fulde-Maki expression for the critical
temperature and upper critical field of an alloy
with magnetic impurities described by the exchange
model is

temperature is given by

—c —Qdp i c+Qdo"= """Ptt-~)l ''"~ tt-u)l]
(4. 4)

The initial slope of T,o/T, o& with respect to con-
centration ni is [using (2. 24)]

» {T/T op)+ «[tt (~2 +PrM)+({)(2+Pi M)1
—))'(2) = 0

(3. 1)
where

d(T,o/T o,)
dn

1 c+ adp

o ))(. nrr &r=p

= 2n~vN(0) J,„(S,+S„),

(P) =2ngJ, „(S,) .

(3.3)

(3.4)

Recalling {2.16) and (l.41), as well as the defini-
tion of v (1.10) we have

1 2 (S,+So) ~v
P FM 4 k T S2 3 c2

~ '2n, Z„to)(«,)) . (3. 2)

(We have taken I/r„-0 in their expression. )
Comparing the above with Eq. (2. 21), we make

the identifications

1 2 (8+8)
7'~ 7~ $

d(T.o/T. ~) '

dnr "r o

b+ D(1 —x)o m b~
x p4yb, op

(4 6)

where we have introduced the concentration-inde-
pendent parameters

b = c/nz = (-2l + 1)N, (0)/N(0),

c U, f,N, (0)

(4 7)

)t)"'(!) &
'

(4 6)
4nk~T&& nr .o

where go)(ol) is the trigamma function. Using Eqs.
{2.3), (2. 13), (2. 16), (2. 18), and (2. 19) this may
be written

(S,+S„)= —,'((n, ) —(n, )) (2 l+ 1),

J,„=
~

V
~

[(U+ 2l J) /(E „E„) ],
(8,) = —,'(2l + 1)((n,) —(n, )),

(U+ 2lJ)/E„E„

(3. 6)

(3. 6)

{3.7)

(3.8)

c N, (0)
nr

U
X

1+ (U/2E)[arctan(E„/I') + arctan(E„ /I')]
(4 8)

(for U+2lJ»I').
The Schrieffer-Wolff transformation gives, for

N(0) J'„«1, the result (3.8) for J,„. Note that a
comparison of the Fulde-Maki expression with the
more general equation (2. 12) is not possible since
this equation contains an extra contribution due to
pair weakening. We can only make unambiguous
contact with the Fulde-Maki result in the magnetic
limit, where the pair-weakening effects are negli-
gible.

IV. RESULTS FOR T~o AND H~ p

x -=v, /r, ,

t M=&asT.oo/y .

(4. 9)

{4.10)

2nr bI" nr at ox

(1+nr b) t) oo 1 +nr b
(4. 11)

Note from Eq. (2. 17) that x ranges from 0 to 2 as
v varies.

In terms of the above parameters

1
at = x

{I+nrb) &oo&;.

7'H, o(T) 1 c+ ado (4. I)

n iot)x vH, o(T)
,a ', '«'„to) t, l)

b+ D(1 —x)o
' [t —,Dtl —x)~]l) {4.12)

I T C+Qdp
(4 2)

are tabulated' so that we may write

N = U{t'), {4.3)

instead of Int'+){)(«+ f/4yt') —t))(«) = 0.
When no magnetic field is present the critical

in Eq. (2. 24). The solutions for f, as a function of For x«1, Eq. (4. 6) is

d(T o/T to) b+D I
bI'

(
dnr ~,.o ~ &oo

In Fig. 3 we have displayed the quantity T,o/T, oo

as a function of concentration for 5 = 30, 8 = 30,
X =0. 2, and various values of npx, where x«1 is
satisfied. Values for atp probably range up from
Q. o=1000. For Q. p= 5000, an x as small as x=0. 025



G ~ B. ARNQ LD

I.O

0.5

I = l6Vs ao= lOGO =2bI'/Boo

o 5000= 2bl'/boo FIG. 3. Solid lines:
Graphs of the critical tem-
perature of the alloy (no
magnetic field) divided by
the critical temperature
of the pure host (T&iT+&)
for Go

——1000, I = 163 400,
and various values of ~,
Dashed lines; Graphs of the
same for no=5000, I'=S33
&Oo ~

0
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X;I6 .OT8 .050
O.at t O.g

.025 X..66 .750
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.050
t 0.6 n,{at.%)

.025

gives rise to a substantial deviation from any pre-
diction based on Kaiser's theory. There is also a
substantial difference between results for x at this
value and the Abrikosov-Gorkov result.

Near the critical concentration (T,o/T, o [„=0)
the digamma function in (1.24) behaves like the
logarithm, thus

b +D(1 —x)a'" ( "* ji- nn-xp]~)C1'

(4. 14)
For x= 0 this gives Kaiser's result.

n„= 1/D.

For xWO but x«1 we have

(4. 15)

1

nox —4yb exp[-n„(b+D)/(I —n„D) Xj

b+Dx 4+ exp pgc~
(

(4. 16)

(4. 17)

Of course, for this n„, x is quite small. Thus the
critical concentration varies initially quite rapidly
with x. From (4. 16) it can be seen that for n„
«1/D and n {b+D)/X«1,

n = 4y/o, ox, (4. 16)

If n„ is slightly less than 1/D, this is approximate-
ly

{2bI'/aoo) x= n, x» (4y/X) (b+D), (4. 19)

which means that the initial slope (4. 13) will also
follow the Abrikosov-Gorkov result, Note that
Fig. 1, however, considers the opposite case

o, ,x«(4 yX/)( b+D), (4. 20)

rH, (T) b +D(1 —x)a
H io) ~ ' il D(1 *) Ix)

as well as o, ox- {4y/X)(b+D)
Identifying +ox as the pair-breaking parameter

and (4y/X)(b+D) as the pair-weakening parameter,
from Fig. 3 we conclude that for pair weakening,
which is much stronger than pair breaking, one
may observe a situation where the shape of the T,o-
vs-ni curve may retain the exponential-type varia-
tion which is characteristic of nonmagnetic impuri-
ty down to very low temperatures. That is to say,
an impurity with a small magnetic moment may
appear to behave as one with no magnetic moment
even down to T,o/T, O~-O. 1. For larger nox, the
curve may appear linear down to such a value (as
for o'ox = 250)

The lesson of Fig. 3 is that there exists a "tran-
sition region" between the nonmagnetic impurity
(Kaiser) result for the shape of the T,o/T, o~ vs nl--
curve, and the magnetic (Abrikosov-Gorkov) re-
sult for the shape, where neither limiting theory
gives an adequate description of the results.

The upper critical field (for a bulk sample) may
be calculated as a function of temperature using

the Abrikosov-Gorkov result. Note that this re-
quires x U(t') - n& ox (4. 21)
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IP-

250 PPM

0.8

I500
O

cu 06
0

~ 2500

4
0.4

I ~ I I i S
i 1

X=p

T,o with concentration does not necessarily imply
that the impurity is nonmagnetic, but that, far
enough away from the critical concentration, the
description in terms of the Kaiser model is prob-
ably quite good, and will break down only as the
critical concentration is approached. However,
there also exists a "transition region" between
Kaiser and Abrikosov-Gorkov behavior in which the
alloy is best described in terms of an amalgam of
the two theories, with the phase boundary deter-
mined by Eq. (2. 24). In this case, both pair
breaking and pair weakening must be included. The
influence of pair breaking is strongest at the higher
concentrations, while the pair weakening has its
greatest influence for smaller concentrations.
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[t' is defined in Eq. (4. 2)].
In Figs. 2 and 2 the results for rH, 2(T)/r H, 2(0)

vs T/T, o are given at various values of concentra-
tion for ~ox= 0 and zox= 78, respectively. Here
T,o is the critical temperature of the alloy at the
concentration and value of x indicated in zero mag-
netic field, i. e. , the solution of Eq. (4. 4). Ali
other parameters are as they were in Fig. 3 ~ At
low concentrations (-250 ppm) the increase in pair
breaking is not very evident. However, the effect
of approaching the critical concentration is clearly
evident in Fig. 5 for concentrations greater than
2000 ppm. From Fig. 3 we observe that the criti-
cal concentration for 0.'Ox = 78 is slightly greater
than 4000 ppm, which explains the intercept of the
4000 ppm curve in Fig. 5. In Fig. 5 one observes
the expected result of a larger 0'.0, a more rapid de-
crease in 0,2 with increasing concentration.

The lesson of Figs. 4 and 5 is much the same as
that of Fig. 3. Even a small amount of exchange
scattering has drastic effects on the superconduct-
ing alloy. These effects, however, may not be
strongly in evidence until. one attains concentra-
tions nearing the critical concentration, since the
major effect of small pair breaking (compared to
pair weakening) is the rapid reduction in critical
conc ent rat ion.

One may conclude that an exponential decline of

I t I i I I
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Qp 5000 2br/Z «
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0.8
750

O

oop6
l500

750

p4

2500

0.2
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I
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FIG. 5. Solid lines: Graphs o«a, 2I7'@2(0) v»I&~
for x=0.078, @0=1000, and I'=163400. Dashed lines:
Graphs of same for x=0.078, 0', 0=5000, and I =8336pp.
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APPENDIX A: SELF-ENERGIES

10

Prior to configuration averaging, the self-energy for a conduction electron is given to second order as
Nl Ny

k k" '
) = g —P '" " '"( W(k —k')G' '(k' '

) — e "f " ' W(k' —k ')
k'

NI

+Q —Qe '"'" '"'V (k)V (k )C '(t&d )
m

(A1)

where C( )(ir)„) =I/{i~„—E( —v;n&) and N is the total number of lattice points.
We have taken (n, ,)+ (n;, ) to be a. constant for all i, but (n;,) —(n;, ) may vary from site to site. In Eqs.

(1.8)-(1.10) we suppressed the index for simplicity of notation.
The average of the above all possible lattice points is introduced formally as

NI

Z tk, k", ' „),= —Q —I ' k' ' '"
) )k }k—i'}G "'&k ', '

„),)k {k' —k" )
k $1 l~l

NI

g e-&()k'-i" »( ~ IV{k k')G &o&(k' i ) (V{k' k")
s N ]1 N ) N ~~1 N

I
Q e ((&k+Rk'-)R( V (k) V (k&&) C(0)(t )&k

=k, I l)ktk -k')I'G"'(k', ' .).)}„-+,(k, —
k) )kt)» )ktk-k ') }),,,-G"'ti, '

+n( Q lV (k) l'(C' '(i(u„),)5„.. (A2)

where

(A3)

In the last term of Eq. (A2), it has been reasoned
that the exponential may be averaged separately
from the localized electron propagator. %e be-
lieve this assumption is justified because the site
dependence of the propagator is such that the ac-
tual spatial configuration of impurities has little
influence on the spatial variation of the 1.ocalized
electron propagator. For the propagator, only
the variation of (n;, ) and (n„) from site to site is
important, not the actual configuration of these
sites.

The proper self-energy is easily identified in
(A2) as

Z(k, t&d„) =n(g IIV{ -k') I'G(k' t&k&.).
k

+nz V (k C(i(d„~, (A4)

z(i~„) =g lv (k)
l

G(k, ~„),, (A5)

using the ansatz

theory there are two possible values of (n;, )
—(n„), equal in magnitude but opposite in sign.
Thgs v, is independent of i. Thus, the spin-orien-
tation average is relevant only to quantities con-
taimxrg odd powers of v;.

Using the above averaging technique, the self-
energy for conduction and localized electrons is
calculated self-consistently from the coupled equa-
tions

+nip lV (k)l (C '(i()&„) )5

G(k, ~„) t(e„Z {&o„)-e)&-&t& (~.) '

1
C(i&d „) i~„Z,((u„) -E(.-y, (&d„)

'

(A6)

(AV)

The site index i will be deleted in v, and all
quantities depending thereon, with the agreement
that any quantity depending on v implicitly depends
on the site.

The theory we employ reduces to Anderson's
Hartree-Fock theory in the normal state. ' In this

where Z~, Z, , &t&, and &t), are real. G(k, irz„),
and C(i&d„) are the conduction- and localized-elec-
tron propagators, respectively:

Z(k, t~„)~=ud„-e, —[C(t(, i)z„).J
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= is„[1—Z, {ru„)]—e, —rfr, (g „), (A8) =iz„[I-Z,(g„)]-E,.—y, („„). (A9)

Z(far„) i=re„E,„—[C(irg„),)
'

Equations (A4) and (A5) may be solved for Z, Z„
, andy, :

'& n rn('& n)

g lv (k) l2
~nZr(&n)

[~ „Z,(r~ „)] + [E, + rfr, (a „)]
(A10)

(A11)

2 &r. +4r(~.)
4m(~n) I g l

nr( )I
[, Z ( )]n [E 4 ( ))~

(A12}

( ) lv (k)la
rfn+ &1& .)

(2~)' " I~.Z.4.)l'+ [e~+ 0 (~.)]' (A13)

For energies within f~~ of the Fermi surface, the
region of interest here, the momentum depen-
dences of V{A) and W(k —k ) are negligible. The
integral for re, {rq„) is negligible. In this region the
frequency (~„) dependence of the other integrals
is also negligible.

Making some definitions, we have

where

C (~„)-=ni(2l+1)l V !((u„+&', ),
I/2r, =n, &A(O)l Vl',

r -=,A(o)
l
v l' .

(A17)

(A18)

(A19)

ru„= [1+C ((u„)]ra„+ +C (cu„)r
1 nn

2vq

The dressed conduction- and localized-electron
propagators are therefore

C3 „= err „+r (8 „ /

(A14)

(A15)
1

G(k, i') „)
Z~ ne 6 ~ I~ Vd n J

(A20)

re rn(~ „)= —(C (r~ „)E,„)= —C (w „)E,—C {ra„)(v ), ,

(A16}

1
C(z~ „)

~&n ~ra.
(A21)

APPENDIX 8: VERTEX FUNCTIONS

Configuration averaging the diagrams of Fig. 1 we get

A, (q, i(u„, —(u„),=I+ng(2f+I)l&l'Q (G(k+q, i&a„),G(-k, —i(o„),A, (q, is„, —iw„),)

+ng(2l+1)
l
vl (c(i(d„),c( id„), A, (-q, i&8„, —id„),),

Ag(qri~„, -4)„),= —d+ Vl QG{k+q, irgg, G(-k, —uo„),An(q, i'„, —ku„), . (B2)

Using the fact that a conduction-electron vertex introduces an energy cutoff, me find

G (k+ q, 4& „),G (- k, —4& „),=N(0)

=X(0) l

dA 1 1

4& -- &~ nn &rr vg ' q rtrn(r&n) ~nn+ en+ rtrn(~n)

dA 1

&(Ann+ A nn) [rf' n((d ) rtrn(~ n)l Vs' q
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where the energy cutoff allows the slowly varying
velocity v, and N($), the density of states, to be

approximated by constants, whence the integral
over $ can be extended from —~ to ~, transferring
the cutoff to the frequency sum. We define

so it is sufficient to have

2 lcm„l I'+ (IE, I
—I~ I)'

Now

(C6)

+ l~
I
~ff(~„),

f(~.) = 4.(~„)—y (~~„),

N(0) =mP~/2v

(B4)

(B5}

(B6)

1 4I'v
-=n~(2f+»I&l (-~ E i2 2 2 i (C7)

rs(~n (9)„+@)y~),) +4'„v

so that, carrying out a procedure similar to that
above, we require

With these results, Eqs. (Bl) and (B2) are solved
to give (l. 27) and (1.28) in the text.

1

r,(r) " I 6[1/r.((o„)]
((u. —I') (C8)

c(I")» „" ((u „—I')sc(~„)
. &&a r

(Cl}

APPENDIX C: THE BASIC APPROXIMATION

We are concerned with the frequency variation of

c(~„), r,(~„), P(~„)

[the ~„variation of v(w„) is entirely in c{v„)]. We

expand c(~ „) in a Taylor's series for i~„about 5&„
= I' and require

1/21~. 1"v [~i (0)+& {0)] (C9)

Again, (C6) is sufficient.
Finally

P((0„) 2+i(2f+I)II
I 2 8 2 2

urn+ l| ll + nV

(C10)
is dealt with in the same fashion, yielding the con-
dition

that is,

r(r'+E'„)'+ r(r'+E'„)'
(C2)

1/2I „I» [N„(0)+N„{0)].

Thus, if

(Cl1)

or

1 1 1 N„(0) iV„(0)
2v N„(0) N „(0) N (0) N (0)

(C8)

where

1 I'
I'+ ( IE, I

—
I v l

)'

then the functions

c((u„), v, ((o„) ', P(~„)

(C12)

I
N, ~(0) = —

2 gI" +E,
(C4)

1 N„(0)'+iv„(o)'
2v iso „[ N„(Q)+N„(0)

(C5)

is the density of localized states of spin z at the
Fermi surface.

We thus need

may be taken at „= I', neglecting their &„depen-
dence.

Condition (C12) may be regarded as equivalent
to the requirement that the density of localized
states admixed into conduction-electron states
(for either spin) be a slowly varying function of
energies within the Debye energy of the Fermi
surfa. ce (see Fig. 2).
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